Learning From Data: MLE

Maximum Likelihood Estimators

Parameter Estimation

Assuming sample $x_1, x_2, ..., x_n$ is from a parametric distribution $f(x|\theta)$, estimate θ .

E.g.: Given sample HHTTTTTHTHTHTTTHH of (possibly biased) coin flips, estimate

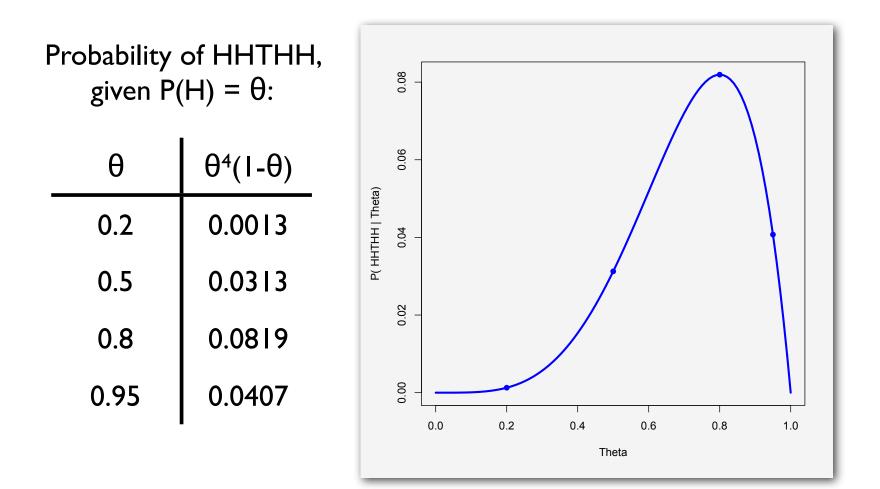
 θ = probability of Heads

 $f(x|\theta)$ is the Bernoulli probability mass function with parameter θ

Likelihood

- $$\begin{split} \mathsf{P}(\mathsf{x} \mid \theta): \text{ Probability of event } \mathsf{x} \text{ given } \textit{model } \theta \\ \text{Viewed as a function of } \mathsf{x} \text{ (fixed } \theta)\text{, it's a } \textit{probability} \\ \text{E.g., } \Sigma_{\mathsf{x}} \mathsf{P}(\mathsf{x} \mid \theta) = \mathsf{I} \end{split}$$
- Viewed as a function of θ (fixed x), it's a likelihood E.g., $\Sigma_{\theta} P(x \mid \theta)$ can be anything; relative values of interest. E.g., if θ = prob of heads in a sequence of coin flips then P(HHTHH | .6) > P(HHTHH | .5), I.e., event HHTHH is more likely when θ = .6 than θ = .5
 - And what θ make HHTHH most likely?

Likelihood Function



Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est. Likelihood of (indp) observations $x_1, x_2, ..., x_n$

$$L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta)$$

As a function of θ , what θ maximizes the likelihood of the data actually observed Typical approach: $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta) = 0$ or $\frac{\partial}{\partial \theta} \log L(\vec{x} \mid \theta) = 0$

Example I

n coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n$; $dL/d\theta = 0$ θ = probability of heads 0.002 0.0015 0.001 $L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$ 0.0005 $\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$ $\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1-\theta} + \frac{n_1}{\theta}$ Setting to zero and solving: Observed fraction of successes in sample is MLE of success $\hat{\theta}$ $= \frac{n_1}{n_1}$ probability in population

(Also verify it's max, not min, & not better on boundary)

Bias

A desirable property: An estimator Y of a parameter θ is an *unbiased* estimator if $E[Y] = \theta$

For coin ex. above, MLE is unbiased:

 $Y = fraction of heads = (\Sigma_{1 \le i \le n} X_i)/n$,

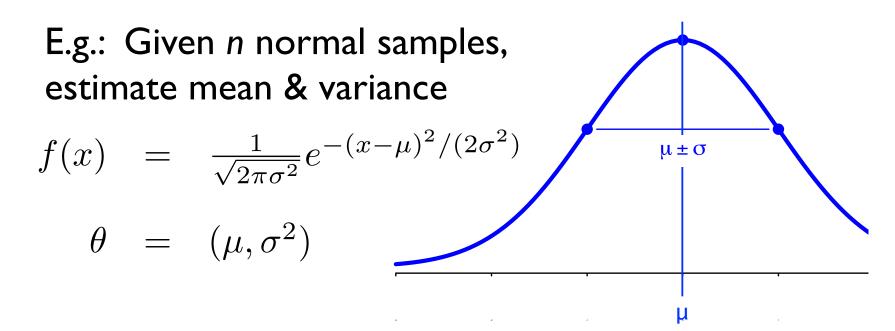
 $(X_i = indicator for heads in i^{th} trial) so$ $E[Y] = (\Sigma_{1 \le i \le n} E[X_i])/n = n \theta/n = \theta$

Aside: are all unbiased estimators equally good?

