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random variables

23



 

numbered balls
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Ross 4.1 ex 1b



 

first head
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probability mass functions
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Let X be the number of heads observed in n coin flips

Probability mass function:

 

head count
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n = 2 n = 8
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The cumulative distribution function for a random variable 
X is the function F: →[0,1] defined by 

                        F(a) = P[X≤a]

Ex: if X has probability mass function given by:

cdf
pmf

 

cumulative distribution function

28NB: for discrete random variables, be careful about  “≤” vs “<”



 

expectation
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. Long term net gain/loss = 0.

average of random values, weighted 
by their respective probabilities
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first head

dy0/dy = 0



Calculating E[g(X)]:
Y=g(X) is a new r.v.  Calc P[Y=j], then apply defn:

       X = sum of 2 dice rolls                      Y = g(X) = X mod 5

 

expectation of  a function of  a random variable
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j q(j) = P[Y = j] j•q(j)-

0

1

2

3

4

4/36+3/36 =7/36 0/36-

5/36+2/36 =7/36 7/36-

1/36+6/36+1/36 =8/36 16/36-

2/36+5/36 =7/36 21/36-

3/36+4/36 =7/36 28/36-

72/36-

i p(i) = P[X=i] i•p(i)

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 20/36

6 5/36 30/36

7 6/36 42/36

8 5/36 40/36

9 4/36 36/36

10 3/36 30/36

11 2/36 22/36

12 1/36 12/36

252/36E[X] = Σi ip(i) = 252/36 = 7

E[Y] = Σj jq(j) =  72/36  = 2



Calculating E[g(X)]:  Another way – add in a different 
order, using P[X=...] instead of calculating P[Y=...]

       X = sum of 2 dice rolls                      Y = g(X) = X mod 5

 

expectation of  a function of  a random variable
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j q(j) = P[Y = j] j•q(j)-

0

1

2

3

4

4/36+3/36 =7/36 0/36-

5/36+2/36 =7/36 7/36-

1/36+6/36+1/36 =8/36 16/36-

2/36+5/36 =7/36 21/36-

3/36+4/36 =7/36 28/36-

72/36-

i p(i) = P[X=i] g(i)•p(i)

2 1/36 2/36

3 2/36 6/36

4 3/36 12/36

5 4/36 0/36

6 5/36 5/36

7 6/36 12/36

8 5/36 15/36

9 4/36 16/36

10 3/36 0/36

11 2/36 2/36

12 1/36 2/36

72/36E[g(X)] = Σi g(i)p(i) =    252/3= 2

E[Y] = Σj jq(j) =  72/36  = 2



Above example is not a fluke.

Theorem: if Y = g(X), then E[Y] = Σi g(xi)p(xi), where 
xi, i = 1, 2, ... are all possible values of X.
Proof: Let  yj, j = 1, 2, ... be all possible values of  Y.

 

expectation of  a function of  a random variable
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xi6

xi1

xi3

X Y
g

yj1

yj2

xi2

xi4

xi5

yj3

Note that Sj = { xi | g(xi)=yj } is a 
partition of the domain of g.



 

properties of  expectation
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35

properties of  expectation
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properties of  expectation
Ross 4.9

True even if
X, Y dependentE[X+Y] = E[X] + E[Y]

E[X+Y] = E[Z] = Σs∈SZ[s] p(s) = Σs∈S(X[s] + Y[s]) p(s) 
= Σs∈SX[s] p(s) + Σs∈SY[s] p(s) = E[X] + E[Y]
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properties of  expectation
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properties of  expectation

← counterexample  above
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risk
,
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variance



 

41

risk
,



 

mean and variance

μ = E[X] is about location; σ = √Var(X) is about spread
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σ

σ

μ

μ

# heads in 20 flips, p=.5

# heads in 150 flips, p=.5



 

properties of  variance
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properties of  variance
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Example:
    What is Var(X) when X is outcome of one fair die?

    E(X) = 7/2, so



Var[aX+b] = a2 Var[X]

Ex: 

 

properties of  variance
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   E[X] = 0
Var[X] = 1

        Y = 1000 X
   E[Y] = E[1000 X] = 1000 E[x] = 0
Var[Y] = Var[1000 X] 
           =106Var[X] = 106



 

a zoo of  (discrete) random variables
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bernoulli random variables

An experiment results in “Success” or “Failure”
X is a random indicator variable (1=success, 0=failure)
    P(X=1) = p   and    P(X=0) = 1-p
X is called a Bernoulli random variable:  X ~ Ber(p)
E[X] = p
Var(X) = E[X2] – (E[X])2 = p – p2 = p(1-p)

Examples:
coin flip
random binary digit
whether a disk drive crashed

47

Jacob (aka James, Jacques) 
Bernoulli, 1654 – 1705 



 

binomial random variables

Consider n independent random variables Yi ~ Ber(p) 
X = Σi Yi is the number of successes in n trials
X is a Binomial random variable:  X ~ Bin(n,p)
 

By Binomial theorem, 
Examples

# of heads in n coin flips
# of 1’s in a randomly generated length n bit string
# of disk drive crashes in a 1000 computer cluster

   E[X] = pn
Var(X) = p(1-p)n	
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←(proof below, twice)



 

binomial pmfs
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binomial pmfs
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using

k=1 gives:

hence:

letting 
j = i-1

 

mean and variance of  the binomial
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products of  independent r.v.s
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Note: NOT true in general; see earlier example E[X2]≠E[X]2



 

variance of  independent r.v.s is additive
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← recall Var(aX+b) = a2Var(X)    

(Bienaymé, 1853)

Var



 

variance of  independent r.v.s is additive
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mean, variance of  binomial r.v.s

55



 

disk failures

A disk array consists of n drives, each of which will fail 
independently with probability p.
Suppose it can operate effectively if at least 
one-half of its components function, e.g., 
by “majority vote.”
For what values of p is a 5-component system more likely 
to operate effectively than a 3-component system?

