CSE 312 Autumn 2011

P vs NP and Computational Intractability

P vs NP

```
Is everything easy?

No, some problems (halting, ...) are uncomputable e.g., see http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html Is everything computable easy?

Sadly, no ...
```

The Clique Problem

Given: a graph G=(V,E) and an integer k

Question: is there a subset U of V with

 $|U| \ge k$ such that every pair of vertices in U is joined by an

edge.

Some Convenient Technicalities

"Problem" – the general case

Ex: The Clique Problem: Given a graph G and an integer k, does G contain a k-clique?

"Problem Instance" – the specific cases

Ex: Does contain a 4-clique? (no)

Ex: Does contain a 3-clique? (yes)

Some Convenient Technicalities

Three kinds of problem:

```
Search: Find a k-clique in G (3, \longrightarrow) \longrightarrow Decision: Is there a k-clique in G (3, \longrightarrow) \longrightarrow yes Verification: Is this a k-clique in G (3, \bigcirc) \longrightarrow no
```

Problems as Sets of "Yes" Instances

```
Ex: CLIQUE = \{ (G,k) \mid G \text{ contains a } k\text{-clique } \}

E.g., ( \downarrow \downarrow \downarrow ), ( \downarrow \downarrow ), ( \downarrow \downarrow ), ( \downarrow ) ( \downarrow )
```

But we'll sometimes be a little sloppy and use CLIQUE to mean the associated search problem

Difficulty/Utility

Computational Difficulty: verify \leq decide \leq search

Utility: ditto

In fact, decision and search are often equally difficult, but whether or not that holds for a particular problem, by the above, if we could show a *lower* bound on time for the decision problem, that implies a lower bound for the harder, more useful search versions as well, and the decision version is mathematically simpler, so the theory has emphasized the decision forms — another convenient technicality.

Satisfiability

```
Boolean variables x_1, ..., x_n taking values in \{0,1\}. 0=false, 1=true Literals x_i or \neg x_i for i = 1, ..., n Clause a logical OR of one or more literals e.g. (x_1 \lor \neg x_3 \lor x_7 \lor x_{12}) CNF formula ("conjunctive normal form") a logical AND of a bunch of clauses
```

Satisfiability

CNF formula example

$$(x_1 \lor \neg x_3 \lor x_7) \land (\neg x_1 \lor \neg x_4 \lor x_5 \lor \neg x_7)$$

If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable

the one above is, the following isn't

$$x_1 \wedge (\neg x_1 \vee x_2) \wedge (\neg x_2 \vee x_3) \wedge (\neg x_3 \vee \neg x_1)$$

Satisfiability: Given a CNF formula F, is it satisfiable?

Satisfiable?

```
( x \lor y \lor z ) \land ( \neg x \lor y \lor \neg z ) \land ( x \lor \neg y \lor z ) \land ( \neg x \lor \neg y \lor z ) \land ( \neg x \lor \neg y \lor z ) \land ( \neg x \lor \neg y \lor z ) \land ( x \lor \neg y \lor z ) \land ( x \lor \neg y \lor z )
```

More Problems

Independent-Set:

Pairs $\langle G,k \rangle$, where G=(V,E) is a graph and k is an integer, for which there is a subset U of V with $|U| \ge k$ such that no two vertices in U are joined by an edge.

Clique:

Pairs $\langle G,k \rangle$, where G=(V,E) is a graph and k is an integer k, for which there is a subset U of V with $|U| \ge k$ such that every pair of vertices in U is joined by an edge.

More Problems

Euler Tour:

Graphs G=(V,E) for which there is a cycle traversing each edge once.

Hamilton Tour:

Graphs G=(V,E) for which there is a simple cycle of length |V|, i.e., traversing each vertex once.

TSP:

Pairs $\langle G,k \rangle$, where G=(V,E,w) is a a weighted graph and k is an integer, such that there is a Hamilton tour of G with total weight $\leq k$.

Problems

3-Coloring:

Graphs G=(V,E) for which there is an assignment of at most 3 colors to the vertices in G such that no two adjacent vertices have the same color.