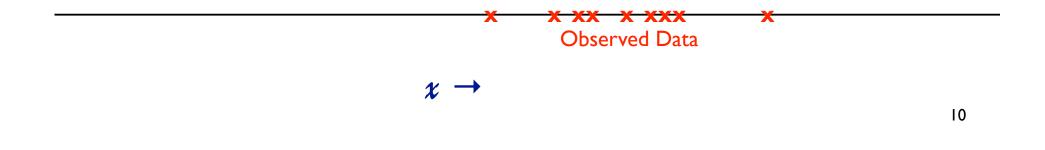
- No!
- E.g., "Ignore all but 1st flip; if it was H, let Y' = 1; else Y' = 0"
- Exercise: show this is unbiased
- Exercise: if observed data has at least one H and at least one T, what is the likelihood of the data given the model with $\theta = Y'$?

Parameter Estimation

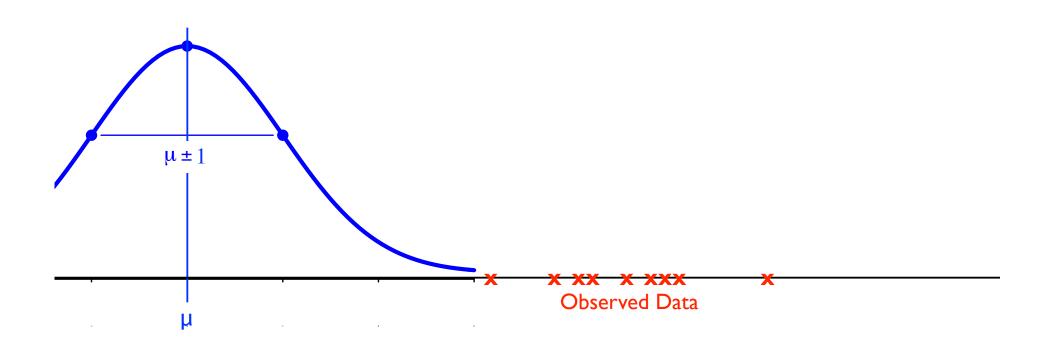
Assuming sample $x_1, x_2, ..., x_n$ is from a parametric distribution $f(x|\theta)$, estimate θ .



Ex2: I got data; a little birdie tells me it's normal, and promises $\sigma^2 = I$

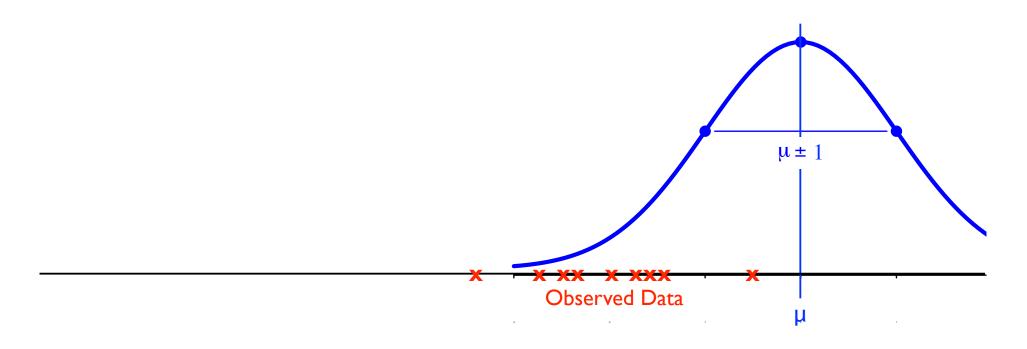


Which is more likely: (a) this?



