CSE 312 Final Review: Section AA

CSE 312 TAs

December 8, 2011

General Information

General Information

• Comprehensive Midterm

General Information

- Comprehensive Midterm
- Heavily weighted toward material after the midterm

• Basic Counting Principles

- Basic Counting Principles
 - Pigeonhole Principle

- Basic Counting Principles
 - Pigeonhole Principle
 - Inclusion Exclusion

- Basic Counting Principles
 - Pigeonhole Principle
 - Inclusion Exclusion
 - Counting the Complement

- Basic Counting Principles
 - Pigeonhole Principle
 - Inclusion Exclusion
 - Counting the Complement
 - Using symmetry

- Basic Counting Principles
 - Pigeonhole Principle
 - Inclusion Exclusion
 - Counting the Complement
 - Using symmetry
- Conditional Probability

- Basic Counting Principles
 - Pigeonhole Principle
 - Inclusion Exclusion
 - Counting the Complement
 - Using symmetry
- Conditional Probability
 - $P(A \mid B) = \frac{P(AB)}{P(B)}$

- Basic Counting Principles
 - Pigeonhole Principle
 - Inclusion Exclusion
 - Counting the Complement
 - Using symmetry
- Conditional Probability
 - $P(A \mid B) = \frac{P(AB)}{P(B)}$
 - Law of Total Probability:

$$P(A) = P(A \mid B) \cdot P(B) + P(A \mid \overline{B}) \cdot P(\overline{B})$$

- Basic Counting Principles
 - Pigeonhole Principle
 - Inclusion Exclusion
 - Counting the Complement
 - Using symmetry
- Conditional Probability
 - $P(A \mid B) = \frac{P(AB)}{P(B)}$
 - Law of Total Probability:

$$P(A) = P(A \mid B) \cdot P(B) + P(A \mid \overline{B}) \cdot P(\overline{B})$$

Bayes' Theorem:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

- Basic Counting Principles
 - Pigeonhole Principle
 - Inclusion Exclusion
 - Counting the Complement
 - Using symmetry
- Conditional Probability
 - $P(A \mid B) = \frac{P(AB)}{P(B)}$
 - Law of Total Probability:

$$P(A) = P(A \mid B) \cdot P(B) + P(A \mid \overline{B}) \cdot P(\overline{B})$$

Bayes' Theorem:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Network Failure Questions

Independence

- Independence
 - E and F are independent if P(EF) = P(E)P(F)

- Independence
 - E and F are independent if P(EF) = P(E)P(F)
 - E and F are independent if $P(E \mid F) = P(E)$ and $P(F \mid E) = P(F)$

- Independence
 - E and F are independent if P(EF) = P(E)P(F)
 - E and F are independent if $P(E \mid F) = P(E)$ and $P(F \mid E) = P(F)$
 - Events $E_1, \ldots E_n$ are independent if for every subset S of events

$$P\left(\bigcap_{i\in S}E_i\right)=\prod_{i\in S}P(E_i)$$

- Independence
 - E and F are independent if P(EF) = P(E)P(F)
 - E and F are independent if $P(E \mid F) = P(E)$ and $P(F \mid E) = P(F)$
 - Events $E_1, \dots E_n$ are independent if for every subset S of events

$$P\left(\bigcap_{i\in S}E_i\right)=\prod_{i\in S}P(E_i)$$

Biased coin example from Lecture 5, slide 7

- Independence
 - E and F are independent if P(EF) = P(E)P(F)
 - E and F are independent if $P(E \mid F) = P(E)$ and $P(F \mid E) = P(F)$
 - Events $E_1, \ldots E_n$ are independent if for every subset S of events

$$P\left(\bigcap_{i\in S}E_i\right)=\prod_{i\in S}P(E_i)$$

- Biased coin example from Lecture 5, slide 7
- If E and F are independent and G is an arbitrary event then in general

$$P(EF \mid G) \neq P(E \mid G) \cdot P(F \mid G)$$

- Independence
 - E and F are independent if P(EF) = P(E)P(F)
 - E and F are independent if $P(E \mid F) = P(E)$ and $P(F \mid E) = P(F)$
 - Events $E_1, \dots E_n$ are independent if for every subset S of events

$$P\left(\bigcap_{i\in S}E_i\right)=\prod_{i\in S}P(E_i)$$

- Biased coin example from Lecture 5, slide 7
- If E and F are independent and G is an arbitrary event then in general

$$P(EF \mid G) \neq P(E \mid G) \cdot P(F \mid G)$$

• For any given G, equality in the above statement means that E and F are **Conditionally Independent given** G

