CSE 311 Section 3

Number Theory & Induction




Announcements & Reminders

e HW3 due Friday @ 11:00PM on Gradescope

o Use late days if you need to!
o Make sure you tagged pages on gradescope correctly

e Quiz next Tuesday
o Remember to review feedback in homework!



Mod and Proving Divisibility




a=b(modm)

Imagine a clock with m numbers

1 (mod 3) VS 10 (mod 3)

We can say that a = b (mod m) where a and b are B
in the same position in the mod clock 1 =10 (mod 3)



Divides

What if we “unroll” this clock?

1 (mod 3) VS 10 (mod 3)




Divides

What if we “unroll” this clock?

1 (mod 3) VS 10 (mod 3)
BRI JE R A H I,
1;\/_/10
(10-1)=9 3110 and 311 BUT 3|9

9+3=3s03]9



Divides

What if we “unroll” this clock?

So m divides the difference
between a and b!

1 (mod 3) VS 10 (mod 3)
BRI JE R A H I,
1;\/_/10
(10-1)=9 3110 and 31 BUT 3|9

9+3=3503]9



Formalizing Mod and Divides

Equivalence in modular arithmetic
Leta € Z,b € Z,n € Z and n > 0.

We say a = b (mod n) if and only if n|(b — a)




“Unwrapping”

This expression is generally
easier to deal with

a=b (mod n) ﬁ n|(b-a) ﬁ (b-a)=n *k

Equivalence in modular arithmetic Divides

leta€Zb€EZn€EZandn > 0. For integers x, y we say x|y (“x divides y") iff

there is an integer z such that xz = y.

We say a = b (mod n) if and only if n|(b — a)

Divides is an operation that
outputs true/false! It is not
the same as divided by!



Extended Euclid




Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd:

gcd(33,7) = gcd(7,5) 33 =4 ¢« 7 + 5
= gcd(5,2) 7 =1 ¢ 5 + 2
= gcd(2,1) 5 =2 2 +1
= gcd(1,0) 2 =2 ¢1+0



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd:

gcd(33,7) =

ged(7,5)
gcd(5,2)
gcd(2,1)
gcd(1,0)
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Next, we re-arrange the
equations by solving for the
remainder:

1 =5 -2 e 2

2 =7 -1 e 5

5 =33-4 7



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd: Next, we re-arrange the
gcd(33,7) = gcd(7,5) 33 =4 ¢« 7 + 5 equations by solving for the
= gcd(5,2) 7 =1 ¢ 5 + 2 remainder:
= gcd(2,1) 5 =2 2 +1 1 =5-2 62
= gcd(1,0) 2 =2 ¢1+0 2 =7 -1 5

5 =33 -4 47

Now, we backward substitute into the boxed numbers
using the equations:

1 =5-2+2
5= 2 ¢ (7-1-5)
3e5-2¢7
3°(33-4+7)-2-7
333+-14+7



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd: Next, we re-arrange the
gcd(33,7) = gcd(7,5) 33 =4 ¢« 7 + 5 equations by solving for the
= gcd(5,2) 7 =1 ¢ 5 + 2 remainder:
= gcd(2,1) 5 =2 2 +1 1 =5-2 62
= gcd(1,0) 2 =2 ¢1+0 2 =7 -1 5

5=233-4e7
Now, we backward substitute into the boxed numbers
using the equations:

1 =5-2¢2 S0,1=333+-14-
= 5= 2+ (7-1¢5) 7. Thus, 33-14=19
= 3e5-2e¢7 is the multiplicative
= 3¢(33-4+7)-2+7 inverse of 7 mod 33

333+-14+7



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that
7y = 1 (mod 33). You should use the extended Euclidean Algorithm. Your
answer should be in therange 0 <y <33.

b) Now, solve 7z = 2 (mod 33) for all of its integer solutions z.

Try this problem with the people around you, and then we’ll go over it together!



Problem 2 - Extended Euclidean Algorithm

b) Now,solve7z = 2 (mod 33) for all of its integer solutions z.



Problem 2 - Extended Euclidean Algorithm

b) Now,solve7z = 2 (mod 33) for all of its integer solutions z.

If we have 7z = 2 (mod 33), multiplying both sides by 19, we get:

19-7z2=19 - 2 (mod 33)
z =95 (mod 33)

Thus z=5 + 33k
This means that the set of solutions is {5 + 33k | k € Z}



Introducing Induction (kind of)




Climb the ladder! =4

You are scared of heights and there is a prize at the
top of a very very tall ladder.

You do not want to climb this ladder...

W
18




Climb the ladder! =4

You are scared of heights and there is a prize at the
top of a very very tall ladder.

You do not want to climb this ladder...

Lets convince your friend to climb it instead!!!




Climb the ladder! =4

Claim: “You can climb a ladder with n steps” for n >=1

)
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Climb the ladder!

