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What is Machine Learning?

• Many different forms of “Machine Learning”

 We focus on the problem of prediction

• Want to make a prediction based on observations

 Vector X of m observed variables: <X1, X2, …, Xm>

o X1, X2, …, Xm are called “input features/variables”

o Also called “independent variables,” but this can be misleading!

• X1, X2, …, Xm need not be (and usually are not) independent

 Based on observed X, want to predict unseen variable Y

o Y called “output feature/variable” (or the “dependent variable”)

 Seek to “learn” a function g(X) to predict Y:

o When Y is discrete, prediction of Y is called “classification”

o When Y is continuous, prediction of Y is called “regression”
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A (Very Short) List of Applications

• Machine learning widely used in many contexts

 Stock price prediction

o Using economic indicators, predict if stock with go up/down

 Computational biology and medical diagnosis

o Predicting gene expression based on DNA

o Determine likelihood for cancer using clinical/demographic data

 Predict people likely to purchase product or click on ad

o “Based on past purchases, you might want to buy…”

 Credit card fraud and telephone fraud detection

o Based on past purchases/phone calls is a new one fraudulent?

• Saves companies billions(!) of dollars annually

 Spam E-mail detection (gmail, hotmail, many others)

What is Bayes Doing in My Mail Server?

• This is spam:

Who was crazy enough to think of that?

Let’s get Bayesian on your spam:
Content analysis details:   (49.5 hits, 7.0 required)

0.9 RCVD_IN_PBL            RBL: Received via a relay in Spamhaus PBL

[93.40.189.29 listed in zen.spamhaus.org]

1.5 URIBL_WS_SURBL         Contains an URL listed in the WS SURBL blocklist

[URIs: recragas.cn]

5.0 URIBL_JP_SURBL         Contains an URL listed in the JP SURBL blocklist

[URIs: recragas.cn]

5.0 URIBL_OB_SURBL         Contains an URL listed in the OB SURBL blocklist

[URIs: recragas.cn]

5.0 URIBL_SC_SURBL         Contains an URL listed in the SC SURBL blocklist

[URIs: recragas.cn]

2.0 URIBL_BLACK            Contains an URL listed in the URIBL blacklist

[URIs: recragas.cn]

8.0 BAYES_99               BODY: Bayesian spam probability is 99 to 100%

[score: 1.0000]

Spam, Spam… Go Away!

• The constant battle with spam

Source:  http://www.google.com/mail/help/fightspam/spamexplained.html

“And machine-learning algorithms developed to merge and rank large sets of 

Google search results allow us to combine hundreds of factors to classify spam.”

Training a Learning Machine

• We consider statistical learning paradigm here

 We are given set of N “training” instances

o Each training instance is pair: (<x1, x2, …, xm>, y)

o Training instances are previously observed data

o Gives the output value y associated with each observed vector 

of input values <x1, x2, …, xm>

 Learning: use training data to specify g(X)

o Generally, first select a parametric form for g(X)

o Then, estimate parameters of model g(X) using training data

o For regression, usually want g(X) that minimizes E[(Y – g(X))2]

• Mean squared error (MSE) “loss” function.  (Others exist.)

o For classification, generally best choice of )|(ˆmaxarg)( XX YPg
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The Machine Learning Process

 Training data: set of N pre-classified data instances

o N training pairs: (<x>(1),y(1)), (<x>(2),y(2)), …, (<x>(N), y(N))

• Use superscripts to denote i-th training instance

 Learning algorithm: method for determining g(X)

o Given a new input observation of X = <X1, X2, …, Xm>

o Use g(X) to compute a corresponding output (prediction)

o When prediction is discrete, we call g(X) a “classifier” and call 

the output the predicted “class” of the input
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A Grounding Example: Linear Regression

• Predict real value Y based on observing variable X

 Assume model is linear:

 Training data 

o Each vector X has one observed variable: <X1> (just call it X)

o Y is continuous output variable

o Given N training pairs: (<x>(1),y(1)), (<x>(2),y(2)), …, (<x>(N), y(N))

• Use superscripts to denote i-th training instance

 Determine a and b minimizing E[(Y – g(X))2]

o First, minimize objective function: 
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Don’t Make Me Get Non-Linear!

• Minimize objective function

 Compute derivatives w.r.t. a and b

 Set derivatives to 0 and solve simultaneous equations:

 Substitution yields:

 Estimate parameters based on observed training data:
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A Simple Classification Example

• Predict Y based on observing variable X

 X has discrete value from {1, 2, 3, 4}

o X denotes temperature range today: <50, 50-60, 60-70, >70

 Y has discrete value from {rain, sun}

o Y denotes general weather outlook tomorrow

 Given training data, estimate joint PMF:

 Note Bayes rule:

 For new X, predict

o Note px(x) is not affected by choice of y, yielding:
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Estimating the Joint PMF

• Given training data, compute joint PMF: pX,Y(x, y)

 MLE: count number of times each pair (x, y) appears

 MAP using Laplace prior: add 1 to all the MLE counts

 Normalize to get true distribution (sums to 1)