• Know the mean and variance for:

- Know the mean and variance for:
 - Uniform distribution

- Know the mean and variance for:
 - Uniform distribution
 - Normal distribution

- Know the mean and variance for:
 - Uniform distribution
 - Normal distribution
 - Geometric distribution

- Know the mean and variance for:
 - Uniform distribution
 - Normal distribution
 - Geometric distribution
 - Binomial distribution

- Know the mean and variance for:
 - Uniform distribution
 - Normal distribution
 - Geometric distribution
 - Binomial distribution
 - Poisson distribution

- Know the mean and variance for:
 - Uniform distribution
 - Normal distribution
 - Geometric distribution
 - Binomial distribution
 - Poisson distribution
 - Hypergeometric distribution

- Know the mean and variance for:
 - Uniform distribution
 - Normal distribution
 - Geometric distribution
 - Binomial distribution
 - Poisson distribution
 - Hypergeometric distribution
- Remember Linearity of Expectation and other useful facts (e.g. $Var[aX + b] = a^2 Var[X]$; in general $Var[X + Y] \neq Var[X] + Var[Y]$).

- Know the mean and variance for:
 - Uniform distribution
 - Normal distribution
 - Geometric distribution
 - Binomial distribution
 - Poisson distribution
 - Hypergeometric distribution
- Remember Linearity of Expectation and other useful facts (e.g. $Var[aX + b] = a^2 Var[X]$; in general $Var[X + Y] \neq Var[X] + Var[Y]$).
- Remember: For any a, P(X = a) = 0 (the *probability* that a continuous R.V. falls at a specific point is 0!)

- Know the mean and variance for:
 - Uniform distribution
 - Normal distribution
 - Geometric distribution
 - Binomial distribution
 - Poisson distribution
 - Hypergeometric distribution
- Remember Linearity of Expectation and other useful facts (e.g. $Var[aX + b] = a^2 Var[X]$; in general $Var[X + Y] \neq Var[X] + Var[Y]$).
- Remember: For any a, P(X = a) = 0 (the *probability* that a continuous R.V. falls at a specific point is 0!)
- Expectation is now an integral: $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$

- Know the mean and variance for:
 - Uniform distribution
 - Normal distribution
 - Geometric distribution
 - Binomial distribution
 - Poisson distribution
 - Hypergeometric distribution
- Remember Linearity of Expectation and other useful facts (e.g. $Var[aX + b] = a^2 Var[X]$; in general $Var[X + Y] \neq Var[X] + Var[Y]$).
- Remember: For any a, P(X = a) = 0 (the *probability* that a continuous R.V. falls at a specific point is 0!)
- Expectation is now an integral: $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$
- Use normal approximation when applicable.

Central Limit Theorem

Central Limit Theorem

• **Central Limit Theorem:** Consider i.i.d. (independent, identically distributed) random variables X_1, X_2, \ldots Xi has $\mu = E[X_i]$ and $\sigma^2 = Var[X_i]$. Then, as $n \to \infty$

$$\frac{X_1+\cdots+X_n-n\mu}{\sigma\sqrt{n}}\to N(0,1)$$

Alternatively

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$

• Markov's Inequality: If X is a non-negative random variable, then for every $\alpha > 0$, we have

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

• Markov's Inequality: If X is a non-negative random variable, then for every $\alpha > 0$, we have

