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EM 
The Expectation-Maximization 

Algorithm
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Last lecture: 
How to estimate μ given data
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X          X  XX    X  XXX               X
Observed Data

For this problem, we got a nice, closed 
form, solution, allowing calculation of the 
μ, σ that maximize the likelihood of the 

observed data.

We’re not always so lucky...



This?

Or this?

(A modeling decision, not a math problem..., 
but if later, what math?)
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More Complex Example



A Real Example:
CpG content of human gene promoters

“A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two 
distinct classes of promoters”  Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

©2006 by National Academy of Sciences
30
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No 
closed-
form
max

Parameters θ

means µ1 µ2

variances σ2
1 σ2

2

mixing parameters τ1 τ2 = 1− τ1

P.D.F. f(x|µ1,σ2
1) f(x|µ2,σ2

2)

Likelihood

L(x1, x2, . . . , xn|µ1, µ2,σ2
1 ,σ2

2 , τ1, τ2)

=
�n

i=1

�2
j=1 τjf(xi|µj ,σ2

j )

Gaussian Mixture Models / Model-based Clustering
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Messy: no closed form solution known for 
finding θ maximizing L

But what if we 
knew the 
hidden data?

A What-If Puzzle
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EM as Egg vs Chicken
IF zij known, could estimate parameters θ

E.g., only points in cluster 2 influence µ2, σ2  
IF parameters θ known, could estimate zij

E.g., if |xi - µ1|/σ1 << |xi - µ2|/σ2, then zi1 >> zi2

But we know neither; (optimistically) iterate:
E: calculate expected zij, given parameters
M: calc “MLE” of parameters, given E(zij)

Overall, a clever “hill-climbing” strategy 
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Simple Version: 
“Classification EM”

If zij < .5, pretend it’s 0;  zij > .5, pretend it’s 1

I.e., classify points as component 0 or 1

Now recalc θ, assuming that partition

Then recalc zij , assuming that θ
Then re-recalc θ, assuming new zij,  etc., etc.  

“Full EM” is a bit more involved, but this is the crux.
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Full EM
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The E-step:  
Find E(Zij), i.e. P(Zij=1)

Assume θ known & fixed
A (B): the event that xi was drawn from f1 (f2)
D: the observed datum xi

Expected value of zi1 is P(A|D)

Repeat 
for 

each 
xi}

E = 0 · P (0) + 1 · P (1)
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Complete Data 
Likelihood

(Better):
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M-step:
Find θ maximizing E(log(Likelihood))
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2 Component Mixture
σ1 = σ2 = 1;  τ = 0.5

Essentially converged in 2 iterations

(Excel spreadsheet on course web)



Applications
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Clustering is a remarkably successful exploratory data 
analysis tool

Web-search, information retrieval, gene-expression, ...

Model-based approach above is one of the leading ways to do it

Gaussian mixture models widely used
With many components, empirically match arbitrary distribution

Often well-justified, due to “hidden parameters” driving the 
visible data

EM is extremely widely used for “hidden-data” problems
Hidden Markov Models
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EM Summary

Fundamentally a maximum likelihood parameter 
estimation problem

Useful if hidden data, and if analysis is more 
tractable when 0/1 hidden data z known

Iterate: 
E-step: estimate E(z) for each z, given θ
M-step: estimate θ maximizing E(log likelihood) 
given E(z) [where “E(logL)” is wrt random z ~ E(z) = p(z=1)]



45

EM Issues
Under mild assumptions, EM is guaranteed to 
increase likelihood with every E-M iteration, 
hence will converge.

But it may converge to a local, not global, max. 
(Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often 
applied to problems (including clustering, 
above) that are NP-hard (next 3 weeks!)

Nevertheless, widely used, often effective