 Observed 50 data points: 

X

Y
1 2 3 4 p

Y
(y)

rain 0.10 0.06 0.04 0.00 0.20

sun 0.06 0.14 0.20 0.40 0.80

p
X
(x) 0.16 0.20 0.24 0.40 1.00

X

Y
1 2 3 4

rain 5 3 2 0

sun 3 7 10 20

X

Y
1 2 3 4 p

Y
(y)

rain 0.103 0.069 0.052 0.017 0.241

sun 0.069 0.138 0.190 0.362 0.759

p
X
(x) 0.172 0.207 0.242 0.379 1.00

MLE estimate Laplace (MAP) estimate

points data # total

cellin count 
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Classify New Observation

• Say today’s temperature is 75, so X = 4

 Recall X temperature ranges: <50, 50-60, 60-70, >70

 Prediction for Y (weather outlook tomorrow)

 What if we asked what is probability of rain tomorrow?

o MLE: absolutely, positively no chance of rain!

o Laplace estimate: very small (~2%) chance  “never say never”
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X

Y
1 2 3 4 p

Y
(y)

rain 0.10 0.06 0.04 0.00 0.20

sun 0.06 0.14 0.20 0.40 0.80

p
X
(x) 0.16 0.20 0.24 0.40 1.00

MLE estimate

X

Y
1 2 3 4 p

Y
(y)

rain 0.103 0.069 0.052 0.017 0.241

sun 0.069 0.138 0.190 0.362 0.759

p
X
(x) 0.172 0.207 0.242 0.379 1.00

Laplace (MAP) estimate

Classification with Multiple Observables

• Say, we have m input values X = <X1, X2, …, Xm>

 Note that variables X1, X2, …, Xm can de dependent!

 In theory, could predict Y as before, using

o Why won’t this necessarily work?

 Need to estimate P(X1, X2, …, Xm | Y)

o Fine if m is small, but what if m = 10 or 100 or 10,000?

o Note: size of PMF table is exponential in m (e.g. O(2m))

o Need ridiculous amount of data for good probability estimates!

o Likely to have many 0’s in table (bad times)

 Need to consider a simpler model
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Naive Bayesian Classifier

• Say, we have m input values X = <X1, X2, …, Xm>

 Assume variables X1, X2, …, Xm are conditionally 

independent given Y

o Really don’t believe X1, X2, …, Xm are conditionally independent

o Just an approximation we make to be able to make predictions 

o This is called the “Naive Bayes” assumption, hence the name

 Predict Y using

o But, we now have:

by conditional independence

 Note: computation of PMF table is linear in m : O(m)

o Don’t need much data to get good probability estimates
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Email Classification

• Want to predict is an email is spam or not

 Start with the input data

o Consider a lexicon of m words (Note: in English m  100,000)

o Define m indicator variables X = <X1, X2, …, Xm>

o Each variable Xi denotes if word i appeared in a document or not

o Note: m is huge, so make “Naive Bayes” assumption

 Define output classes Y to be: {spam, non-spam}

 Given training set of N previous emails

o For each email message, we have a training instance:                  

X = <X1, X2, …, Xm> noting for each word, if it appeared in email

o Each email message is also marked as spam or not (value of Y)

Training the Classifier

• Given N training pairs:

(<x>(1),y(1)), (<x>(2),y(2)), …, (<x>(N), y(N)) 

• Learning

 Estimate probabilities P(Y) and each P(Xi | Y) for all i

o Many words are likely to not appear at all in given set of email

 Use Laplace estimate:

• Classification

 For a new email, generate X = <X1, X2, …, Xm>

 Classify as spam or not using:

 Employ Naive Bayes assumption:
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How Does This Do?

• After training, can test with another set of data

 “Testing” set also has known values for Y, so we can 

see how often we were right/wrong in predictions for Y

 Spam data

o Email data set: 1789 emails (1578 spam, 211 non-spam)

o First, 1538 email messages (by time) used for training

o Next 251 messages used to test learned classifier

 Criteria:

o Precision = # correctly predicted class Y/ # predicted class Y

o Recall = # correctly predicted class Y / # real class Y messages

Spam Non-spam

Precision Recall Precision Recall

Words only 97.1% 94.3% 87.7% 93.4%

Words + add’l features 100% 98.3% 96.2% 100%

A Little Text Analysis of the Governator

• Arnold Schwarzenegger’s actual veto letter:

Coincidence, You Ask?

• San Francisco Chronicle, Oct. 28, 2009:

“Schwarzenegger's press secretary, Aaron McLear, 

insisted Tuesday it was simply a „weird coincidence‟."

• Steve Piantadosi (grad student at MIT) blog post, 

Oct. 28, 2009:

 “…assume that each word starting a line is chosen 

independently…”

 “…[compute] the (token) frequency with which each 

letter appears at the start of a word…”

 Multiply probabilities for letter starting each word of 

each line to get final answer: “one in 1 trillion”

• 50,000 times less likely than winning CA lottery