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Corollary

$$P(X \ge \alpha E[X]) \le \frac{1}{\alpha}$$

• Markov's Inequality: If X is a non-negative random variable, then for every $\alpha > 0$, we have

$$P(X \ge \alpha) \le \frac{E[X]}{\alpha}$$

Corollary

$$P(X \ge \alpha E[X]) \le \frac{1}{\alpha}$$

• Chebyshev's Inequality: If Y is an arbitrary random variable with $E[Y] = \mu$, then, for any $\alpha > 0$,

$$P(|Y - \mu| \ge \alpha) \le \frac{Var[Y]}{\alpha^2}$$

• Chernoff Bounds: Suppose X is drawn from Bin(n,p) and $\mu=E[X]=pn$ Then, for any $0<\delta<1$

$$P(X > (1+\delta)\mu) \le e^{-\frac{\delta^2\mu}{2}}$$

$$P(X < (1 - \delta)\mu) \le e^{-\frac{\delta^2 \mu}{3}}$$

Law of Large Numbers

Law of Large Numbers

• Weak Law of Large Numbers: Let \overline{X} be the empirical mean of i.i.d.s X_1, \dots, X_n . For any $\epsilon > 0$, as $n \to \infty$

$$Pr\left(\left|\overline{X}-\mu\right|>\epsilon\right)\to 0$$

Law of Large Numbers

• Weak Law of Large Numbers: Let \overline{X} be the empirical mean of i.i.d.s X_1, \dots, X_n . For any $\epsilon > 0$, as $n \to \infty$

$$Pr\left(\left|\overline{X}-\mu\right|>\epsilon\right)\to 0$$

Strong Law of Large Numbers: Same hypotheses

$$Pr\left(\lim_{n\to\infty}\left(\frac{X_1+\cdots+X_n}{n}=\mu\right)\right)=1$$

Random Facts

Random Facts

If X and Y are R.V.s from the same distribution, then
 Z = X + Y isn't necessarily from the same distribution as X
 and Y.

Random Facts

- If X and Y are R.V.s from the same distribution, then
 Z = X + Y isn't necessarily from the same distribution as X
 and Y.
- If X and Y are both normal, then so is X + Y.

• Write an expression for the likelihood.

- Write an expression for the likelihood.
- Convert this into the log likelihood.

- Write an expression for the likelihood.
- Convert this into the log likelihood.
- Take derivatives to find the maximum.

- Write an expression for the likelihood.
- Convert this into the log likelihood.
- Take derivatives to find the maximum.
- Verify that this is indeed a maximum.

- Write an expression for the likelihood.
- Convert this into the log likelihood.
- Take derivatives to find the maximum.
- Verify that this is indeed a maximum.
- See **Lecture 11** for worked examples.

• **E-step:** Computes the log-likelihood using current parameters.

- **E-step:** Computes the log-likelihood using current parameters.
- **M-step:** Maximize the expected log-likelihood, changing the parameters.

- **E-step:** Computes the log-likelihood using current parameters.
- **M-step:** Maximize the expected log-likelihood, changing the parameters.
- Iterated until convergence is achieved.

• H_0 is the null hypothesis

- H_0 is the **null hypothesis**
- H_1 is the alternative hypothesis

- H_0 is the **null hypothesis**
- H_1 is the alternative hypothesis
- Likelihood Ratio = $\frac{L_1}{L_0}$ where L_0 is the likelihood of H_0 and L_1 is the likelihood of H_1 .

- H₀ is the **null hypothesis**
- H_1 is the alternative hypothesis
- Likelihood Ratio = $\frac{L_1}{L_0}$ where L_0 is the likelihood of H_0 and L_1 is the likelihood of H_1 .
- Saying that alternative hypothesis is 5 times more likely than the null hypothesis means that $\frac{L_1}{L_0} \geq 5$.

- H₀ is the **null hypothesis**
- H_1 is the alternative hypothesis
- Likelihood Ratio = $\frac{L_1}{L_0}$ where L_0 is the likelihood of H_0 and L_1 is the likelihood of H_1 .
- Saying that alternative hypothesis is 5 times more likely than the null hypothesis means that $\frac{L_1}{L_0} \ge 5$.
- Decision rule: When to reject H_0 .

