

## Quiz Section 3: Number Theory

### Task 1 – This is Really Mod

---

Let  $n$  and  $m$  be positive integers.

Consider the following claim: for any integers  $a$  and  $b$ , if  $a \equiv_m b$ , then  $a \equiv_n b$ .

a) Write a **formal** proof that the claim holds, *given* that  $n \mid m$ .

*Hint:* the claim to prove is  $\forall a \forall b ((a \equiv_m b) \rightarrow (a \equiv_n b))$ . The fact we are given is that  $n \mid m$ .

b) Translate your formal proof to an **English** proof.

## Task 2 – Extended Euclidean Algorithm Practice

---

a) Find the multiplicative inverse of  $y$  of  $7 \pmod{33}$ . That is, find  $y$  such that  $7y \equiv 1 \pmod{33}$ . You should use the extended Euclidean Algorithm. Your answer should be in the range  $0 \leq y < 33$ .

b) Now solve  $7z \equiv 2 \pmod{33}$  for all of its integers solutions  $z$ .

### Task 3 – Induction with Equality

---

For all  $n \in \mathbb{N}$ , prove by induction that  $\sum_{i=0}^n i^2 = \frac{1}{6}n(n+1)(2n+1)$ .

## Task 4 – Strong Induction

---

Consider the function  $a(n)$  defined for  $n \geq 1$  recursively as follows.

$$a(1) = 1$$

$$a(2) = 3$$

$$a(n) = 2a(n-1) - a(n-2) \text{ for } n \geq 3$$

Use strong induction to prove that  $a(n) = 2n - 1$  for all integers  $n \geq 1$ .