4. Conditional Probability

CSE 312 Winter 2011 W.L. Ruzzo Conditional probability of E given F: probability that E occurs given that F has already occurred.

"Conditioning on F"

Written as P(E|F)

Means "P(E, given F already observed)"

Sample space S reduced to those elements consistent with F (i.e. $\mathbf{S} \cap \mathbf{F}$)

Event space E reduced to those elements consistent with F (i.e. $\mathbf{E} \cap \mathbf{F}$)

With equally likely outcomes,

$$P(E \mid F) = \frac{\# \text{ of outcomes in } E \text{ consistent with } F}{\# \text{ of outcomes in } S \text{ consistent with } F} = \frac{|EF|}{|SF|} = \frac{|EF|}{|F|}$$

General defn:
$$P(E \mid F) = \frac{P(EF)}{P(F)}$$
 where P(F) > 0

Holds even when outcomes are not equally likely.

What if P(F) = 0?

P(E|F) undefined: (you can't observe the impossible)

Implies: P(EF) = P(E|F) P(F) (chain rule)

General definition of Chain Rule:

$$P(E_1 E_2 \cdots E_n) = P(E_1) P(E_2 \mid E_1) P(E_3 \mid E_1, E_2) \cdots P(E_n \mid E_1, E_2, \dots, E_{n-1})$$

Suppose you flip two coins & all outcomes are equally likely. What is the probability that both flips land on heads if...

• The first flip lands on heads?

Let B = {HH} and F = {HH, HT}

$$P(B|F) = P(BF)/P(F) = P({HH})/P({HH, HT})$$

 $= (1/4)/(2/4) = 1/2$

• At least one of the two flips lands on heads?

Let A = {HH, HT, TH}

$$P(B|A) = P(BA)/P(A) = P({HH})/P({HH, HT, TH})$$

 $= (1/4)/(3/4) = 1/3$

sending bit strings

Bit string with m 0's and n 1's sent on the network All distinct arrangements of bits equally likely

E = first bit received is a I

F = k of first r bits received are I's What's P(E|F)?

Solution 1:

$$P(E) = \frac{n}{m+n} \qquad P(F) = \frac{\binom{n}{k} \binom{m}{r-k}}{\binom{m+n}{r}}$$

$$P(F \mid E) = \frac{\binom{n-1}{k-1}\binom{m}{r-k}}{\binom{m+n-1}{r-1}}$$

$$P(E \mid F) = \frac{P(EF)}{P(F)} = \frac{P(F \mid E)P(E)}{P(F)} = \frac{k}{r}$$

sending bit strings

Bit string with m 0's and n 1's sent on the network All distinct arrangements of bits equally likely

E = first bit received is a I

F = k of first r bits received are I's

Solution 2:

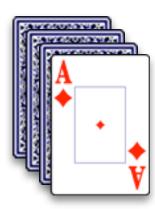
Observe:

P(E|F) = P(picking one of k I's out of r bits)

So:

P(E|F) = k/r

piling cards



Deck of 52 cards randomly divided into 4 piles 13 cards per pile Compute P(each pile contains an ace) Solution: $E_1 = \{ | \cdot | \text{ in any one pile } \}$ $E_3 = \{ \begin{array}{c|c} & & \\ & & \\ \end{array} \right\}$ different piles \} $E_{A} = \{ \overline{\text{all four aces in different piles } \}$

Compute $P(E_1 E_2 E_3 E_4)$

$$E_1 = \{ \begin{array}{c} \bullet \end{array} \text{ in any one pile } \}$$
 $E_2 = \{ \begin{array}{c} \bullet \end{array} \text{ and } \begin{array}{c} \bullet \end{array} \text{ in different piles } \}$
 $E_3 = \{ \begin{array}{c} \bullet \end{array} \text{ different piles } \}$
 $E_4 = \{ \text{ all four aces in different piles } \}$
 $P(E_1E_2E_3E_4)$
 $= P(E_1) P(E_2|E_1) P(E_3|E_1E_2) P(E_4|E_1E_2E_3)$

```
E_1 = \{ | \cdot | \text{ in any one pile } \}
    E_2 = \{ | \cdot | \text{ and } | \cdot | \text{ in different piles } \}
    E_3 = \{ | \cdot | | \cdot | | \cdot | | \text{ different piles } \}
    E_{\perp} = \{ \text{ all four aces in different piles } \}
                 = |
P(E_1)
P(E_2|E_1) = 39/51 (39 cards not in AH pile)
P(E_3|E_1E_2) = 26/50 (26 cards not in AS or AH piles)
P(E_4|E_1E_2E_3) = 13/49 (13 cards not in AS,AH,AD piles)
```

