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conditional probability

Conditional probability of E given F: probability

that E occurs given that F has already occurred.
“Conditioning on F”

Written as P(E|F)
Means “P(E, given F already observed)”
Sample space S reduced to those elements
consistent with F (i.e.S M F)
Event space E reduced to those elements
consistent with F (i.e. E M F)

With equally likely outcomes,

# of outcomes in E consistent with ' |EF'|  |EF|
# of outcomes in S consistent with I |SF|  |F|

P(E|F) =




conditional probability

General defn:

P(E|F) =

P(ET)

P(F)

where P(F) > 0

Holds even when outcomes are not equally likely.

What if P(F) = 0?
P(E|F) undefined: (you can’t observe the impossible)

Implies: P(EF) = P(E|F) P(F)

General definition of Chain Rule:

P(E1Es5- - E,)

(chain rule)

P(E1)P(Es | E\)P(Es | E1,E5) - P(E,, | E1,Es,...,Ep_1)



coin flipping

Suppose you flip two coins & all outcomes are equally likely.
What is the probability that both flips land on heads if...

* The first flip lands on heads?
Let B = {HH} and F = {HH, HT}
P(B|F) = P(BF)/P(F) = P{HH})/P{HH, HT})
= (1/4)/(2/4) = 1/2

* At least one of the two flips lands on heads!?
Let A = {HH, HT, TH}
P(B|A) = P(BA)/P(A) = P{HH})/P{HH, HT, TH})
= (1/4)/(3/4) = |/3



sending bit strings
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sending bit strings

Bit string with m O’s and n I’s sent on the network
All distinct arrangements of bits equally likely

E = first bit received is a | —
L0l
F = k of first r bits received are I’s %Wf/ﬂ//ﬂ%
AR W
Solution |: o) .
— " _ \k/ \r—k
P(E) = — P(F) = s
n—1 m
P(F | E) = (k;llf:k)
( r—1 )
pe | F) = PEF) _ PEIE)P(E) _ k
P(F) P(F)



sending bit strings

Bit string with m O’s and n I’s sent on the network
All distinct arrangements of bits equally likely

E = first bit received is a | MOQ//U.V/[;;/
F = k of first r bits received are |’s ZNZ’]W/W &
R |
Solution 2:
Observe;

P(E|F) = P(picking one of k I’s out of r bits)
So:
P(E|F) = k/r



piling cards
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piling cards

Deck of 52 cards randomly divided into 4 piles
| 3 cards per pile
Compute P(each pile contains an ace)

Solution: |
E, ={|
E, = '
E,={|

E, ={ all four ac

L 4

| and

;v

v

\ 4

A

‘ —; b
. v

v

|in any one pile }

in different piles }

different piles }

es in different piles }

Compute P(E, E, E; E,)



piling cards

E|:= {év
E2:: { v
E,={|+

| and

v

A

‘ A
&
‘ v

‘J

in any one pile }

in different piles }

different piles }

E,={all four aces in different piles }

P(EI E2E3E4)

= P(E,) P(E,|E) P(E5|E,E,) P(E4|E,E,E;)



piling cards

E ={év‘inanyone pile }

E, = K | and|# | in different piles }

A

E, = g é" ‘@ | different piles }

‘J

E,={all four aces in different piles }

P(E)) = |

P(E,|E)) = 39/51 (39 cards not in AH pile)
P(E;|[E/E,) = 26/50 (26 cards not in AS or AH piles)
P(E,|E,E,E;) = 13/49 (I3 cards not in AS,AH,AD piles)




piling cards

E|:= {év
E2:: { v
E,={|+

| and

v

A

‘ A
@.
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in any one pile }

in different piles }

different piles }

E,={all four aces in different piles }

P(E I E2E3E4)

= P(E,) P(E,|E,) P(E;|E|E,) P(E4|E,E;E;)
= (39°26°13)/(5150+49)

~ 0.105



law of total probability

E and F are events in the sample space S

E=EFuEFe

EFnEFc=0
= P(E) = P(EF) + P(EF°)



law of total probability

P(E) — P(EF) + P(EFC) weighted average,
conditioned on
= P(ElF) P(F) + P(ElFC) P(Fc) event happening or
= P(EIF) P(F) + P(EIF) (LP(F)

More generally, if Fi, Fy, ..., Fn partition S
(mutually exclusive, U; F; = S, P(Fi)>0), then

P(E) = 2 P(E|F) P(F)



Bayes Theorem

Most common form:
P(FlE) = P(EF)/P(E) posteriorvcsjfriolr;
= [P(E|F) P(F))/P(E) g

Expanded form (using law of total probability):

P(E | F)P(F)
(£ | F)P(F)+ P(E | F°)P(F°)

P(F|E)= 5



Bayes Theorem

Improbable Inspiration: The future
of software may lie in the obscure
theories of an 18% century cleric
named Thomas Bayes

Los Angeles Times (October 28, 1996)
By Leslie Helm, Times Staff Writer

When Microsoft Senior Vice President |
Steve Ballmer [now CEQ] first heard his company was
planning a huge investment in an
Internet service offering... he went
to Chairman Bill Gates with his
concerns...

