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Maximum Likelihood Estimators

Learning From Data: 
MLE
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Parameter Estimation

Assuming sample x1, x2, ..., xn is from a 
parametric distribution f(x|θ), estimate θ.

E.g.:  Given sample HHTTTTTHTHTTTHH 
of (possibly biased) coin flips, estimate 

            θ = probability of Heads

f(x|θ) is the Bernoulli probability mass function with parameter θ



Likelihood
P(x | θ):  Probability of event x given model θ
Viewed as a function of x (fixed θ), it’s a probability

E.g., Σx P(x | θ) = 1

Viewed as a function of θ (fixed x), it’s a likelihood
E.g., Σθ P(x | θ) can be anything; relative values of interest.  
E.g., if θ = prob of heads in a sequence of coin flips then
    P(HHTHH | .6) > P(HHTHH | .5), 
I.e., event HHTHH is more likely when θ = .6 than θ = .5

And what θ make HHTHH most likely?
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Likelihood Function
Probability of HHTHH, 

given P(H) = θ:

θ θ4(1-θ)
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One (of many) approaches to param. est.
Likelihood of (indp) observations x1, x2, ..., xn

As a function of θ, what θ maximizes the 
likelihood of the data actually observed
Typical approach:                   or

Maximum Likelihood 
Parameter Estimation

L(x1, x2, . . . , xn | θ) =
n�

i=1

f(xi | θ)

∂

∂θ
L(#x | θ) = 0

∂

∂θ
log L(�x | θ) = 0
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(Also verify it’s max, not min, & not better on boundary)

Example 1
n coin flips, x1, x2, ..., xn;   n0 tails, n1 heads,  n0 + n1 = n;  

θ = probability of heads

 

Observed fraction of 
successes in sample is 
MLE of success 
probability in population

dL/dθ = 0



Bias
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A desirable property:  An estimator Y of a 
parameter θ is an unbiased estimator if 
       E[Y]  = θ
For coin ex. above, MLE is unbiased:
  Y = fraction of heads = (Σ1≤i≤nXi)/n, 
(Xi = indicator for heads in ith trial) so
  E[Y] = (Σ1≤i≤n E[Xi])/n = n θ/n = θ



Aside: are all unbiased 
estimators equally good?

• No!  

• E.g.,  “Ignore all but 1st flip; if it was H,  let 
Y’ = 1; else Y’ = 0”

• Exercise: show this is unbiased

• Exercise: if observed data has at least one H 
and at least one T, what is the likelihood of 
the data given the model with θ = Y’ ?
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Parameter Estimation
Assuming sample x1, x2, ..., xn is from a 
parametric distribution f(x|θ), estimate θ.

E.g.:  Given n normal samples, 
estimate mean & variance

f(x) = 1√
2πσ2 e−(x−µ)2/(2σ2)

θ = (µ,σ2)
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Ex2: I got data; a little birdie tells me 
it’s normal, and promises σ2 = 1
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X          X  XX    X  XXX               X
Observed Data

x →
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Which is more likely: (a) this?
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X          X  XX    X  XXX               X
Observed Data
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Which is more likely:  (b) or this?
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X          X  XX    X  XXX               X
Observed Data
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Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X
Observed Data
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Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X
Observed Data

Looks good by eye, but how do I optimize my estimate of μ  ?
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Ex. 2: xi ∼ N(µ,σ2), σ2 = 1, µ unknown

And verify it’s max, 
not min & not better 
on boundary

 

Sample mean is MLE of 
population mean

dL/dθ = 0



Ex3: I got data; a little birdie tells me 
it’s normal (but does not tell me σ2)
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X          X  XX    X  XXX               X
Observed Data

x →
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Which is more likely: (a) this?
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X          X  XX    X  XXX               X
Observed Data
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Which is more likely: (b) or this?

18

X          X  XX    X  XXX               X
Observed Data
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Which is more likely:  (c) or this?
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X          X  XX    X  XXX               X
Observed Data
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Which is more likely:  (d) or this?
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X          X  XX    X  XXX               X
Observed Data
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µ ± !
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Which is more likely:  (d) or this?
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X          X  XX    X  XXX               X
Observed Data

Looks good by eye, but how do I optimize my estimates of μ & σ ?
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Ex 3: xi ∼ N(µ,σ2), µ,σ2 both unknown
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Sample mean is MLE of 
population mean, again
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Ex. 3, (cont.)

lnL(x1, x2, . . . , xn|θ1, θ2) =
�

1≤i≤n

−1
2

ln 2πθ2 −
(xi − θ1)2

2θ2

∂
∂θ2

lnL(x1, x2, . . . , xn|θ1, θ2) =
�

1≤i≤n

−1
2

2π

2πθ2
+

(xi − θ1)2

2θ2
2

= 0

θ̂2 =
��

1≤i≤n(xi − θ̂1)2
�

/n = s̄2

Sample variance is MLE of 
population variance



Bias? if Y is sample mean
    Y = (Σ1≤i≤n Xi)/n 
then
    E[Y] = (Σ1≤i≤n E[Xi])/n = n μ/n = μ
so the MLE is an unbiased estimator of population mean

Similarly, (Σ1≤i≤n (Xi-μ)2)/n is an unbiased estimator of σ2.
Unfortunately, if μ is unknown, estimated from the same data, as 
above,                                 is a consistent, but biased estimate 
of population variance.  (An example of overfitting.)   Unbiased 
estimate is:

Moral: MLE is a great idea, but not a magic bullet
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Ex. 3, (cont.)

I.e., limn→∞ 

= correct



Biased?  Yes.  Why?  As an extreme, think about n = 1.  
Then θ2 = 0; probably an underestimate!

Also, think about n = 2.  Then θ1 is exactly between 
the two sample points, the position that exactly 
minimizes the expression for θ2.   Any other choices 
for θ1, θ2 make the likelihood of the observed data 
slightly lower.  But it’s actually pretty unlikely that two 
sample points would be chosen exactly equidistant 
from, and on opposite sides of the mean, so the MLE 
θ2 systematically underestimates θ2.

(But not by much, & bias shrinks with sample size.)

More on Bias of θ2 
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Summary
MLE is one way to estimate parameters from data
You choose the form of the model (normal, binomial, ...)
Math chooses the value(s) of parameter(s)
Has the intuitively appealing property that the parameters 
maximize the likelihood of the observed data; basically just 
assumes your sample is “representative”

Of course, unusual samples will give bad estimates (estimate normal 
human heights from a sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like 
being unbiased
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