$$E_{1} = \{ \begin{array}{c} \bullet \\ \bullet \end{array} \text{ in any one pile } \}$$

$$E_{2} = \{ \begin{array}{c} \bullet \\ \bullet \end{array} \text{ and } \begin{array}{c} \bullet \\ \bullet \end{array} \text{ in different piles } \}$$

$$E_{3} = \{ \begin{array}{c} \bullet \\ \bullet \end{array} \text{ different piles } \}$$

$$E_{4} = \{ \text{ all four aces in different piles } \}$$

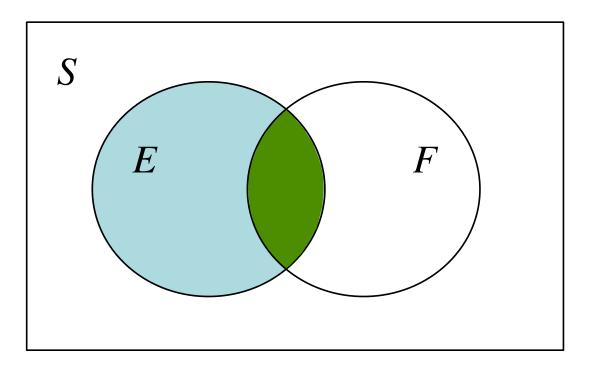
$$P(E_{1}E_{2}E_{3}E_{4})$$

$$= P(E_{1}) P(E_{2}|E_{1}) P(E_{3}|E_{1}E_{2}) P(E_{4}|E_{1}E_{2}E_{3})$$

$$= (39 \cdot 26 \cdot 13)/(51 \cdot 50 \cdot 49)$$

$$\approx 0.105$$

E and F are events in the sample space S



$$\mathsf{EF} \cap \mathsf{EF}^{\mathsf{c}} = \varnothing$$

$$\Rightarrow \mathsf{P(E)} = \mathsf{P(EF)} + \mathsf{P(EF}^{\mathsf{c}})$$

law of total probability

$$P(E) = P(EF) + P(EF^{c})$$

= $P(E|F) P(F) + P(E|F^{c}) P(F^{c})$
= $P(E|F) P(F) + P(E|F^{c}) (1-P(F))$

weighted average, conditioned on event happening or not.

More generally, if F_1 , F_2 , ..., F_n partition S (mutually exclusive, U_i $F_i = S$, $P(F_i) > 0$), then

$$P(E) = \sum_{i} P(E|F_{i}) P(F_{i})$$

Bayes Theorem

Most common form:

$$P(F|E) = P(EF)/P(E)$$
$$= [P(E|F) P(F)]/P(E)$$

posterior vs prior; reverse conditioning

Expanded form (using law of total probability):

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E \mid F)P(F) + P(E \mid F^c)P(F^c)}$$

Bayes Theorem

Improbable Inspiration: The future of software may lie in the obscure theories of an 18th century cleric named Thomas Bayes

Los Angeles Times (October 28, 1996) By Leslie Helm, Times Staff Writer

When Microsoft Senior Vice President

Steve Ballmer [now CEO] first heard his company was

planning a huge investment in an Internet service offering... he went to Chairman Bill Gates with his concerns...

Gates began discussing the critical role of "Bayesian" systems...

source: http://www.ar-tiste.com/latimes_oct-96.html

Suppose an HIV test is 98% effective in detecting HIV, i.e., its "false negative" rate = 2%. Suppose furthermore, the test's "false positive" rate = 1%.

0.5% of population has HIV

Let E = you test positive for HIV

Let F = you actually have HIV

What is P(F|E)?

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E \mid F)P(F) + P(E \mid F^c)P(F^c)}$$

$$= \frac{(0.98)(0.005)}{(0.98)(0.005) + (0.01)(1 - 0.005)}$$

$$\approx 0.330$$

why it's still good to get tested

	HIV+	HIV-
Test +	0.98 = P(E F)	$0.01 = P(E F^c)$
Test -	$0.02 = P(E^c F)$	$0.99 = P(E^c F^c)$

Let E^c = you test **negative** for HIV Let F = you actually have HIV

What is P(F|E^c)?

$$P(F \mid E^c) = \frac{P(E^c \mid F)P(F)}{P(E^c \mid F)P(F) + P(E^c \mid F^c)P(F^c)}$$
$$= \frac{(0.02)(0.005)}{(0.02)(0.005) + (0.99)(1 - 0.005)}$$
$$\approx 0.0001$$

simple spam detection

Say that 60% of email is spam 90% of spam has a forged header 20% of non-spam has a forged header