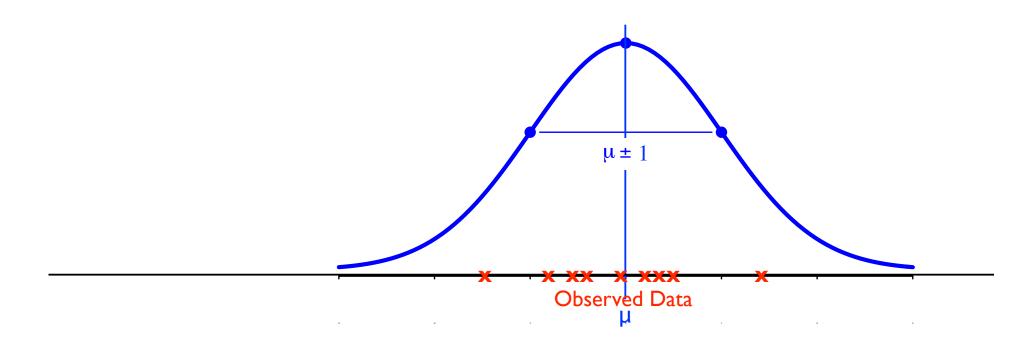
П

Which is more likely: (b) or this?



12

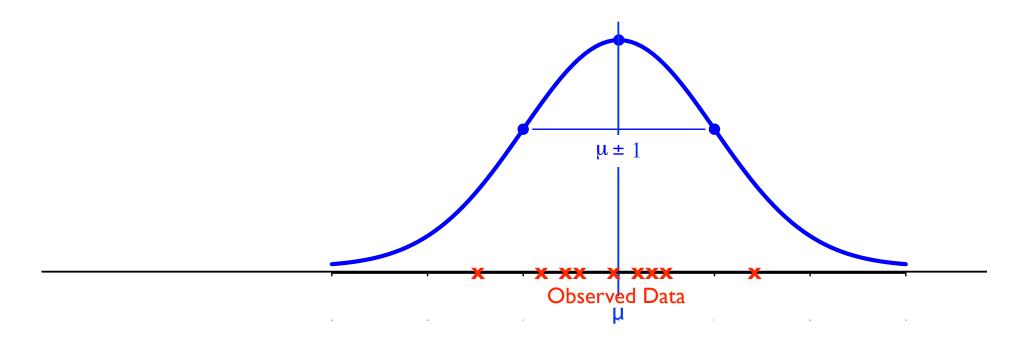
Which is more likely: (c) or this?



13

Which is more likely: (c) or *this*?

Looks good by eye, but how do I optimize my estimate of μ ?



Ex. 2:
$$x_i \sim N(\mu, \sigma^2), \ \sigma^2 = 1, \ \mu$$
 unknown
 $L(x_1, x_2, \dots, x_n | \theta) = \prod_{1 \le i \le n} \frac{1}{\sqrt{2\pi}} e^{-(x_i - \theta)^2/2}$
 $\ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi - \frac{(x_i - \theta)^2}{2}$
 $\frac{d}{d\theta} \ln L(x_1, x_2, \dots, x_n | \theta) = \sum_{1 \le i \le n} (x_i - \theta)$

And verify it's max, not min & not better on boundary

5

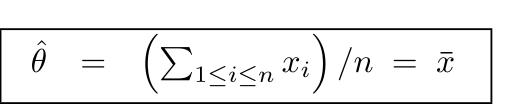
4

 $dL/d\theta = 0$

З

2

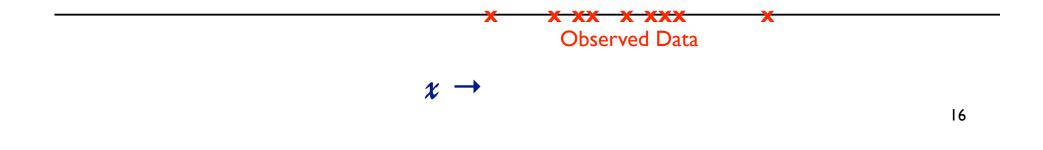
-3 -4 -5 -6



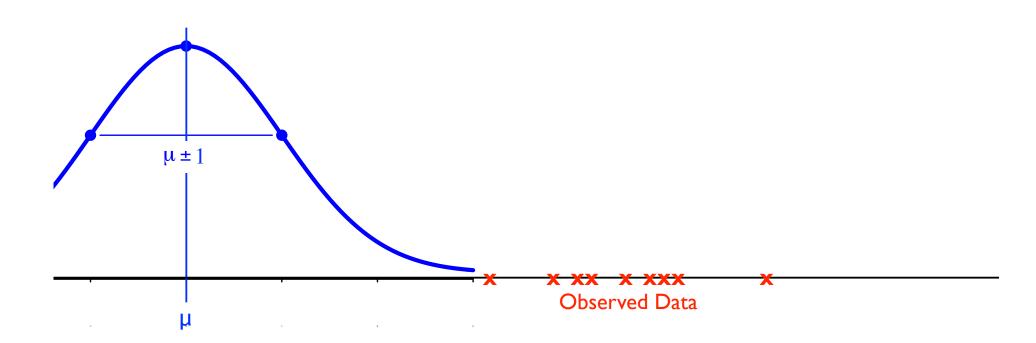
 $= \left(\sum_{1 \le i \le n} x_i\right) - n\theta = 0$

