
1	

Algorithms and Computational
Complexity: an Overview

Autumn 2011	

Larry Ruzzo	

	

Thanks to Paul Beame, James Lee, Kevin Wayne for some slides	

2	

goals

Design of Algorithms – a taste	

design methods	

common or important types of problems	

analysis of algorithms - efficiency	

goals

Complexity & intractability – a taste	

solving problems in principle is not enough	

algorithms must be efficient	

some problems have no efficient solution	

NP-complete problems	

important & useful class of problems whose solutions
(seemingly) cannot be found efficiently	

3	

4	

complexity example

Cryptography (e.g. RSA, SSL in browsers)	

Secret: p,q prime, say 512 bits each	

Public: n which equals p x q, 1024 bits	

In principle 	

there is an algorithm that given n will find p and q: ���
try all 2512 ≈ 1.3x10154 possible p’s (but that’s kinda big…	

for comparison, the age of the universe is ≈ 5x1029 picosec)	

In practice 	

no fast algorithm known for this problem (on non-quantum computers)	

security of RSA depends on this fact	

(and research in “quantum computing” is strongly driven
by the possibility of changing this)	

5	

algorithms versus machines

Moore’s Law and the exponential
improvements in hardware...	

	

Ex: sparse linear equations over 25 years	

	

10 orders of magnitude improvement!	

107	

106	

105	

104	

103	

102	

101	

100	

Se
co

nd
s	

G.E. / CDC 3600	

CDC 6600	

CDC 7600	

Cray 1	

Cray 2	

Cray 3 (Est.)	

1960	

 1970	

 1980	

 1990	

 2000	

Source: Sandia, via M. Schultz!

algorithms or hardware?

25 years
progress solving
sparse linear
systems	

	

Hardware ���
alone: 4 orders
of magnitude	

	

6	

G.E. = Gaussian Elimination	

107	

106	

105	

104	

103	

102	

101	

100	

Se
co

nd
s	

G.E. / CDC 3600	

CDC 6600	

CDC 7600	

Cray 1	

Cray 2	

Cray 3 (Est.)	

Sparse G.E.	

Gauss-Seidel	

SOR	

CG	

1960	

 1970	

 1980	

 1990	

 2000	

Source: Sandia, via M. Schultz!

algorithms or hardware?

25 years
progress solving
sparse linear
systems	

	

Hardware ���
alone: 4 orders
of magnitude	

	

Software alone:
6 orders of
magnitude	

7	

G.E. = Gaussian Elimination	

SOR = Successive OverRelaxation	

CG = Conjugate Gradient	

algorithms or hardware?

The ���
N-Body ���
Problem:	

	

in 30 years���
 107 hardware���
 1010 software	

8	

Source: T.Quinn!

9	

algorithms: a definition

Procedure to accomplish a task or solve a
well-specified problem	

Well-specified: know what all possible inputs look
like and what output looks like given them	

“accomplish” via simple, well-defined steps	

Ex: sorting names (via comparison)	

Ex: checking for primality (via +, -, *, /, ≤)	

10	

algorithms: a sample problem

Printed circuit-board company has a robot
arm that solders components to the board	

Time: proportional to total distance the arm
must move from initial rest position around
the board and back to the initial position	

For each board design, find best order to do
the soldering	

11	

printed circuit board

12	

printed circuit board

13	

more precise problem definition

Input: Given a set S of n points in the plane	

Output: The shortest cycle tour that visits
each point in the set S.	

	

Better known as “TSP”	

	

How might you solve it?	

14	

nearest neighbor heuristic

Start at some point p0	

Walk first to its ���
nearest neighbor p1	

Walk to the nearest
unvisited neighbor p2,
then nearest unvisited
p3, … until all points
have been visited	

Then walk back to p0	

heuristic:���
A rule of thumb, simplifica-
tion, or educated guess that
reduces or limits the search
for solutions in domains that
are difficult and poorly
understood. May be good, but
usually not guaranteed to give
the best or fastest solution.	

(And often difficult to analyze precisely.)	

15	

nearest neighbor heuristic

p0!
p1!

p6!

16	

an input where nn works badly

p0!

.9!1! 2!4! 8!16!

length ~ 84	

17	

an input where nn works badly

p0!

.9!1! 2!4! 8!16!

optimal soln for this example���
length ~ 64	

Repeatedly join the closest pair of points	

(such that result can still be part of a ���
single loop in the end. I.e., join ���
endpoints, but not points in middle, ���
of path segments already created.)	

How does this work on our bad example?	

18	

p0!

.9!1! 2!4! 8!16!

revised heuristic – closest pairs first

?	