Let F = message contains a forged header

Let J = message is spam

What is P(J|F)?

$$P(J \mid F) = \frac{P(F \mid J)P(J)}{P(F \mid J)P(J) + P(F \mid J^c)P(J^c)}$$

$$= \frac{(0.9)(0.6)}{(0.9)(0.6) + (0.2)(0.4)}$$

$$\approx 0.871$$

simple spam detection

Say that 60% of email is spam 10% of spam has the word "Viagra" 1% of non-spam has the word "Viagra"

Let V = message contains the word "Viagra"

Let J = message is spam

What is P(J|V)?

$$P(J \mid V) = \frac{P(V \mid J)P(J)}{P(V \mid J)P(J) + P(V \mid J^c)P(J^c)}$$

$$= \frac{(0.1)(0.6)}{(0.1)(0.6) + (0.01)(1 - 0.6)}$$

$$\approx 0.896$$

Child is born with (A,a) gene pair (event $B_{A,a}$)

Mother has (A,A) gene pair

Two possible fathers: $M_1 = (a,a)$, $M_2 = (a,A)$ $P(M_1) = p$, $P(M_2) = I-p$ What is $P(M_1 \mid B_{A,a})$?

$$P(M_1 \mid B_{Aa})$$

$$= \frac{P(B_{Aa} \mid M_1)P(M_1)}{P(B_{Aa} \mid M_1)P(M_1) + P(B_{Aa} \mid M_2)P(M_2)}$$

$$= \frac{1 \cdot p}{1 \cdot p + 0.5(1-p)} = \frac{2p}{1+p} > \frac{2p}{1+1} = p$$

The odds of event E is $P(E)/(P(E^c))$

Example: A = any of 2 coin flips is H:

$$P(A) = 3/4$$
, $P(A^c) = 1/4$, so odds of A is 3 (or "3 to I in favor")

Example: odds of having HIV:

$$P(F) = .5\% \text{ so } P(F)/P(F^{c}) = .005/.995$$
 (or I to 199 against)

posterior odds from prior odds

F = some event of interest (say, "HIV+")

E = additional evidence (say, "HIV test was positive")

Prior odds of F: P(F)/P(F^c)

What are the *Posterior odds* of F: $P(F|E)/P(F^c|E)$?

$$P(F \mid E) = \frac{P(E \mid F)P(F)}{P(E)}$$

$$P(F^c \mid E) = \frac{P(E \mid F^c)P(F^c)}{P(E)}$$

$$\frac{P(F \mid E)}{P(F^c \mid E)} = \frac{P(E \mid F)}{P(E \mid F^c)} \frac{P(F)}{P(F^c)}$$
(posterior odds = "Bayes factor" · prior odds)

Let E = you test positive for HIV Let F = you actually have HIV What are the posterior odds?

$$\frac{P(F \mid E)}{P(F^c \mid E)} = \frac{P(E \mid F)}{P(E \mid F^c)} \frac{P(F)}{P(F^c)}$$
(posterior odds = "Bayes factor" · prior odds)
$$= \frac{0.98}{0.01} \cdot \frac{0.005}{0.995}$$

More likely to test positive if you are positive, so Bayes factor > I; positive test increases odds 98-fold, to 2.03: I against (vs prior of 199: I against)

Let E = you test *negative* for HIV Let F = you actually *have* HIV

Milest is the notice between DICITY

What is the ratio between P(F|E) and $P(F^c|E)$?

$$\frac{P(F \mid E)}{P(F^c \mid E)} = \frac{P(E \mid F)}{P(E \mid F^c)} \frac{P(F)}{P(F^c)}$$
(posterior odds = "Bayes factor" · prior odds)
$$= \frac{0.02}{0.99} \cdot \frac{0.005}{0.995}$$

Unlikely to test negative if you are positive, so Bayes factor <1; negative test decreases odds 49.5-fold, to 9850:1 against (vs prior of 199:1 against)

simple spam detection

Say that 60% of email is spam

10% of spam has the word "Viagra"

1% of non-spam has the word "Viagra"

Let V = message contains the word "Viagra"

Let J = message is spam

What are posterior odds that a message containing "Viagra" is spam?

$$\frac{P(J \mid V)}{P(J^c \mid V)} = \frac{P(V \mid J)}{P(V \mid J^c)} \frac{P(J)}{P(J^c)}$$
(posterior odds = "Bayes factor" · prior odds)
$$15 = \frac{0.10}{0.01} \cdot \frac{0.6}{0.4}$$