Example:

Problems

Short Path:

4-tuples $\langle G, s, t, k \rangle$, where G=(V,E) is a digraph with vertices s, t, and an integer k, for which there is a path from s to t of length $\leq k$

Long Path:

4-tuples $\langle G, s, t, k \rangle$, where G=(V,E) is a digraph with vertices s, t, and an integer k, for which there is an acyclic path from s to t of length $\geq k$

Common property of these problems: Discrete Exponential Search Loosely-find a needle in a haystack

"Answer" to a decision problem is literally just yes/no, but there's always a somewhat more elaborate "solution" (aka "hint" or "certificate"; what the search version would report) that transparently‡ justifies each "yes" instance (and only those) — but it's buried in an exponentially large search space of potential solutions.

Defining NP

```
A decision problem L is in NP iff there is a polynomial time procedure v(-,-), (the "verifier") and an integer k such that for every x \in L there is a "hint" h with |h| \le |x|^k such that v(x,h) = YES and for every x \notin L there is no hint h with |h| \le |x|^k such that v(x,h) = YES ("Hints," sometimes called "certificates," or "witnesses", are just strings. Think of them as exactly what the output of the search version would be.)
```

Example: Clique

"Is there a k-clique in this graph?" any subset of k vertices might be a clique there are many such subsets, but I only need to find one if I knew where it was, I could describe it succinctly, e.g. "look at vertices 2,3,17,42,...", I'd know one if I saw one: "yes, there are edges between 2 & 3, 2 & 17,... so it's a k-clique" this can be quickly checked And if there is not a k-clique, I wouldn't be fooled by a statement like "look at vertices 2,3,17,42,..."

More Formally: CLIQUE is in NP

```
procedure v(x,h)
 if
    x is a well-formed representation of a graph
    G = (V, E) and an integer k,
 and
    h is a well-formed representation of a k-vertex
    subset U of V,
 and
       U is a clique in G,
                                      Important note: this answer does
 then output "YES"
                                      NOT mean x \notin CLIQUE; just
 else output "I'm unconvinced"
                                      means this h isn't a k-clique (but
                                      some other might be).
                                                               18
```

Correctness

For every x = (G,k) such that G contains a k-clique, there is a hint h that will cause v(x,h) to say YES, namely h = a list of the vertices in such a k-clique and

No hint can fool v into saying yes if either x isn't well-formed (the uninteresting case) or if x = (G,k) but G does not have any cliques of size k (the interesting case)

Example: SAT

"Is there a satisfying assignment for this Boolean formula?"

```
any assignment might work
```

there are lots of them

I only need one

if I had one I could describe it succinctly, e.g., " x_1 =T, x_2 =F, ..., x_n =T"

I'd know one if I saw one: "yes, plugging that in, I see formula = T..." this can be quickly checked

And if the formula is unsatisfiable, I wouldn't be fooled by , " $x_1 = T$, $x_2 = F$, ..., $x_n = F$ "

More Formally: $SAT \subseteq NP$

Hint: the satisfying assignment A

Verifier: v(F,A) = syntax(F,A) && satisfies(F,A)

Syntax: True iff F is a well-formed formula & A is a truth-assignment to its variables

Satisfies: plug A into F and evaluate

Correctness:

If F is satisfiable, it has some satisfying assignment A, and we'll recognize it

If F is unsatisfiable, it doesn't, and we won't be fooled

Keys to showing that a problem is in NP

What's the output? (must be YES/NO)

What's the input? Which are YES?

For every given YES input, is there a hint that would help? Is it polynomial length?

OK if some inputs need no hint

For any given NO input, is there a hint that would trick you?

Solving NP problems without hints

The most obvious algorithm for most of these problems is brute force:

try all possible hints; check each one to see if it works.

Exponential time:

 2^n truth assignments for n variables n! possible TSP tours of n vertices $\binom{n}{k}$ possible k element subsets of n vertices etc.

...and to date, every alg, even much less-obvious ones, are slow, too

P vs NP vs Exponential Time

Theorem: Every problem in NP can be solved deterministically in exponential time

Proof: "hints" are only n^k long; try all 2^{n^k} possibilities, say by backtracking. If any succeed, say YES; if all fail, say NO.

P and NP

Every problem in P is in NP one doesn't even need a hint for problems in P so just ignore any hint you are given

Every problem in NP is in exponential time

I.e., $P \subseteq NP \subseteq Exp$ We know $P \neq Exp$, so either $P \neq NP$, or $NP \neq Exp$ (most likely both)

Summary so far

Examples in NP:

SAT, short/long paths, Euler/Ham tours, clique, indp set... Common feature/definition:

"... there is an X with property Y ..." where the property is easy (P-time) to verify, given X, but there are exponentially many potential X's to search among.