19	

a bad example for closest pair

1!

1.5! 1.5!

 !

20	

a bad example for closest pair

1!

1.5! 1.5!

6+√10 = 9.16 !
!
!
vs !
!
!
!
8!

21	

something that works

	

	

“Brute Force Search”:	

For each of the n! = n(n-1)(n-2)…1 orderings of the
points, check the length of the cycle;	

Keep the best one	

	

	

	

22	

two notes

The two incorrect algorithms were greedy	

Often very natural & tempting ideas	

They make choices that look great “locally” (and never
reconsider them)	

When greed works, the algorithms are typically efficient	

BUT: often does not work - you get boxed in	

Our correct alg avoids this, but is incredibly slow	

20! is so large that checking one billion per second would
take 2.4 billion seconds (around 70 years!)	

And growing: n! ~ √2 π n • (n/e)n ~ 2O(n log n)	

23	

the morals of the story

Algorithms are important	

 Many performance gains outstrip Moore’s law	

Simple problems can be hard 	

Factoring, TSP, many others	

Simple ideas don’t always work 	

Nearest neighbor, closest pair heuristics	

Simple algorithms can be very slow	

Brute-force factoring, TSP	

A point we hope to make: for some problems,
even the best algorithms are slow	

my plan

A brief overview of the theory of algorithms	

	

Efficiency & asymptotic analysis	

	

Some scattered examples of simple
problems where clever algorithms help	

A brief overview of the theory of intractability	

	

Especially NP-complete problems 	

	

“Basics every educated CSE student should
know”	

24	

26	

computational complexity

The complexity of an algorithm associates a
number T(n), the worst-case time the
algorithm takes, with each problem size n.	

	

Mathematically,	

T: N+ → R+	

i.e.,T is a function mapping positive integers
(problem sizes) to positive real numbers (number
of steps).	

28	

computational complexity: general goals

Asymptotic growth rate, i.e., characterize growth
rate of worst-case run time as a function of problem
size, up to a constant factor, e.g. T(n) = O(n2)	

	

Why not try to be more precise?	

	

Average-case, e.g., is hard to define, analyze	

Technological variations (computer, compiler, OS, …)
easily 10x or more	

Being more precise is a ton of work	

A key question is “scale up”: if I can afford this today, how
much longer will it take when my business is 2x larger?
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.) ���
Big-O analysis is adequate to address this.	

29	

Problem size !

Ti
m

e!

T(n)!

computational complexity

2n log2n!

n log2n!

31	

polynomial vs exponential

 ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn).	

n100	

1.01n	

In short, every exponential
grows faster than every
polynomial!	

32	

the complexity class P: polynomial time

P: Running time O(nd) for some constant d ���
	

(d is independent of the input size n)	

Nice scaling property: there is a constant c s.t. doubling
n, time increases only by a factor of c. ���
	

(E.g., c ~ 2d)	

Contrast with exponential: For any constant c,
there is a d such that n → n+d increases time
by a factor of more than c. 	

	

(E.g., c = 100 and d = 7 for 2n vs 2n+7)	

33	

22n

2n/10

1000n2

22n!

2n/10!

1000n2!

polynomial vs exponential growth

 	

34	

why it matters

not only get very big, but do
so abruptly, which likely yields
erratic performance on small
instances	

Next year's computer will be 2x faster. If I can solve
problem of size n0 today, how large a problem can I
solve in the same time next year? 	

	

35	

Complexity Increase E.g. T=1012

O(n) n0 → 2n0 1012 → 2 x 1012

O(n2) n0 → √2 n0 106 → 1.4 x 106

O(n3) n0 → 3√2 n0 104 → 1.25 x 104

2n /10 n0 → n0+10 400 → 410
2n n0 → n0 +1 40 → 41

another view of poly vs exp

complexity summary

Typical initial goal for algorithm analysis is to
find an 	

asymptotic 	

 	

 	

	

upper bound on 	

 	

 	

 	

	

worst case running time 	

as a function of problem size	

This is rarely the last word, but often helps
separate good algorithms from blatantly
poor ones - concentrate on the good ones!	

36	

why “polynomial”?

Point is not that n2000 is a nice time bound, or that
the differences among n and 2n and n2 are negligible.	

	

Rather, simple theoretical tools may not easily
capture such differences, whereas exponentials are
qualitatively different from polynomials, so more
amenable to theoretical analysis.	

“My problem is in P” is a starting point for a more detailed
analysis	

“My problem is not in P” may suggest that you need to
shift to a more tractable variant, or otherwise readjust
expectations	

37	