Sample mean is MLE of population mean

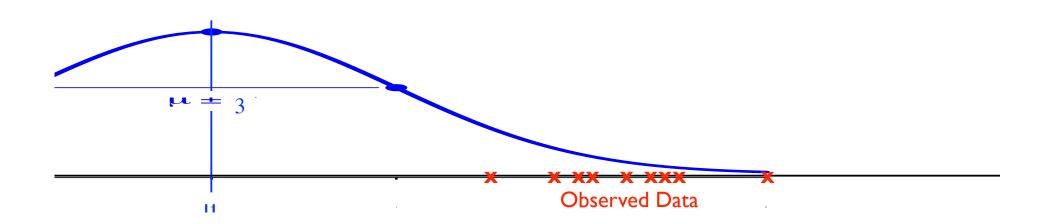
Ex3: I got data; a little birdie tells me it's normal (but does *not* tell me σ^2)



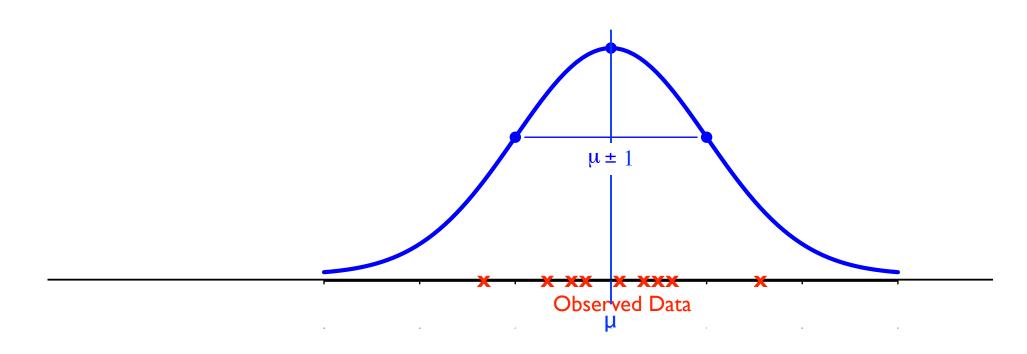
Which is more likely: (a) this?



Which is more likely: (b) or this?

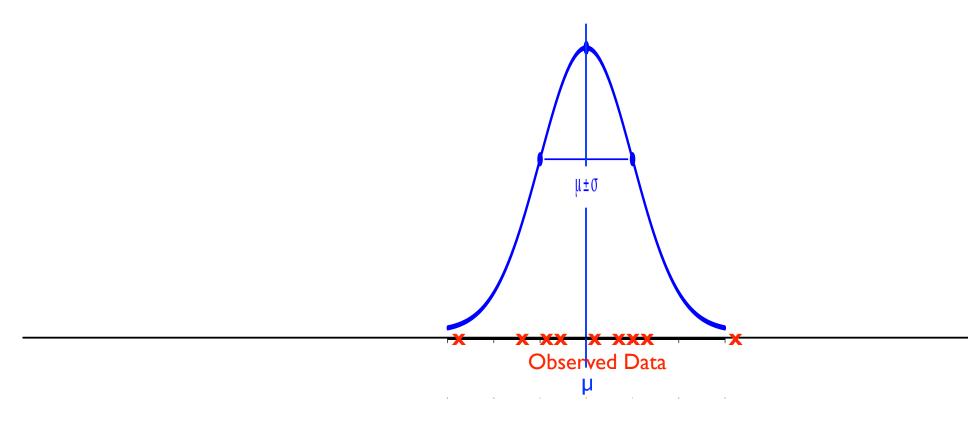


Which is more likely: (c) or this?