 $P \subseteq NP \subseteq Exp$ (at least 1 containment is proper; likely both)

Some Problem Pairs

Euler Tour

2-SAT

2-Coloring

Min Cut

Shortest Path

Hamilton Tour

3-SAT

3-Coloring

Max Cut

Longest Path

Similar pairs; seemingly different computationally

Superficially different; similar computationally

P vs NP

Theory

P = NP?

Open Problem!

I bet against it

Practice

Many interesting, useful, natural, well-studied problems known to be NP-complete

With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances

Another NP problem: Vertex Cover

Input: Undirected graph G = (V, E), integer k.

Output: True iff there is a subset C of V of size \leq k such that every edge in E is incident to at least one vertex in C.

Example: Vertex cover of size ≤ 2 .

In NP? Exercise

Covers the min sixe vertet theres

$3SAT \leq_p VertexCover$

Covery How many are there?

$3SAT \leq_p VertexCover$

Covery How many are there?

3SAT ≤_p VertexCover

Covers the min sixe vertex theres

$3SAT \leq_p VertexCover$

k=6

33

3SAT ≤_p VertexCover

Covers the min sixe vertex theres. $(x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3)$ k=6 X_3 X_3

3SAT ≤_D VertexCover

3-SAT Instance:

- Variables: $x_1, x_2, ...$ Literals: $y_{i,j}, 1 \le i \le q, 1 \le j \le 3$
- Clauses: $c_i = y_{i1} \vee y_{i2} \vee y_{i3}$, $1 \le i \le q$
- Formula: $c = c_1 \wedge c_2 \wedge ... \wedge c_q$

VertexCover Instance:

$$-k=2q$$

$$-G = (V, E)$$

$$-\ V = \{\ [i,j]\ |\ 1 \le i \le q,\ 1 \le j \le 3\ \}$$

$$- E = \{ ([i,j], [k,l]) | i = k \text{ or } y_{ij} = \neg y_{kl} \}$$

$3SAT \leq_p VertexCover$

Correctness of "3SAT ≤_p VertexCover"

Summary of reduction function f: Given formula, make graph G with one group per clause, one node per literal. Connect each to all nodes in same group, plus complementary literals $(x, \neg x)$. Output graph G plus integer k = 2 * number of clauses. Note: f does not know whether formula is satisfiable or not; does not know if G has k-cover; does not try to find satisfying assignment or cover.

Correctness:

- Show f poly time computable: A key point is that graph size is polynomial in formula size; mapping basically straightforward.
- Show c in 3-SAT iff f(c)=(G,k) in VertexCover:
- (\Rightarrow) Given an assignment satisfying c, pick one true literal per clause. Add other 2 nodes of each triangle to cover. Show it is a cover: 2 per triangle cover triangle edges; only true literals (but perhaps not all true literals) uncovered, so at least one end of every $(x, \neg x)$ edge is covered.
- (\Leftarrow) Given a k-vertex cover in G, uncovered labels define a valid (perhaps partial) truth assignment since no $(x, \neg x)$ pair uncovered. It satisfies c since there is one uncovered node in each clause triangle (else some other clause triangle has > I uncovered node, hence an uncovered edge.)

Utility of "3SAT ≤_p VertexCover"

Suppose we had a fast algorithm for VertexCover, then we could get a fast algorithm for 3SAT:

Given 3-CNF formula w, build Vertex

Cover instance y = f(w) as above, run the fast

VC alg on y; say "YES, w is satisfiable" iff VC alg says "YES,

y has a vertex cover of the given size"

On the other hand, suppose no fast alg is possible for 3SAT, then we know none is possible for VertexCover either.

 $(X_1 \lor X_2 \lor \neg X_3) \land (X_1 \lor \neg X_2 \lor \neg X_3) \land (\neg X_1 \lor X_3)$

Subset-Sum, AKA Knapsack

KNAP= { $(w_1, w_2, ..., w_n, C) | a subset of the w_i sums to C }$

 w_i 's and C encoded in radix $r \ge 2$. (Decimal used in following example.)

Theorem: $3-SAT \leq_p KNAP$

Pf: given formula with p variables & q clauses, build KNAP instance with 2(p+q) w_i's, each with (p+q) decimal digits. For the 2p "literal" weights, H.O. p digits mark which variable; L.O. q digits show which clauses contain it. Two "slack" weights per clause mark that clause. See example below.

