CSE 312 Autumn 2011

The Expectation-Maximization Algorithm

Previously: How to estimate μ given data

More Complex Example

(A modeling decision, not a math problem..., but if later, what math?)

A Real Example:

CpG content of human gene promoters

"A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters" Saxonov, Berg, and Brutlag, PNAS 2006;103:1412-1417

Gaussian Mixture Models / Model-based Clustering

Parameters θ

means

 μ_1

variances

 σ_1^2

 σ_2^2

mixing parameters

 au_1

 $\tau_2 = 1 - \tau_1$

P.D.F.

$$f(x|\mu_1,\sigma_1^2) \quad f(x|\mu_2,\sigma_2^2)$$

Likelihood

$$L(x_1, x_2, \dots, x_n | \mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2)$$
 $close form = \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i | \mu_j, \sigma_j^2)$ max

A What-If Puzzle

Likelihood
$$L(x_1, x_2, \dots, x_n | \overbrace{\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \tau_1, \tau_2})$$

$$= \prod_{i=1}^n \sum_{j=1}^2 \tau_j f(x_i | \mu_j, \sigma_j^2)$$

Messy: no closed form solution known for finding $\boldsymbol{\theta}$ maximizing \boldsymbol{L}

But what if we knew the hidden data?

$$z_{ij} = \begin{cases} 1 & \text{if } x_i \text{ drawn from } f_j \\ 0 & \text{otherwise} \end{cases}$$

EM as Egg vs Chicken

IF z_{ij} known, could estimate parameters θ

E.g., only points in cluster 2 influence μ_2 , σ_2

IF parameters θ known, could estimate z_{ij}

E.g.,
$$|\mathbf{x}_i - \mu_1|/\sigma_1 \ll |\mathbf{x}_i - \mu_2|/\sigma_2 \Rightarrow P[\mathbf{z}_{i1}=1] \gg P[\mathbf{z}_{i2}=1]$$

But we know neither; (optimistically) iterate:

E: calculate expected zij, given parameters

M: calc "MLE" of parameters, given $E(z_{ij})$

Overall, a clever "hill-climbing" strategy

Simple Version: **Classification EM"

If $E[z_{ij}] < .5$, pretend $z_{ij} = 0$; $E[z_{ij}] > .5$, pretend it's I

I.e., classify points as component 0 or 1

Now recald θ , assuming that partition (standard MLE)

Then recalc $E[z_{ij}]$, assuming that θ

Then re-recald θ , assuming new $E[z_{ij}]$, etc., etc.

"Full EM" is a bit more involved, (to account for uncertainty in classification) but this is the crux.

Full EM

 x_i 's are known; θ unknown. Goal is to find MLE θ of:

$$L(x_1,\ldots,x_n\mid heta)$$
 (hidden data likelihood)

Would be easy if z_{ij} 's were known, i.e., consider:

$$L(x_1,\ldots,x_n,z_{11},z_{12},\ldots,z_{n2}\mid heta)$$
 (complete data likelihood)

But z_{ij} 's aren't known.

Instead, maximize expected likelihood of visible data

$$E(L(x_1,\ldots,x_n,z_{11},z_{12},\ldots,z_{n2} \mid \theta)),$$

where expectation is over distribution of hidden data $(z_{ij}$'s)

The E-step:

Find $E(z_{ij})$, i.e., $P(z_{ij}=1)$

Assume θ known & fixed

 $-E = 0 \cdot P(0) + 1 \cdot P(1)$ A (B): the event that x_i was drawn from f_1 (f_2)

D: the observed datum xi

Expected value of z_{i1} is P(A|D)

$$P(A|D) = \frac{P(D|A)P(A)}{P(D)}$$
 Repeat for
$$P(D) = P(D|A)P(A) + P(D|B)P(B)$$
 each
$$x_i$$

$$= f_1(x_i|\theta_1)\tau_1 + f_2(x_i|\theta_2)\tau_2$$

Complete Data Likelihood

Recall:

$$z_{1j} = \left\{ egin{array}{ll} 1 & \mbox{if } x_1 \mbox{ drawn from } f_j \ 0 & \mbox{otherwise} \end{array}
ight.$$

so, correspondingly,

$$L(x_1, z_{1j} \mid \theta) = \begin{cases} \tau_1 f_1(x_1 \mid \theta) & \text{if } z_{11} = 1 \\ \tau_2 f_2(x_1 \mid \theta) & \text{otherwise} \end{cases}$$

equal, if z_{ij} are 0/1

Formulas with "if's" are messy; can we blend more smoothly? Yes, many possibilities. Idea 1:

$$L(x_1, z_{1j} \mid \theta) = z_{11} \cdot \tau_1 f_1(x_1 \mid \theta) + z_{12} \cdot \tau_2 f_2(x_1 \mid \theta)$$

