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independence

Defn: Two events E and F are independent if
P(EF) = P(E) P(F)

If P(F)>0, this is equivalent to: P(E|F) = P(E) (proof below)

Otherwise, they are called dependent



independence

Roll two dice, yielding values D| and D,
HNE={Di =1}
F={Dy=1}
P(E) = I/6, P(F) = 1/6, P(EF) = 1/36
P(EF) = P(E) - P(F) = E and F independent
Intuitive; the two dice are not physically coupled
2) G={D + Dy =5} ={(1,4),(2,3),(3,2),(4,1)}
P(E) = 1/6,P(G) = 4/36 = I/9,P(EG) = 1/36
not independent!

E, G are dependent events

The dice are still not physically coupled, but “D; + D; = 5” couples
them mathematically: info about D constrains D,. (But dependence/
independence not always intuitively obvious; “use the definition, Luke™.)
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independence

Two events E and F are independent if
P(EF) = P(E) P(F)
If P(F)>0, this is equivalent to: P(E|F) = P(E)
Otherwise, they are called dependent

Three events E, F G are independent if
P(EF) = P(E) P(F)
P(EG)=P(E) P(G) and  P(EFG) = P(E) P(F) P(G)
P(FG) = P(F) P(G)

Example: Let X)Y be each {-1,1} with equal prob
E={X=1LF={Y=1},G={XY =1}
P(EF) = P(E)P(F), P(EG) = P(E)P(G), P(FG) = P(F)P(G)
but P(EFG) = [/4 ! (because P(GIEF) = 1)



independence

In general, events E|, E,, ..., E, are independent if
for every subset S of {I,2,..., n}, we have

Pl E: | =]]PE)
€S 1ES

(Sometimes this property holds only for small
subsets S. E.g., E, F G on the previous slide are
pairwise independent, but not fully independent.)



independence

Theorem: E, F independent = E, F¢ independent

Proof:

P(EFc) = P(E) — P(EF)
= P(E) - P(E) P(F

= P(E) (I-P(F)
= P(E) P(F)

Theorem: if P(E)>0, P(F)>0, then
E, F independent < P(E|F)=P(E) & P(F|E) = P(F)

Proof: Note P(EF) = P(E|F) P(F), regardless of in/dep.
Assume independent. Then

P(E)P(F) = P(EF) = P(E[F) P(F) = P(E|F)=P(E) - tv P
Conversely, P(E|F)=P(E) = P(E)P(F) = P(EF) (x by P(F))

E = EF u EF¢
S
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biased coin

Suppose a biased coin comes up heads with probability p,
independent of other flips

P(n heads in n flips) p"

P(n tails in n flips) = (I-p)"

P(exactly k heads in n flips) = (Z) pk(l — p)n_k

Aside: note that the probability of some number of heads =) _ (Z)p"’(l —p)" P =p+1-p) =1
as it should, by the binomial theorem. ’



biased coin

Suppose a biased coin comes up heads with T
probability p, independent of other flips \f\/

k)pk(l —p)" "

Note when p=1/2, this is the same result we would have
gotten by considering n flips in the “equally likely
outcomes’ scenario. But p#1/2 makes that inapplicable.
Instead, the independence assumption allows us to
conveniently assign a probability to each of the 2"
outcomes, e.g.:

Pr(HHTHTTT) = p*(1-p)p(1-p)* = p*(1-p)*'

P(exactly k heads in n flips) = (



hashing

A data structure problem: fast access to small subset of data
drawn from a large space.

D

(Large) space of

potential data 0
items, say names
or SSNis, only a i
few of which are n-1

actually used
(Small) hash table

containing actual data

A solution: hash function h:D—{0,...,n-1} crunches/scrambles
names from large space into small one. E.g., if x is integer:

h(x) = x mod n

Good hash functions approximately randomize placement.



hashing

m strings hashed (uniformly) into a table with n buckets
Each string hashed is an independent trial
E = at least one string hashed to first bucket
What is P(E) ?
Solution:
= string i not hashed into first bucket (i=1,2,...,m)

P(F) =1 —1/n=(n-1)/nfor all i=1,2,...,m
Event (F, F, ... F)) = no strings hashed to first bucket

PE) = 1 ~P(F, Fy F) ————
=1 =P(F) Ii(Fz) P(W)

— ((n-1)/n)™
=~ |-exp(-m/n)
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hashing

m strings hashed (non-uniformly) to table w/ n buckets
Each string hashed is an independent trial, with probability
p, of getting hashed to bucket i

E = At least | of buckets | to k gets 2 | string
What is P(E) ?