3-SAT ≤_P KNAP

Formula: $(x \lor y) \land (\neg x \lor y) \land (\neg x \lor \neg y \lor y)$

		Varia	bles		Clauses	
		X	у	(x v y)	$(\neg x \lor y)$	$(\neg x \lor \neg y \lor y)$
Literals	w ₁ (x)	I	0	I	0	0
	$w_2 (\neg x)$	ı	0	0	I	I
	w_3 (y)		I	I	I	1
	w ₄ (¬y)		I	0	0	1
Slack	w_5 (s_{11})			I	0	0
	$w_6 (s_{12})$			I	0	0
	$w_7 (s_{21})$				I	0
	$w_8 (s_{22})$				I	0
	$w_9 (s_{31})$					1
	$w_{10}(s_{32})$					<u> </u>
	С			3	3	3

Correctness

- Poly time for reduction is routine; details omitted. Again note that it does not look at satisfying assignment(s), if any, nor at subset sums, but the problem instance it builds captures one via the other...
- If formula is satisfiable, select the literal weights corresponding to the true literals in a satisfying assignment. If that assignment satisfies k literals in a clause, also select (3 - k) of the "slack" weights for that clause. Total will equal C.
- Conversely, suppose KNAP instance has a solution. Note \leq 5 one's per column, so no "carries" in sum (recall - weights are decimal); i.e., columns are decoupled. Since H.O. p digits of C are I, exactly one of each pair of literal weights included in the subset, so it defines a valid assignment. Since L.O. q digits of C are 3, but at most 2 "slack" weights contribute to it, at least one of the selected literal weights must be I in that clause, hence the assignment satisfies the formula. $_{42}$

SAT has a (superficially) special role

Cook's Theorem: Every problem in NP can be reduced to SAT

Why?

Intuitively, "solutions" are just bit strings,

"There exists a solution" \rightarrow "there exists an assignment"

Computers are just big, dumb piles of Boolean logic, so "the verifier says YES" → "That assignment satisfies this formula."

I won't prove Cook's theorem, but will give a few examples.

NP-complete problem: 3-Coloring

Input: An undirected graph G=(V,E).

Output: True iff there is an assignment of at most 3 colors to the vertices in G such that no two adjacent vertices have the same color.

Example:

In NP? Exercise

3-Coloring ≤_p SAT

Given G = (V, E)variables r_i , g_i , b_i for each i in V encode color

adj nodes ⇔ diff colors no node gets 2 every node gets a color

Vertex cover ≤_p SAT

Given G = (V, E) and k variables x_i , for each i in V encode inclusion of i in cover

 $\land_{(i,j) \,\in\, E} \, \big(x_i \, \lor \, x_j \big) \, \land \, \text{``number of True } x_i \, \text{is} \, \leq \, k \text{''}$

every edge covered by one end or other

possible in 3 CNF, but technically messy; basically a "counter", counting 1's

Cook's Theorem

Every problem in NP is reducible to SAT

Idea of proof is extension of above examples, but done in a general way, based on the definition of NP – show how the SAT formula can simulate whatever (polynomial time) computation the verifier does.

Why is SAT NP-complete?

Cook's proof is somewhat involved; I won't show it. But its essence is not so hard to grasp:

Generic "NP" problems: expo. search—is there a poly size "solution," verifiable by computer in poly time

"SAT": is there a (poly size) assignment satisfying the formula

Encode "solution" using Boolean variables. SAT mimics "is there a solution" via "is there an assignment". Digital computers just do Boolean logic, and "SAT" can mimic that, too, hence can verify that the assignment *actually* encodes a solution.

Reductions

Utility of "3SAT ≤_p VertexCover"

Suppose we had a fast algorithm for VertexCover, then we could get a fast algorithm for 3SAT:

Given 3-CNF formula w, build Vertex

Cover instance y = f(w) as above, run the fast

VC alg on y; say "YES, w is satisfiable" iff VC alg says "YES,

y has a vertex cover of the given size"

On the other hand, suppose no fast alg is possible for 3SAT, then we know none is possible for VertexCover either.

