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competing hypotheses

Does smoking cause cancer?

(a) No; we don’t know what causes cancer, but 
smokers are no more likely to get it than non-
smokers

(b) Yes; a much greater % of smokers get it

Note: even in case (b), “cause” is a stretch, but for 
simplicity, “causes” and “correlates with” will be 
loosely interchangeable today
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competing hypotheses
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Programmers using the Eclipse IDE make fewer errors

(a) Hooey.  Errors happen, IDE or not.

(b) Yes.  On average, programmers using Eclipse 
produce code with fewer errors per thousand 
lines of code



competing hypotheses
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Black Tie Linux has way better web-server throughput  
than Red Shirt.

(a) Ha!  Linux is linux, throughput will be the same

(b) Yes.  On average, Black Tie response time is 20% 
faster.



competing hypotheses
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This coin is biased!

(a) “Don’t be paranoid, dude.  It’s a fair coin, like any 
other, P(Heads) = 1/2” 

(b) “Wake up, smell coffee: P(Heads) = 2/3, totally!”



competing hypotheses

How do we decide?

Design an experiment, gather data, evaluate:

In a sample of N smokers + non-smokers, does % 
with cancer differ?  Age at onset?  Severity?

In N programs, some written using IDE, some not, do 
error rates differ?

Measure response times to N individual web 
transactions on both.

In N flips, does putative biased coin show an unusual 
excess of heads?  More runs?  Longer runs?

A complex, multi-faceted problem. Here, emphasize evaluation: 

What N?  How large of a difference is convincing?
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hypothesis testing
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By convention, the null hypothesis is usually the “simpler” hypothesis, or “prevailing 
wisdom.”  E.g., Occam’s Razor says you should prefer that unless there is strong 
evidence to the contrary.

Example:

100 coin flips

P(H) = 1/2

P(H) = 2/3

“if #H ≤ 60, accept 
null, else reject null”

P(H ≤ 60 | 1/2) = ?
P(H  >  60 | 2/3) = ?

General framework:

1. Data

2. H0 – the “null hypothesis”

3. H1 – the “alternate hypothesis”

4. A decision rule for choosing 
between H0/H1 based on data

5. Analysis:  What is the probability 
that we get the right answer?



decision rules
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Is coin fair (1/2) or biased (2/3)?  How to decide?  Ideas:

1. Count: 	
Flip 100 times; if number of heads observed 
is ≤ 60, accept H0 
or ≤ 59, or  ≤ 61 ... ⇒ different error rates

2. Runs: 	
 Flip 100 times.  Did I see a longer run of 
heads or of tails?

3. Runs:	
 Flip until I see either 10 heads in a row 
(reject H0) or 10 tails is a row (accept H0)

4. Almost-Runs:  As above, but 9 of 10 in a row 

5.  . . .



error types
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H0 True H1 True

observed fract of heads→
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Type I error: false reject; 
reject H0 when it is true.  
α = P(type I error)

Type II error: false accept; 
accept H0 when it is false.  
β = P(type II error)

Goal: make both α, β small (but it’s a 
tradeoff; they are interdependent).
α ≤ 0.05 common in scientific literature.
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likelihood ratio tests

One general approach:  a “Likelihood Ratio Test”

E.g.:

c = 1: accept H0 if observed data is more likely under 
that hypothesis than it is under the alternate

c = 5: accept H0 unless there is strong evidence that 
the alternate is more likely (i.e. 5 x)

Changing the threshold c shifts α, β, of course.
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example

Given: A coin, either fair (p(H)=1/2) or biased (p(H)=2/3)

Decide: which

How?  Flip it 5 times.  Suppose outcome D = HHHTH

Null Model/Null Hypothesis M0: p(H) = 1/2

Alternative Model/Alt Hypothesis M1: p(H) = 2/3

Likelihoods:
P(D | M0) = (1/2) (1/2) (1/2) (1/2) (1/2) =   1/32

P(D | M1) = (2/3) (2/3) (2/3) (1/3) (2/3) = 16/243

Likelihood Ratio:  

I.e., alt model is ≈ 2.1x more likely than null model, given data

€ 

p(D |M 1 )
p(D |M 0 )

= 16 / 243
1/ 32 = 512

243 ≈ 2.1



simple vs composite hypotheses

A simple hypothesis has a single fixed parameter value

E.g.:  P(H) = 1/2

A composite hypothesis allows multiple parameter 
values

E.g.; P(H) > 1/2
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Note that LRT is problematic for composite hypotheses; which 
value for the unknown parameter would you use to compute its 
likelihood?



Neyman-Pearson lemma

The Neyman-Pearson Lemma

If an LRT for some simple hypotheses H0 versus H1 has 
error probabilities α, β, then any test with type I error 
α’ ≤ α must have type II error β’ ≥ β

In other words, to compare a simple hypothesis to a 
simple alternative, a likelihood ratio test will be as good 
as any for a given error bound.
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example

H0: P(H) = 1/2	
 	
 Data: flip 100 times

H1: P(H) =  2/3	
	
 Decision rule:  Accept H0 if #H ≤ 60

α = P(#H > 60 | H0) ≈ 0.02

β = P(#H ≤ 60 | H1) ≈ 0.09

14

“R” pmf/pdf functions

;                              ;



example (cont.)
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some notes

Log of likelihood ratio is equivalent, often more 
convenient

add logs instead of multiplying…

“Likelihood Ratio Tests”: reject null if LLR > threshold

LLR > 0 disfavors null, but higher threshold gives 
stronger evidence against 

Neyman-Pearson Theorem: For a given error rate, LRT 
is as good a test as any (subject to some fine print).
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summary

Null/Alternative hypotheses - specify distributions from which data 
are assumed to have been sampled

Simple hypothesis - one distribution
E.g., “Normal, mean = 42, variance = 12”

Composite hypothesis - more that one distribution
E.g., “Normal, mean > 42, variance = 12”

Decision rule; “accept/reject null if sample data...”; many possible

Type 1 error: false reject/reject null when it is true

Type 2 error: false accept/accept null when it is false
α = P(type 1 error),  β = P(type 2 error)

Likelihood ratio tests: for simple null vs simple alt, compare ratio of 
likelihoods under the 2 competing models to a fixed threshold.

Neyman-Pearson: LRT is best possible in this scenario.
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And One Last Bit of  Probability Theory
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See also:
    http://mathforum.org/library/drmath/view/55871.html
    http://en.wikipedia.org/wiki/Infinite_monkey_theorem