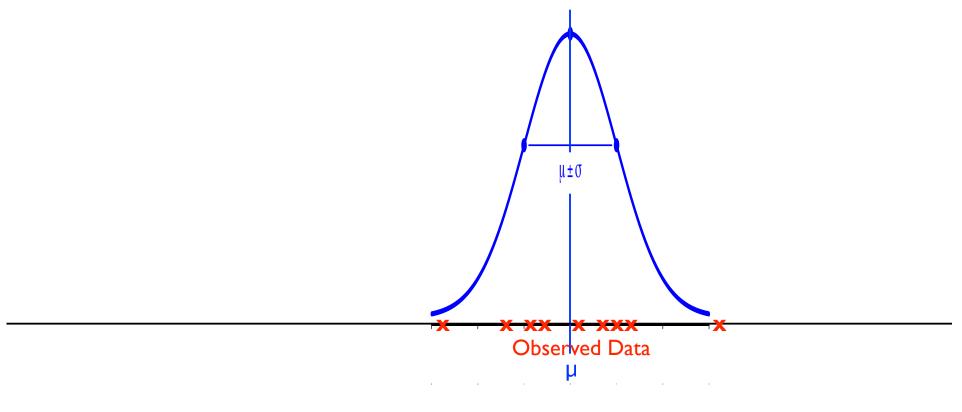
19

Which is more likely: (d) or this?



Which is more likely: (d) or this?

Looks good by eye, but how do I optimize my estimates of μ & σ ?



Ex 3: $x_i \sim N(\mu, \sigma^2), \ \mu, \sigma^2$ both unknown

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$
$$\frac{\partial}{\partial \theta_1} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} \frac{(x_i - \theta_1)}{\theta_2} = 0$$
$$\hat{\theta}_1 = \left(\sum_{1 \le i \le n} x_i\right) / n = \bar{x}$$

 θ_2

 θ_1

Sample mean is MLE of population mean, again

Ex. 3, (cont.)

$$\ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \ln 2\pi \theta_2 - \frac{(x_i - \theta_1)^2}{2\theta_2}$$
$$\frac{\partial}{\partial \theta_2} \ln L(x_1, x_2, \dots, x_n | \theta_1, \theta_2) = \sum_{1 \le i \le n} -\frac{1}{2} \frac{2\pi}{2\pi \theta_2} + \frac{(x_i - \theta_1)^2}{2\theta_2^2} = 0$$
$$\hat{\theta_2} = \left(\sum_{1 \le i \le n} (x_i - \hat{\theta}_1)^2 \right) / n = \bar{s}^2$$

Sample variance is MLE of population variance

Ex. 3, (cont.)

Bias? if Y is sample mean

$$Y = (\sum_{1 \le i \le n} X_i)/n$$

then

 $E[Y] = (\sum_{1 \le i \le n} E[X_i])/n = n \ \mu/n = \mu$ so the MLE is an *unbiased* estimator of population mean

Similarly, $(\Sigma_{1 \le i \le n} (X_i - \mu)^2)/n$ is an unbiased estimator of σ^2 . Unfortunately, if μ is unknown, estimated from the same data, as above, $\hat{\theta}_2 = \sum_{1 \le i \le n} \frac{(x_i - \hat{\theta}_1)^2}{n}$ is a consistent, but biased estimate of population variance. (An example of overfitting.) Unbiased estimate is:

$$\hat{\theta}_2' = \sum_{1 \le i \le n} \frac{(x_i - \hat{\theta}_1)^2}{n - 1}$$

I.e., lim_{n→∞}
 = correct

Moral: MLE is a great idea, but not a magic bullet

More on Bias of $\hat{\theta}_2$

Biased? Yes. Why? As an extreme, think about n = I. Then $\hat{\theta}_2 = 0$; probably an underestimate!

Also, think about n = 2. Then $\hat{\theta}_1$ is exactly between the two sample points, the position that exactly minimizes the expression for θ_2 . Any other choices for θ_1 , θ_2 make the likelihood of the observed data slightly *lower*. But it's actually pretty unlikely that two sample points would be chosen exactly equidistant from, and on opposite sides of the mean, so the MLE $\hat{\theta}_2$ systematically underestimates θ_2 .

(But not by much, & bias shrinks with sample size.)

Summary

MLE is one way to estimate *parameters* from *data* You choose the *form* of the model (normal, binomial, ...) Math chooses the *value(s)* of parameter(s)

Has the intuitively appealing property that the parameters maximize the *likelihood* of the observed data; basically just assumes your sample is "representative"

Of course, unusual samples will give bad estimates (estimate normal human heights from a sample of NBA stars?) but that is an unlikely event

Often, but not always, MLE has other desirable properties like being *unbiased*