Idea 2 (Better):

$$L(x_1, z_{1i} \mid \theta) = (\tau_1 f_1(x_1 \mid \theta))^{z_{11}} \cdot (\tau_2 f_2(x_1 \mid \theta))^{z_{12}}$$

M-step:

Find θ maximizing E(log(Likelihood))

(For simplicity, assume $\sigma_1 = \sigma_2 = \sigma$; $\tau_1 = \tau_2 = .5 = \tau$)

$$L(\vec{x}, \vec{z} \mid \theta) = \prod_{1 \le i \le n} \underbrace{\frac{\tau}{\sqrt{2\pi\sigma^2}}} \exp\left(-\sum_{1 \le j \le 2} z_{ij} \frac{(x_i - \mu_j)^2}{(2\sigma^2)}\right)$$

$$E[\log L(\vec{x}, \vec{z} \mid \theta)] = E\left[\sum_{1 \le i \le n} \left(\log \tau - \frac{1}{2}\log 2\pi\sigma^2 - \sum_{1 \le j \le 2} z_{ij} \frac{(x_i - \mu_j)^2}{2\sigma^2}\right)\right]$$

wrt dist of zij

$$= \sum_{1 \le i \le n} \left(\log \tau - \frac{1}{2} \log 2\pi \sigma^2 - \sum_{1 \le j \le 2} E[z_{ij}] \frac{(x_i - \mu_j)^2}{2\sigma^2} \right)$$

Find θ maximizing this as before, using $E[z_{ij}]$ found in E-step. Result:

$$\mu_j = \sum_{i=1}^n E[z_{ij}] x_i / \sum_{i=1}^n E[z_{ij}]$$
 (intuit: avg, weighted by subpop prob)

2 Component Mixture

$$\sigma_1 = \sigma_2 = 1; \ \tau = 0.5$$

		mu1	-20.00		-6.00		-5.00		-4.99
		mu2	6.00		0.00		3.75		3.75
x1	-6	z11		5.11E-12		1.00E+00		1.00E+00	
x2	-5	z21		2.61E-23		1.00E+00		1.00E+00	
х3	-4	z31		1.33E-34		9.98E-01		1.00E+00	
x4	0	z41		9.09E-80		1.52E-08		4.11E-03	
x 5	4	z51		6.19E-125		5.75E-19		2.64E-18	
х6	5	z61		3.16E-136		1.43E-21		4.20E-22	
x7	6	z71		1.62E-147		3.53E-24		6.69E-26	

Essentially converged in 2 iterations

(Excel spreadsheet on course web)

Applications

Clustering is a remarkably successful exploratory data analysis tool

Web-search, information retrieval, gene-expression, ...

Model-based approach above is one of the leading ways to do it

Gaussian mixture models widely used

With many components, empirically match arbitrary distribution

Often well-justified, due to "hidden parameters" driving the visible data

EM is extremely widely used for "hidden-data" problems

Hidden Markov Models

EM Summary

Fundamentally a maximum likelihood parameter estimation problem

Useful if hidden data, and if analysis is more tractable when 0/1 hidden data z known

Iterate:

E-step: estimate E(z) for each z, given θ M-step: estimate θ maximizing $E[\log | \text{likelihood}]$ given E[z] [where " $E[\log L]$ " is wrt random $z \sim E[z] = p(z=1)$]

EM Issues

Under mild assumptions, EM is guaranteed to increase likelihood with every E-M iteration, hence will *converge*.

But it may converge to a *local*, not global, max. (Recall the 4-bump surface...)

Issue is intrinsic (probably), since EM is often applied to problems (including clustering, above) that are *NP-hard* (next 3 weeks!)

Nevertheless, widely used, often effective