 $(X_1 \lor X_2 \lor \neg X_3) \land (X_1 \lor \neg X_2 \lor \neg X_3) \land (\neg X_1 \lor X_3)$

Utility of "3SAT \leq_p KNAP"

Suppose we had a fast algorithm for Knapsack, then we could get a fast algorithm for 3SAT:

Given 3-CNF formula w, build Knap instance y = f(w) as above, run the fast Knap alg on y; say "YES, w is satisfiable" iff Knap alg says "YES, a subset sums to C"

		Variables		Clauses		
		×	У	(x v y)	(¬x ∨ y)	(¬x ∨ ¬y)
Literals	w ₁ (x)	I	0	I	0	0
	$w_2 (\neg x)$	1	0	0	1	1
	w_3 (y)		- 1	I	1	0
	w ₄ (¬y)		ı	0	0	I
	$w_5 (s_{11})$			I	0	0
	$w_6 (s_{12})$			l I	0	0
Slack	$w_7 (s_{21})$				1	0
elS	$w_8 (s_{22})$				1	0
	$w_9 (s_{31})$					I
	$w_{10}(s_{32})$					I
	С	ĺ	Ī	3	3	3

If, on the other hand, no fast alg is possible for 3SAT, then we know none is possible for KNAP either.

"3SAT ≤_p VC/KNAP" Retrospective

Previous slides: two suppositions

Somewhat clumsy to have to state things that way.

Alternative: abstract out the key elements, give it a name ("polynomial time reduction"), then properties like the above always hold.

Polynomial-Time Reductions

Definition: Let A and B be two problems.

We say that A is polynomially reducible to B (A \leq_p B) if there exists a polynomial-time algorithm f that converts each instance x of problem A to an instance f(x) of B such that:

x is a YES instance of A iff f(x) is a YES instance of B

$$x \in A \Leftrightarrow f(x) \in B$$

Why the notation?

Polynomial-Time Reductions (cont.)

Define: $A \leq_p B$ "A is polynomial-time reducible to B", iff there is a polynomial-time computable function f such that: $x \in A \Leftrightarrow f(x) \in B$

"complexity of A" ≤ "complexity of B" + "complexity of f"

- (I) $A \leq_{D} B$ and $B \in P \Rightarrow A \in P$
- (2) $A \leq_{D} B$ and $A \notin P \Rightarrow B \notin P$
- (3) $A \leq_p B$ and $B \leq_p C \Rightarrow A \leq_p C$ (transitivity)

polynomial

NP-Completeness

Definition: Problem B is *NP-hard* if every problem in NP is polynomially reducible to B.

Definition: Problem B is *NP-complete* if:

- (I) B belongs to NP, and
- (2) B is NP-hard.

Ex: VertexCover is NP-complete

- a) For very problem A in NP, $A \leq_{D} 3-SAT$ [Cook]
- b) $3-SAT \leq_{D} VertexCover$ [above]
- c) so $A \leq_{D} VertexCover$ [transitivity]
- d) VertexCover is in NP [above]

Therefore VertexCover is also NP-complete

So, poly-time alg for VertexCover \Rightarrow poly-time algs for everything in NP; exponential lower bound on any prob in NP \Rightarrow exp lower bd for VertexCover

"I can't find an efficient algorithm, but neither can all these famous people." [Garey & Johnson, 1979]

Summary

Big-O – good

P – good

Exp – bad

Exp, but hints help? NP

NP-hard, NP-complete – bad (I bet)

To show NP-complete – reductions

NP-complete = hopeless? – no, but you need to lower your expectations: heuristics, approximations and/or small instances.

P

Many important problems are in P: solvable in deterministic polynomial time

Details are more the fodder of algorithms courses, but we've seen a few examples here, plus many other examples in other courses

Few problems not in P are routinely solved;

For those that are, practice is usually restricted to small instances, or we're forced to settle for approximate, suboptimal, or heuristic "solutions"

A major goal of complexity theory is to delineate the boundaries of what we can feasibly solve

NP

The tip-of-the-iceberg in terms of problems conjectured not to be in P, but a very important tip, because

- a) they're very commonly encountered, probably because
- b) they arise naturally from basic "search" and "optimization" questions.

Definition: poly time verifiable, "guess and check", "is there a..." – all useful

NP-completeness

Defn & Properties of \leq_p

A is NP-hard: everything in NP reducible to A

A is NP-complete: NP-hard and in NP

"the hardest problems in NP"

"All alike under the skin"

Most known natural problems in NP are complete

#I: 3CNF-SAT

Many others: Clique, VertexCover, HamPath, Circuit-SAT,...