X5 = # failed in 5-component system ~ Bin(5, p)
X3 = # failed in 3-component system ~ Bin(3, p)
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Ross 4.6 ex 6f



 

 X5 = # failed in 5-component system ~ Bin(5, p)
 X3 = # failed in 3-component system ~ Bin(3, p)

  P(5 component system effective) = P(X5 < 5/2)

  P(3 component system effective) = P(X3 < 3/2)

Calculation:  
5-component system is better if and only if p < 1/2
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disk failures



 

error correcting codes

The Hamming(7,4) code:
Have a 4-bit string to send over the network (or to disk)
Add 3 “parity” bits, and send 7 bits total
If bits are b1b2b3b4 then the three parity bits are 
   parity(b1b2b3), parity(b1b3b4), parity(b2b3b4)
Each bit is independently corrupted (flipped) in transit 
with probability 0.1
X = number of bits corrupted ~ Bin(7, 0.1)

The Hamming code allow us to correct all 1 bit errors.  
(E.g., if b1 flipped, 1st 2 parity bits, but not 3rd, will look wrong; the only single bit error 
causing this symptom is b1.  Similarly for any other single bit being flipped.  Some multi-
bit errors can be detected, but not corrected, but not arbitrarily many.)

P(correctable message received) = P(X=0) + P(X=1)
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error correcting codes

 Using error-correcting codes:  X ~ Bin(7, 0.1)

 P(X = 0) + P(X = 1) ≈ 0.8503

 What if we didn’t use error-correcting codes?
 X ~ Bin(4, 0.1)
 P(correct message received) = P(X=0)

 Using error correction improves reliability by 30% !
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models & reality

Sending a bit string over the network
n = 4 bits sent, each corrupted with probability 0.1
X = # of corrupted bits, X ~ Bin(4, 0.1)
In real networks, large bit strings (length n ≈ 104)
Corruption probability is very small: p ≈ 10-6

X ~ Bin(104, 10-6) is unwieldy to compute
Extreme n and p values arise in many cases

# bit errors in file written to disk 
# of typos in a book
# of elements in particular bucket of large hash table # 
of server crashes per day in giant data center
# facebook login requests sent to a particular server
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binomial → poisson in the limit
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buffers

Suppose a server can process 2 requests per second
Requests arrive at random at an average rate of 1/sec 
Unprocessed requests are held in a buffer 
Q. How big a buffer do we need to avoid ever dropping a 
request?
A. Infinite
Q. How big a buffer do we need to avoid dropping a request 
more often than once a day?
A. (approximate)  If X is the number of arrivals in a second, 
then X is poisson(λ=1).  We want b s.t. 
P(X > b) <  1/(24*60*60) ≈ 10-5

P(X = b) = e-1/b!  P(X=8) ≈ Σi>7 P(X=i) ≈ 1.02e-05
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balls in urns – the hypergeometric distribution

Draw d balls (without replacement) from an urn containing 
N, of which w are white, the rest black.  
Let X = number of white balls drawn

(note: n choose k = 0  if k < 0 or k > n)

E[X] = dp,   where p = w/N (the fraction of white balls)
proof: Let Xi be 0/1 indicator for i-th ball is white, X = Σ Xi

The Xi are dependent, but E[X] =  E[Σ Xi] = Σ E[Xi] = dp

Var[x] = dp(1-p)(1-(d-1)/(N-1))
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N

d



 

data mining

N ≈ 22500 human genes, many of unknown function
Suppose in some experiment, d =1588 of them were observed (say, 
they were all switched on in response to some drug)

A big question:  What are they doing?

One idea:  The Gene Ontology Consortium (www.geneontology.org) 
has grouped genes with known functions into categories such as 
“muscle development” or “immune system.”  Suppose 26 of your d 
genes fall in the “muscle development” category.  

Just chance?
Or call Coach & see if he wants to dope some athletes?

Hypergeometric: GO has 116 genes in the muscle development 
category.  If those are the white balls among 22500 in an urn, what is 
the probability that you would see 26 of them in 1588 draws?
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data mining
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A differentially bound peak was associated to the closest gene (unique Entrez ID) measured by distance to TSS 
within CTCF flanking domains. OR: ratio of predicted to observed number of genes within a given GO category. 
Count: number of genes with differentially bound peaks. Size: total number of genes for a given functional 
group. Ont: the Geneontology. BP = biological process, MF = molecular function, CC = cellular component.

Cao, et al., Developmental Cell 18, 662–674, April 20, 2010

probability of seeing this many genes from 
a set of this size by chance according to 

the hypergeometric distribution.  
E.g., if you draw 1588 balls from an urn containing 490 white balls 

and ≈22000 black balls, P(94 white) ≈2.05×10-11