Gates began discussing the critical
role of “Bayesian” systems...

source: http://www.ar-tiste.com/latimes_oct-96.html




HIV testing

Suppose an HIV test is 98% effective in detecting
HIV, i.e., its “false negative” rate = 2%. Suppose
furthermore, the test’s “false positive” rate = 1%.
0.5% of population has HIV
Let E = you test positive for HIV
Let F = you actually have HIV
What is P(F|E) ?
Solution:

PUF B P(E | F)P(F)

P(E | F)P(F) + P(E | F¢)P(F°)
(0.98)(0.005)
(0.98)(0.005) + (0.01)(1 — 0.005)

0.330

Q



why it’s still good to get tested

HIV+ HIV-
Test+ 0.98 =P(E|F) 0.01 = P(E[F)
Test-  0.02 = P(ES|F) 0.99 = P(E<|Fe)

Let E€ = you test negative for HIV
Let F = you actually have HIV
What is P(F|E€) ?

¢ P(E®| F)P(F)

PELE) = b FP(F) 1 P(E° | )P
(0.02)(0.005)

(0.02){0.005) + (0.99)(1 — 0.005)

0.0001

Q



simple spam detection

Say that 60% of email is spam
90% of spam has a forged header
20% of non-spam has a forged header

Let /' = message contains a forged header
Let / = message is spam =

What is P(J|F) ?
Solution:

P(J|F) =

(
(0.9)(0.
(0.9)(0.6) + (O.
0.871

Q



simple spam detection

Say that 60% of email is spam
0% of spam has the word “Viagra”
| % of non-spam has the word “Viagra”

Let V = message contains the word “Viagra”
Let / = message is spam =

What is P(J|V) ?
Solution:

P(J|V) =

2
-
0
O
S



DNA paternity testing

Child is born with (A,a) gene pair (event B, )

Mother has (A,A) gene pair
Two possible fathers: M, = (a,a), M, = (a,A)

P(M))=p, P(My = I-p
What is P(M, [ B, ) !

Solution:

P(M; | Bag)
P(Bag | My)P (M)
P(Baq | M1)P(M;) + P(Bag | M2)P (M)

L-p 2p S 2p
1-p+05(1—-p) 14+p 1+1

=P



odds

The odds of event E is P(E)/(P(E°)

Example: A = any of 2 coin flips is H:

P(A) = 3/4,P(A) = 1/4,so0 odds of A'is 3
(or“3 to | in favor”)

Example: odds of having HIV:

P(F) = .5% so P(F)/P(F) = .005/.995
(or | to 199 against)



posterior odds from prior odds

F = some event of interest (say, “HIV+”)

E = additional evidence (say, ‘HIV test was positive”™)
Prior odds of F: P(F)/P(F°)

What are the Posterior odds of F: P(F|E)/P(F|E) ?

P(F|E) = P(E]Lf;)P(F)
pre|p) = DF ’P@)P )
P(F|E) _ P(E|F) P(F)
P(Fe|E)  P(E|F) P(F)

e
“Bayes factor” - prior odds)

(posterior odds



posterior odds from prior odds

Let E = you test positive for HIV
Let F = you actually have HIV
What are the posterior odds?

P(F | E) P(E|F) P(F)
P(Fe|E) — P(E|F°) P(F°)
(posterior odds = “Bayes factor” - prior odds)
0.98 0.005
~0.01 0.995

More likely to test positive if you are positive, so
Bayes factor >1; positive test increases odds 98-fold,
to 2.03:1 against (vs prior of 199:1 against)



posterior odds from prior odds

Let E = you test negative for HIV
Let F = you actually have HIV
What is the ratio between P(F|E) and P(F<|E) ?

P(F | E) P(E | F) P(F)
P(Fe[E) — P(E|F)P(F)
(posterior odds = “Bayes factor” - prior odds)
0.02 0.005
~ 099 0.995

Unlikely to test negative if you are positive, so Bayes
factor <I; negative test decreases odds 49.5-fold, to
9850:1 against (vs prior of 199:1 against)



simple spam detection

Say that 60% of email is spam
0% of spam has the word “Viagra”
| % of non-spam has the word “Viagra”
Let V = message contains the word “Viagra”
Let / = message is spam @_@
What are posterior odds that a
message containing “Viagra” is spam !

Solution:
P(J|V) PV |J) P(J)
P(Je[V) — P(V[J9)P(J)
(posterior odds = “Bayes factor” - prior odds)

0.10 0.6

15 = -
0.01 04




