EM

The Expectation-Maximization Algorithm

Last lecture: How to estimate μ given data

For this problem, we got a nice, closed form, solution, allowing calculation of the μ , σ that maximize the likelihood of the observed data.

We're not always so lucky...

. . . <mark>µ</mark> . .

(A modeling decision, not a math problem..., but if later, what math?)

A Real Example: CpG content of human gene promoters

"A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters" Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

Gaussian Mixture Models / Model-based Clustering

Likelihood

$$\begin{split} L(x_1, x_2, \dots, x_n | \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2) & \text{No} \\ &= \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i | \mu_j, \sigma_j^2) & \text{form} \\ & \text{max} \end{split}$$

31

A What-If Puzzle

Likelihood

$$L(x_1, x_2, \dots, x_n | \overbrace{\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2}^{\theta})$$

$$= \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i | \mu_j, \sigma_j^2)$$

Messy: no closed form solution known for finding θ maximizing L

But what if we knew the $z_{ij} = \begin{cases} 1 & \text{if } x_i \text{ drawn from } f_j \\ 0 & \text{otherwise} \end{cases}$

EM as Egg vs Chicken

IF z_{ij} known, could estimate parameters θ

E.g., only points in cluster 2 influence μ_2 , $\sigma_2 = IF$ parameters θ known, could estimate z_{ij}

E.g., if $|\mathbf{x}_i - \mu_1| / \sigma_1 \ll |\mathbf{x}_i - \mu_2| / \sigma_2$, then $z_{i1} >> z_{i2}$

But we know neither; (optimistically) iterate:

E: calculate expected z_{ij} , given parameters M: calc "MLE" of parameters, given $E(z_{ij})$

Overall, a clever "hill-climbing" strategy

Simple Version: "Classification EM"

If $z_{ij} < .5$, pretend it's 0; $z_{ij} > .5$, pretend it's 1 I.e., *classify* points as component 0 or 1 Now recalc θ , assuming that partition Then recalc z_{ij} , assuming that θ Then re-recalc θ , assuming new z_{ij} , etc., etc. "Full EM" is a bit more involved, but this is the crux.

Full EM

 x_i 's are known; θ unknown. Goal is to find MLE θ of: $L(x_1,\ldots,x_n \mid \theta)$ (hidden data likelihood) Would be easy if z_{ij} 's were known, i.e., consider: $L(x_1, \ldots, x_n, z_{11}, z_{12}, \ldots, z_{n2} \mid \theta)$ (complete data likelihood) But z_{ij} 's aren't known. Instead, maximize *expected* likelihood of visible data $E(L(x_1,\ldots,x_n,z_{11},z_{12},\ldots,z_{n2} \mid \theta)),$

where expectation is over distribution of hidden data $(z_{ij}$'s)

The E-step: Find $E(Z_{ij})$, i.e. $P(Z_{ij}=1)$

Assume θ known & fixed

 $E = 0 \cdot P(0) + 1 \cdot P(1)$ A (B): the event that x_i was drawn from f_1 (f_2)

D: the observed datum x_i

Expected value of z_{i1} is P(A|D)

$$P(A|D) = \frac{P(D|A)P(A)}{P(D)}$$

$$P(D) = P(D|A)P(A) + P(D|B)P(B)$$
$$= f_1(x_i|\theta_1)\tau_1 + f_2(x_i|\theta_2)\tau_2$$

Repeat for each Xi

Complete Data Likelihood

Recall:

$$z_{1j} = \left\{ egin{array}{ccc} 1 & ext{if } x_1 ext{ drawn from } f_j \ 0 & ext{otherwise} \end{array}
ight.$$

so, correspondingly,

$$L(x_1, z_{1j} \mid \theta) = \begin{cases} \tau_1 f_1(x_1 \mid \theta) & \text{if } z_{11} = 1 \\ \tau_2 f_2(x_1 \mid \theta) & \text{otherwise} \end{cases}$$

Formulas with "if's" are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:

$$L(x_1, z_{1j} \mid \theta) = z_{11} \cdot \tau_1 f_1(x_1 \mid \theta) + z_{12} \cdot \tau_2 f_2(x_1 \mid \theta)$$

Idea 2 (Better):

$$L(x_1, z_{1j} \mid \theta) = (\tau_1 f_1(x_1 \mid \theta))^{z_{11}} \cdot (\tau_2 f_2(x_1 \mid \theta))^{z_{12}}$$

40

M-step: Find θ maximizing E(log(Likelihood))

(For simplicity, assume
$$\sigma_1 = \sigma_2 = \sigma; \tau_1 = \tau_2 = .5 = \tau$$
)

$$L(\vec{x}, \vec{z} \mid \theta) = \prod_{1 \le i \le n} \underbrace{\frac{\tau}{\sqrt{2\pi\sigma^2}} \exp\left(-\sum_{1 \le j \le 2} z_{ij} \frac{(x_i - \mu_j)^2}{(2\sigma^2)}\right)}_{1 \le j \le 2}$$

$$E[\log L(\vec{x}, \vec{z} \mid \theta)] = E\left[\sum_{1 \le i \le n} \left(\log \tau - \frac{1}{2}\log 2\pi\sigma^2 - \sum_{1 \le j \le 2} z_{ij} \frac{(x_i - \mu_j)^2}{2\sigma^2}\right)\right]$$

$$= \sum_{1 \le i \le n} \left(\log \tau - \frac{1}{2}\log 2\pi\sigma^2 - \sum_{1 \le j \le 2} E[z_{ij}] \frac{(x_i - \mu_j)^2}{2\sigma^2}\right)$$

Find θ maximizing this as before, using $E[z_{ij}]$ found in E-step. Result:

2 Component Mixture $\sigma_1 = \sigma_2 = 1; \ \tau = 0.5$

		mu1	-20.00		-6.00		-5.00		-4.99
		mu2	6.00		0.00		3.75		3.75
x1	-6	z11		5.11E-12		1.00E+00		1.00E+00	
x2	-5	z21		2.61E-23		1.00E+00		1.00E+00	
х3	-4	z31		1.33E-34		9.98E-01		1.00E+00	
x4	0	z41		9.09E-80		1.52E-08		4.11E-03	
x5	4	z51		6.19E-125		5.75E-19		2.64E-18	
x6	5	z61		3.16E-136		1.43E-21		4.20E-22	
x7	6	z71		1.62E-147		3.53E-24		6.69E-26	

Essentially converged in 2 iterations

(Excel spreadsheet on course web)

Applications

Clustering is a remarkably successful exploratory data analysis tool

Web-search, information retrieval, gene-expression, ...

Model-based approach above is one of the leading ways to do it

Gaussian mixture models widely used

With many components, empirically match arbitrary distribution

Often well-justified, due to "hidden parameters" driving the visible data

EM is extremely widely used for "hidden-data" problems Hidden Markov Models

EM Summary

Fundamentally a maximum likelihood parameter estimation problem

Useful if hidden data, and if analysis is more tractable when 0/1 hidden data z known

Iterate:

E-step: estimate E(z) for each z, given θ M-step: estimate θ maximizing E(log likelihood) given E(z) [where "E(logL)" is wrt random z ~ E(z) = p(z=1)]

EM Issues

Under mild assumptions, EM is guaranteed to increase likelihood with every E-M iteration, hence will *converge*.

But it may converge to a *local*, not global, max. (Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often applied to problems (including clustering, above) that are *NP-hard* (next 3 weeks!) Nevertheless, widely used, often effective