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goals 

Design of Algorithms – a taste	


design methods	


common or important types of problems	



analysis of algorithms - efficiency	





goals 

Complexity & intractability – a taste	


solving problems in principle is not enough	



algorithms must be efficient	



some problems have no efficient solution	


NP-complete problems	



important & useful class of problems whose solutions 
(seemingly) cannot be found efficiently	
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complexity example 

Cryptography (e.g. RSA, SSL in browsers)	


Secret: p,q prime, say 512 bits each	



Public: n which equals p x q, 1024 bits	



In principle 	


there is an algorithm that given n will find p and q: ���
try all 2512 ≈ 1.3x10154 possible p’s (but that’s kinda big…	



for comparison,  the age of the universe is ≈ 5x1029 picosec)	



In practice 	


no fast algorithm known for this problem (on non-quantum computers)	



security of RSA depends on this fact	


(and research in “quantum computing” is strongly driven 
by the possibility of changing this)	
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algorithms versus machines 

Moore’s Law and the exponential 
improvements in hardware...	


	



Ex: sparse linear equations over 25 years	



	


10 orders of magnitude improvement!	
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G.E. / CDC 3600	



CDC 6600	
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Source: Sandia, via M. Schultz!

algorithms or hardware? 

25 years 
progress solving 
sparse linear 
systems	



	


Hardware ���
alone: 4 orders 
of magnitude	
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G.E. = Gaussian Elimination	
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G.E. / CDC 3600	



CDC 6600	



CDC 7600	



Cray 1	



Cray 2	



Cray 3 (Est.)	



Sparse G.E.	



Gauss-Seidel	



SOR	


CG	



1960	
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 2000	



Source: Sandia, via M. Schultz!

algorithms or hardware? 

25 years 
progress solving 
sparse linear 
systems	



	


Hardware ���
alone: 4 orders 
of magnitude	



	


Software alone: 
6 orders of 
magnitude	
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G.E. = Gaussian Elimination	


SOR = Successive OverRelaxation	


CG = Conjugate Gradient	





algorithms or hardware? 

The ���
N-Body ���
Problem:	


	


in 30 years���
  107 hardware���
  1010 software	
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Source: T.Quinn!
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algorithms: a definition 

Procedure to accomplish a task or solve a 
well-specified problem	



Well-specified: know what all possible inputs look 
like and what output looks like given them	



“accomplish” via simple, well-defined steps	



Ex: sorting names (via comparison)	



Ex: checking for primality (via +, -, *, /, ≤)	
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algorithms: a sample problem 

Printed circuit-board company has a robot 
arm that solders components to the board	



Time: proportional to total distance the arm 
must move from initial rest position around 
the board and back to the initial position	



For each board design, find best order to do 
the soldering	
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printed circuit board 
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printed circuit board 
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more precise problem definition 

Input: Given a set S of n points in the plane	


Output: The shortest cycle tour that visits 
each point in the set S.	


	


Better known as “TSP”	



	


How might you solve it?	
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nearest neighbor heuristic 

Start at some point p0	


Walk first to its ���
nearest neighbor p1	



Walk to the nearest 
unvisited neighbor p2, 
then nearest unvisited 
p3, … until all points 
have been visited	



Then walk back to p0	



heuristic:���
A rule of thumb, simplifica-
tion, or educated guess that 
reduces or limits the search 
for solutions in domains that 
are difficult and poorly 
understood.  May be good, but 
usually not guaranteed to give 
the best or fastest solution.	


(And often difficult to analyze precisely.)	
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nearest neighbor heuristic 

p0!
p1!

p6!
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an input where nn works badly 

p0!

.9!1! 2!4! 8!16!

length ~ 84	





17	



an input where nn works badly 

p0!

.9!1! 2!4! 8!16!

optimal soln for this example���
length ~ 64	





Repeatedly join the closest pair of points	


(such that result can still be part of a ���
single loop in the end.  I.e., join ���
endpoints, but not points in middle, ���
of path segments already created.)	



How does this work on our bad example?	
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p0!

.9!1! 2!4! 8!16!

revised heuristic – closest pairs first 

?	
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a bad example for closest pair 

1!

1.5! 1.5!

 !



20	



a bad example for closest pair 

1!

1.5! 1.5!

