
8. Average-Case Analysis of Algorithms
 + Randomized Algorithms

CSE 312, Autumn 2011, W.L.Ruzzo

1

insertion sort

Array A[1]..A[n]

for i = 1..n-1 {

 T = A[i]

 j = i-1

 while j >= 0 && T < A[j] {

 A[j+1] = A[j]

 A[j] = T

 j = j-1

 }

 A[j+1] = T

or

“compare”

“swap”

So
rt

ed
U

ns
or

te
d i

2

j

insertion sort

Run Time

Worst Case: O(n2)

 (~n2 swaps; #compares = #swaps + n - 1)

“Average Case”

 ? What’s an “average” input?

 One idea (and about the only one that is
 analytically tractable): assume all n! permutations
 of input are equally likely.

3

permutations & inversions

A permutation π = (π1, π2, ..., πn) of 1, ..., n is simply a list
of the numbers between 1 and n, in some order.

(i,j) is an inversion in π if i < j but πi > πj

E.g.,

 π = (3 5 1 4 2)

has six inversions: (1,3), (1,5), (2,3), (2,4), (2,5), and (4,5)

Min possible: 0: π = (1 2 3 4 5)

Max possible: n choose 2: π = (5 4 3 2 1)

Obviously, the goal of sorting is to remove inversions

G. Cramer, 1750

4

inversions & insertion sort

Swapping an adjacent pair of positions that are out-of-
order decreases the number of inversions by exactly 1.

So..., number of swaps performed by insertion sort is
exactly the number of inversions present in the input.
Counting them:

5

There is a 1-1 correspondence between permutations
having inversion (i,j) versus not:

So:

Thus, the expected number of swaps in insertion sort
is versus in worst-case. I.e.,

counting inversions

The average run time of insertion sort (assuming
random input) is about half the worst case time.

6

average-case analysis of quicksort

Quicksort also does swaps, but nonadjacent ones.

Recall method:

Array A[1..n]

“pivot” = A[1]

“Partition” (O(n) compares/swaps) so that:

 {A[1], ..., A[i-1]} < {A[i] == pivot} < {A[i+1], ..., A[n]}

recursively sort {A[1], ..., A[i-1]} and {A[i+1], ..., A[n]}

7

quicksort run-time

Worst case: already sorted (among others) –

 T(n) = n + T(n-1) ⇒

 = n + (n-1) + (n-2) + ... + 1 = n(n+1)/2

Best case: pivot is always median ⇒ ~n log2 n

Average case: ?

Below. Will turn out to be ~40% slower than best
Why?
 Random pivots are “near the middle on average”

8

average-case analysis

Assume input is a random permutation of 1, ..., n, i.e.,
that all n! permutations are equally likely

Then 1st pivot A[1] is uniformly random in 1, ..., n

Important subtlety:

 pivots at all recursive levels will be random, too,
 (unless you do something funky in the partition phase)

9

Let CN be the average number of comparisons made by
quicksort when called on an array of size N. Then:

C0 = C1 = 0 (list of length ≤ 1 is already sorted)

In the general case, there are N-1 comparisons: the
pivot vs every other element (a detail: plus 2 more for
handling the “pointers cross” test to end the loop). The
pivot ends up in some position 1 ≤ k ≤ N, leaving
two subproblems of size k-1 and N-k.

1/N because all values 1 ≤ k ≤ N
for pivot are equally likely.

(Analysis from Sedgewick, Algorithms in C, 3rd ed., 1998, p311-312; Knuth TAOCP v3, 1st ed 1973, p120.)

10

number of comparisons

Multiply by N;
subtract same

for N-1

Rearrange

11

Rearrange; every
Ci is there twice

12

Notes

So, average run time, averaging over randomly ordered
inputs, = Θ(n log n).

A worst case input is still worst case: n2 every time

(Is real data random?)

Is it possible to improve the worst case?

13

another idea: randomize the algorithm

Algorithm as before, except pivot is a randomly selected
element of A[1]...A[n] (at top level; A[i]..A[j] for subproblem i..j)

Analysis is the same, but conclusion is different:

 On any fixed input, average run time is n log n,
 averaged over repeated (random) runs of the algorithm.

There are no longer any “bad inputs”, just “bad
(random) choices.” Fortunately, such choices are
improbable!

14

summary

Average Case Analysis:
1. for algorithm A, choose a sample space S and probability

distribution P from which inputs are drawn

2. for x ∈ S, let T(x) be the time taken by A on input x

3. calculate, as a function of the “size,” n, of inputs,
 Σx∈S T(x)•P(x)
which is the expected or average run time of A

For sorting, distrib is usually “all n! permutations equiprobable”

Insertion sort: E[time] ∝ E[inversions] = = Θ(n2),
about half the worst case

Quicksort: E[time] = Θ(n log n) vs Θ(n2) in worst case;
fun with recurrences, sums & integrals

15

summary

Randomized Algorithms:
1.for a randomized algorithm A, input x is fixed, just as usual,

from some space I of possible inputs, but the algorithm
may draw (and use) random samples y = (y1, y2, ...) from a
given sample space S and probability distribution P

2.for any x ∈ I and any y ∈ S, let T(x,y) be the time taken by
A on input x when y is sampled from S

3.calculate, as a function of the “size,” n, of inputs,
 maxx∈I Σy∈S T(x,y)•P(y)
which is the expected or average run time of A on a worst-
case input

Randomized Quicksort: choosing pivots at random,
E[time] = Θ(n log n) for any input. (For every input, there are
some rare random choice sequences causing n2 time.)

16

critique

Worst-case analysis is much more common than
average-case analysis because

it’s often easier
to get meaningful average case results, a reasonable
probability model for “typical inputs” is critical, but
may be unavailable, or difficult to analyze
as with insertion sort, the results are often similar

But in some important examples, such as quicksort,
average-case is sharply better
Randomized algorithms are very important in many
areas; sometimes easier to argue that bad stuff is rare
than to deterministically circumvent it. (Fascinating
open problem: is this intrinsic?)

17

