
8. Average-Case Analysis of  Algorithms
 + Randomized Algorithms

CSE 312,  Autumn 2011,  W.L.Ruzzo
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insertion sort

Array A[1]..A[n]

for i = 1..n-1 {

   T = A[i]

   j = i-1

   while j >= 0 && T < A[j] {

      A[j+1] = A[j]

      A[j] = T

      j = j-1

   }

   A[j+1] = T

or

“compare”

“swap”
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insertion sort

Run Time

Worst Case: O(n2)  

  ( ~n2 swaps;  #compares = #swaps + n - 1)

“Average Case”

  ?  What’s an “average” input?

  One idea (and about the only one that is
  analytically tractable): assume all n! permutations 
  of input are equally likely.
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permutations & inversions

A permutation π = (π1, π2, ..., πn) of 1, ..., n is simply a list 
of the numbers between 1 and n, in some order.

(i,j) is an inversion in π  if i < j but πi > πj

E.g.,  

                        π = ( 3 5 1 4 2 )

has six inversions: (1,3), (1,5), (2,3), (2,4), (2,5), and (4,5)

Min possible:  0:                        π = ( 1 2 3 4 5 )

Max possible:  n choose 2:         π = ( 5 4 3 2 1 )

Obviously, the goal of sorting is to remove inversions 

G. Cramer, 1750
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inversions & insertion sort

Swapping an adjacent pair of positions that are out-of-
order decreases the number of inversions by exactly 1.

So..., number of swaps performed by insertion sort is 
exactly the number of inversions present in the input.  
Counting them:
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There is a 1-1 correspondence between permutations 
having inversion (i,j) versus not:

So:

Thus, the expected number of swaps in insertion sort
is            versus        in worst-case.  I.e., 

counting inversions

The average run time of insertion sort (assuming 
random input) is about half the worst case time.
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average-case analysis of  quicksort

Quicksort also does swaps, but nonadjacent ones.

Recall method:

Array A[1..n]

“pivot” = A[1]

“Partition” ( O(n) compares/swaps ) so that: 

   {A[1], ..., A[i-1]} < {A[i] == pivot} < {A[i+1], ..., A[n]}

recursively sort {A[1], ..., A[i-1]} and {A[i+1], ..., A[n]}
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quicksort run-time

Worst case: already sorted (among others) – 

     T(n) = n + T(n-1) ⇒ 

            = n + (n-1) + (n-2) + ...  + 1 = n(n+1)/2

Best case: pivot is always median ⇒ ~n log2 n

Average case:  ?  

Below.  Will turn out to be ~40% slower than best 
Why?  
    Random pivots are “near the middle on average”
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average-case analysis

Assume input is a random permutation of 1, ..., n, i.e., 
that all n! permutations are equally likely

Then 1st pivot  A[1] is uniformly random in 1, ..., n

Important subtlety:   

  pivots at all recursive levels will be random, too,
  (unless you do something funky in the partition phase)
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Let CN be the average number of comparisons made by 
quicksort when called on an array of size N.  Then:

C0 = C1 = 0  (list of length ≤ 1 is already sorted)

In the general case, there are N-1 comparisons: the 
pivot vs every other element (a detail: plus 2 more for 
handling the “pointers cross” test to end the loop).  The 
pivot ends up in some position 1 ≤ k ≤ N, leaving 
two subproblems of size k-1 and N-k.  

1/N because all values 1 ≤ k ≤ N 
for pivot are equally likely.

(Analysis from Sedgewick, Algorithms in C, 3rd ed., 1998, p311-312; Knuth TAOCP v3, 1st ed 1973, p120.)
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Multiply by N; 
subtract same 

for N-1

Rearrange
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Rearrange; every 
Ci  is there twice
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Notes

So, average run time, averaging over randomly ordered 
inputs, = Θ(n log n).

A worst case input is still worst case: n2 every time

(Is real data random?)

Is it possible to improve the worst case?
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another idea: randomize the algorithm

Algorithm as before, except pivot is a randomly selected 
element of A[1]...A[n] (at top level; A[i]..A[j] for subproblem i..j)

Analysis is the same, but conclusion is different:

  On any fixed input, average run time is n log n, 
  averaged over repeated (random) runs of the algorithm.

There are no longer any “bad inputs”, just “bad 
(random) choices.”  Fortunately, such choices are 
improbable!
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summary

Average Case Analysis:
1. for algorithm A, choose a sample space S and probability 

distribution P from which inputs are drawn

2. for x ∈ S, let T(x) be the time taken by A on input x

3. calculate, as a function of the “size,” n, of inputs, 
    Σx∈S T(x)•P(x) 
which is the expected or average run time of A

For sorting, distrib is usually “all n! permutations equiprobable”

Insertion sort: E[time] ∝ E[inversions] =             = Θ(n2),
about half the worst case

Quicksort: E[time] = Θ(n log n) vs Θ(n2) in worst case; 
fun with recurrences, sums & integrals
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summary

Randomized Algorithms:
1.for a randomized algorithm A, input x is fixed, just as usual, 

from some space I of possible inputs, but the algorithm 
may draw (and use) random samples y = (y1, y2, ... ) from a 
given sample space S and probability distribution P 

2.for any x ∈ I and any y ∈ S, let T(x,y) be the time taken by 
A on input x when y is sampled from S

3.calculate, as a function of the “size,” n, of inputs, 
    maxx∈I Σy∈S T(x,y)•P(y) 
which is the expected or average run time of A on a worst-
case input

Randomized Quicksort: choosing pivots at random, 
E[time] = Θ(n log n) for any input.  (For every input, there are 
some rare random choice sequences causing n2 time.)
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critique

Worst-case analysis is much more common than 
average-case analysis because 

it’s often easier
to get meaningful average case results, a reasonable 
probability model for “typical inputs” is critical, but 
may be unavailable, or difficult to analyze
as with insertion sort, the results are often similar

But in some important examples, such as quicksort, 
average-case is sharply better
Randomized algorithms are very important in many 
areas; sometimes easier to argue that bad stuff is rare 
than to deterministically circumvent it.  (Fascinating 
open problem: is this intrinsic?)

17