Solution:

F, = at least one string hashed into i-th bucket
P(E) =P(F, u - uF)=1-P((F u--uF))

—P(F/cFr ... Fo)
— P(no strings hashed to buckets | to k)
= (1-py-p===*-p)"™
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hashing

Let Do C D be a fixed set of m strings, R = {0,...,n-1}. A hash
function h:D—R is perfect for Do if h:Do—R is injective (no
collisions). How hard is it to find a perfect hash function?
l) Fix h; pick m elements of Do independently at random € D

Suppose h maps = (1/n)* of D to each element of R. This
is like the birthday problem:
nn—1 n—m-+1

P(h is perfect for Do) = R -

Probability
00 02 04 06 08 1.0




caution; this analysis is heuristic, not rigorous, but still useful.

hashing

Let Do C D be a fixed set of m strings, R = {0,...,n-1}. A hash
function h:D—R is perfect for Do if h:Do—R is injective (no
collisions). How hard is it to find a perfect hash function?
2) Fix Do; pick h at random
E.g.,if m = |Do| = 23 and n = 365, then there is ~50%
chance that h is perfect for this fixed Do. If it isn’t, pick h’,
h”, etc. With high probability, you'll quickly find a perfect
one!

“Picking a random function h” is easier said than done, but,
empirically, picking among a set of functions like

h(x) = (a*x +b) mod n

where a, b are random 64-bit ints is a start.
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network failure

Consider the following parallel network

n routers, i!" has probability p; of failing, independently
P(there is functional path) = | — P(all routers fail)

=1 =pip2*" Py
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network failure

Contrast: a series network

n routers, it" has probability p; of failing, independently
P(there is functional path) =

P(no routers fail) = (1 —p,)(1 = py) == (I —p,)
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deeper into independence

Recall: Two events E and F are independent if
P(EF) = P(E) P(F)

If E & F are independent, does that tell us anything about
P(EF|G), P(E|G), P(F|G),
when G is an arbitrary event! In particular, is

P(EF|G) = P(E|G) P(F|G) ?

In general, no.
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deeper into independence

Roll two 6-sided dice, yielding values D, and D,
E={D, =1}
F={D,=6}
G={D,+D,=7}

E and F are independent

P(E|G) = 1/6
P(F|G) = 1/6, but
P(EF|G) = 1/6, not 1/36

so E|G and F|G are not independent!
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conditional independence

Two events E and F are called conditionally independent
given G, if

P(EF|G) = P(E|G) P(F|G)
Or, equivalently (assuming P(F)>0, P(G)>0),
P(E|FG) = P(E|G)
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do CSE majors get fewer A’s?

Say you are in a dorm with 100 students
|0 are CS majors: P(C) = 0.1
30 get straight A’s: P(A) = 0.3
3 are CS majors who get straight A’s
P(CA) =0.03
P(CA) = P(C) P(A), so C and A independent
At faculty night, only CS majors and A students show up
So 37 students arrive

Of 37 students, |10 are CS =
P(C|CorA)=10/37=0.27 <.3=P(A)
Seems CS major lowers your chance of straight A’s @

Weren'’t they supposed to be independent?
In fact, CS and A are conditionally dependent at fac night
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conditioning can also break DEPENDENCE

Randomly choose a day of the week
A = { It is not a Monday }
B = { Itis a Saturday }
C={Itis the weekend }
A and B are dependent events
P(A) = 6/7, P(B) = 1/7, P(AB) = 1/7.
Now condition both A and B on C:
P(A|C) = |, P(B|C) = 2, P(AB|C) = '
P(AB|C) = P(A|C) P(B|C) = A|C and B|C independent

Dependent events can become independent .. cacon why
by conditioning on additional information!  conditioning is so useful
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independence: summary

Events E & F are independent if

P(EF) = P(E) P(F), or, equivalently P(E|F) = P(E) (f p(e)>0)
More than 2 events are indp if, for all subsets, joint probability
= product of separate event probabilities
Independence can greatly simplify calculations
For fixed G, conditioning on G gives a probability measure,
P(EIG)
But “conditioning” and “independence” are orthogonal:

Events E & F that are (unconditionally) independent may
become dependent when conditioned on G

Events that are (unconditionally) dependent may become
independent when conditioned on G
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gamblers ruin

2 Gamblers: Alice & Bob. g

A has i dollars; B has (N-i) ottt
Flip a coin. Heads —A wins $1;Tails — B wins $1 |
Repeat until A or B has all N dollars

aka “Drunkard’s Walk”

What IS P(A Wins)? nice example of the utility of
conditioning: future decomposed
Let Ei = event that A wins starting with $i o o ip cases nstead of
Approach: Condition on |* flip; H = heads thereof
pi = P(E;)=PE;|H)PH)+ P(E; | T)P(T)
1 : _
pi = i(pi—i—l + pi—1) So: pz = 2m
2p; = Piv1+Pi _
. e
Pit1 —Pi = DPi—Di-1 - -
o o . o PN = Npl =1
P2 —pP1 = pP1— Po = p1, since pg =0 ,
D; = Z/N
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