6+√10 = 9.16  !
!
!
vs !
!
!
!
8!
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something that works 

	


	


“Brute Force Search”:	



For each of the n! = n(n-1)(n-2)…1 orderings of the 
points, check the length of the cycle;	



Keep the best one	


	


	



	





22	



two notes 

The two incorrect algorithms were greedy	


Often very natural & tempting ideas	



They make choices that look great “locally” (and never 
reconsider them)	



When greed works, the algorithms are typically efficient	



BUT: often does not work - you get boxed in	



Our correct alg avoids this, but is incredibly slow	


20!  is so large that checking one billion per second would 
take 2.4 billion seconds (around 70 years!)	



And growing: n!  ~  √2 π n   •  (n/e)n   ~  2O(n log n)	
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the morals of the story 

Algorithms are important	


    Many performance gains outstrip Moore’s law	



Simple problems can be hard 	


Factoring, TSP, many others	



Simple ideas don’t always work 	


Nearest neighbor, closest pair heuristics	



Simple algorithms can be very slow	


Brute-force factoring, TSP	



A point we hope to make: for some problems, 
even the best algorithms are slow	





my plan 

A brief overview of the theory of algorithms	


	

Efficiency & asymptotic analysis	


	

Some scattered examples of simple 
problems where clever algorithms help	



A brief overview of the theory of intractability	



	

Especially NP-complete problems 	


	


“Basics every educated CSE student should 
know”	
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computational complexity 

The complexity of an algorithm associates a 
number T(n), the worst-case time the 
algorithm takes, with each problem size n.	



	


Mathematically,	



T: N+ → R+	


i.e.,T is a function mapping positive integers 
(problem sizes) to positive real numbers (number 
of steps).	
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computational complexity: general goals 

Asymptotic growth rate, i.e., characterize growth 
rate of worst-case run time as a function of problem 
size, up to a constant factor, e.g. T(n) = O(n2)	


	


Why not try to be more precise?	


	

Average-case, e.g., is hard to define, analyze	


Technological variations (computer, compiler, OS, …) 
easily 10x or more	


Being more precise is a ton of work	


A key question is “scale up”: if I can afford this today, how 
much longer will it take when my business is 2x larger?  
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.)  ���
Big-O analysis is adequate to address this.	
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Problem size !

Ti
m

e!

T(n)!

computational complexity 

2n log2n!

n log2n!
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polynomial vs exponential 

  ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn).	



n100	


1.01n	



In short, every exponential 
grows faster than every 
polynomial!	
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the complexity class P: polynomial time 

P: Running time O(nd) for some constant d ���
	

(d is independent of the input size n)	



Nice scaling property: there is a constant c s.t. doubling 
n, time increases only by a factor of c. ���
	

(E.g., c ~ 2d)	



Contrast with exponential: For any constant c, 
there is a d such that n → n+d increases time 
by a factor of more than c. 	



	

(E.g., c = 100 and d = 7 for 2n vs 2n+7)	
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22n 

2n/10 

1000n2 

 

22n!

2n/10!

1000n2!

polynomial vs exponential growth 
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why it matters 

not only get very big, but do 
so abruptly, which likely yields 
erratic performance on small  
instances	





Next year's computer will be 2x faster.  If I can solve 
problem of size n0 today, how large a problem can I 
solve in the same time next year? 	
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Complexity Increase E.g. T=1012 

O(n) n0 → 2n0 1012 → 2  x 1012 

O(n2) n0 → √2 n0 106             → 1.4  x 106 

O(n3) n0 → 3√2 n0 104 → 1.25  x 104 

2n /10 n0 → n0+10 400 → 410 
2n n0 → n0 +1 40 → 41 

another view of poly vs exp 



complexity summary 

Typical initial goal for algorithm analysis is to 
find an 	



asymptotic 	

 	

 	

	



upper bound on 	

 	

 	

 	

	


worst case running time 	


as a function of problem size	



This is rarely the last word, but often helps 
separate good algorithms from blatantly 
poor ones - concentrate on the good ones!	
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why “polynomial”? 

Point is not that n2000 is a nice time bound, or that 
the differences among n and 2n and n2 are negligible.	



	


Rather, simple theoretical tools may not easily 
capture such differences, whereas exponentials are 
qualitatively different from polynomials, so more 
amenable to theoretical analysis.	



“My problem is in P” is a starting point for a more detailed 
analysis	



“My problem is not in P” may suggest that you need to 
shift to a more tractable variant, or otherwise readjust 
expectations	
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