- H₀ is the **null hypothesis**
- H_1 is the alternative hypothesis
- Likelihood Ratio = $\frac{L_1}{L_0}$ where L_0 is the likelihood of H_0 and L_1 is the likelihood of H_1 .
- Saying that alternative hypothesis is 5 times more likely than the null hypothesis means that $\frac{L_1}{L_0} \ge 5$.
- Decision rule: When to reject H_0 .
- $\alpha = P(\text{rejected } H_0 \text{ but } H_0 \text{ was true})$

- H₀ is the **null hypothesis**
- H_1 is the alternative hypothesis
- Likelihood Ratio = $\frac{L_1}{L_0}$ where L_0 is the likelihood of H_0 and L_1 is the likelihood of H_1 .
- Saying that alternative hypothesis is 5 times more likely than the null hypothesis means that $\frac{L_1}{L_0} \ge 5$.
- Decision rule: When to reject H_0 .
- $\alpha = P(\text{rejected } H_0 \text{ but } H_0 \text{ was true})$
- $\beta = P(\text{accept } H_0 \text{ but } H_1 \text{ was true})$

 Better algorithms usually trump better hardware, but both are needed for progress

- Better algorithms usually trump better hardware, but both are needed for progress
- Some problems cannot be solved (e.g. the Halting Problem)

- Better algorithms usually trump better hardware, but both are needed for progress
- Some problems cannot be solved (e.g. the Halting Problem)
- Other (intractable) problems cannot (yet?) be solved in a reasonable amount of time (e.g. Integer Factorization)

Sequence Alignment

• Brute force solution take at least $\binom{2n}{n}$ computations of the sequence score, which is **exponential time**.

- Brute force solution take at least $\binom{2n}{n}$ computations of the sequence score, which is **exponential time**.
- **Dynamic Programming** decrease computation to $O(n^2)$.

- Brute force solution take at least $\binom{2n}{n}$ computations of the sequence score, which is **exponential time**.
- Dynamic Programming decrease computation to $O(n^2)$.
- IDEA:

- Brute force solution take at least $\binom{2n}{n}$ computations of the sequence score, which is **exponential time**.
- Dynamic Programming decrease computation to $O(n^2)$.
- IDEA: Store prior computations so that future computations can do table look-ups.

- Brute force solution take at least $\binom{2n}{n}$ computations of the sequence score, which is **exponential time**.
- Dynamic Programming decrease computation to $O(n^2)$.
- IDEA: Store prior computations so that future computations can do table look-ups.
- Backtrace Algorithm: Start at the bottom right of the matrix and find which neighboring cells could have transitioned to the current cell under the cost function, σ . Time Bound $(O(n^2))$

- Brute force solution take at least $\binom{2n}{n}$ computations of the sequence score, which is **exponential time**.
- **Dynamic Programming** decrease computation to $O(n^2)$.
- IDEA: Store prior computations so that future computations can do table look-ups.
- Backtrace Algorithm: Start at the bottom right of the matrix and find which neighboring cells could have transitioned to the current cell under the cost function, σ . Time Bound $(O(n^2))$
- See Lecture 15 for a worked example.

• Some problems cannot be computed (e.g. The Halting Problem).

- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).

- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- P a solution is computable in polynomial time

- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- P a solution is computable in polynomial time
- NP a solution can be verified in polynomial time, given a hint that is polynomial in the input length

- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- P a solution is computable in polynomial time
- NP a solution can be verified in polynomial time, given a hint that is polynomial in the input length
- $A \leq_p B$ means that if you have a fast algorithm for B, you have a fast algorithm for A.

- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- P a solution is computable in polynomial time
- NP a solution can be verified in polynomial time, given a hint that is polynomial in the input length
- $A \leq_p B$ means that if you have a fast algorithm for B, you have a fast algorithm for A.
- NP-complete In NP and as hard as the hardest problem in NP

- Some problems cannot be computed (e.g. The Halting Problem).
- Some problems can be computed but take a long time (e.g. SAT, 3-SAT, 3-coloring).
- P a solution is computable in polynomial time
- NP a solution can be verified in polynomial time, given a hint that is polynomial in the input length
- $A \leq_p B$ means that if you have a fast algorithm for B, you have a fast algorithm for A.
- NP-complete In NP and as hard as the hardest problem in NP
- Any fast solution to an NP-complete problem would yield a fast solution to all problems in NP.