Claim: “You can climb a ladder with n steps” for n >=1

“If a ladder has just one step, | know you can lift your foot so
after one step you will reach the top of the ladder.”

N/
D
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Climb the ladder! =4

Claim: “You can climb a ladder with n steps” for n >=1

“If a ladder has just one step, | know you can lift your foot so
after one step you will reach the top of the ladder.”

“Suppose you can climb a ladder with k steps (k is arbitrary).”

N\ )
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Climb the ladder!

Claim: “You can climb a ladder with n steps” for n >=1

“If a ladder has just one step, | know you can lift your foot so
after one step you will reach the top of the ladder.”

“Suppose you can climb a ladder with k steps (k is arbitrary).”

“Since you can climb to the kth step, climb up to there and then
after your reach the kth step, you can lift your foot one more
step to reach the k+1 step of the ladder. Therefore, you can
climb a ladder with k+1 steps.”

0
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Climb the ladder!

Claim: “You can climb a ladder with n steps” for n >=1

“If a ladder has just one step, | know you can lift your foot so
after one step you will reach the top of the ladder.”

“Suppose you can climb a ladder with k steps (k is arbitrary).”

“Since you can climb to the kth step, climb up to there and then
after your reach the kth step, you can lift your foot one more
step to reach the k+1 step of the ladder. Therefore, you can
climb a ladder with k+1 steps.”

“By the principle of induction, you can climb any ladder!”

h ‘L“




Why does it work?

Claim: “You can climb a ladder with n steps” for n >=1

“If a ladder has just one step, | know you can lift your
foot so after one step you will reach the top of the
ladder.”

“Suppose you can climb a ladder with k>=1 steps (k is
arbitrary).”

“Since you can climb to the kth step, climb up to there

and then after your reach the kth step, you can lift your
foot one more step to reach the k+1 step of the ladder.
Therefore, you can climb a ladder with k+1 steps.”

“By the principle of induction, you can climb any ladder!”

Base Case: You
were able to start
climbing at some
point




Induction Proof Structure I

:Claim: “You can climb a ladder with n steps” for n >=1 P(n)
-
“If a ladder has just one step, | know you can lift your
foot so after one step you will reach the top of the Base Case
ladder.”
- y,
(“Suppose you can climb a ladder with k>=1 steps (k is ] Inductive Hypothesis:
| arbitrary).” ) Suppose P(k) holds
“Since you can climb to the kth step, climb up to there

and then after your reach the kth step, you can lift your

foot one more step to reach the k+1 step of the ladder.

Therefore, you can climb a ladder with k+1 steps.”

Conclusion:

P(n) holds for all n!

[“By the principle of induction, you can climb any Iadder!”]
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Why k>=1? Why not just k>1?

Claim: “You can climb a ladder with n steps” for n >=1

“If a ladder has just one step, | know you can lift your
foot so after one step you will reach the top of the
ladder.”

“Suppose you can climb a ladder with k>=1 steps (k is
arbitrary).”

“Since you can climb to the kth step, climb up to there

and then after your reach the kth step, you can lift your
foot one more step to reach the k+1 step of the ladder.
Therefore, you can climb a ladder with k+1 steps.”

“By the principle of induction, you can climb any ladder!”




Why k>=1? Why not just k>1?

Base Case: You
can climb to the
first rung

.




Why k>=1? Why not
just k>»1?

Inductive Step: If you can climb to
rung k>=1, then you can climb to
rung k+1. k can be as small as 1, so
inductive step handles the case of
going from rung 1 to rung 2

=
=
=
=l



Why k>=1? Why not
just k>»1?

If k>1, then the smallest k can be is
2. So if you can climb to rung 2, then
you can climb to rung 3. But how can
you climb to rung 27

} MNANARRAN




Induction: How it actually works




(Weak) Induction Template

Let P(n) be “(whateveryou’re trying to prove)”.
We show P(n) holds for alln € N by induction on n

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




(Weak) Induction Template

) . , Note: often you will
Let P(n) be “(whatevervyou’re trying to prove)”. y
(n) ( y yInstop ) conditionn here, like

We show P(n) holds for allm &€ N by induction on n «_\| natural numbers n”
or‘n=> 0"

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.
Match the earlier condition on n in your conclusion!




P(n) IS A PREDICATE, IT
A HAS A BOOLEAN VALUE
(Weak) Induction Template NOT A NUMERICAL ONE

Let P(n) be “(whateveryou’re trying to prove)”.
We show P(n) holds for alln € N by induction on n

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




P(n) IS A PREDICATE, IT

A HAS A BOOLEAN VALUE

(Weak) Induction Template NOT A NUMERICAL ONE
YOU MUST INTRODUCE

« ; : » AN ARBITRARY
Let P(n) be “(whateveryou’re trying tc.> provg) : A VARIABLE IN YOUR IH
We show P(n) holds for alln € N by induction on n

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




P(n) IS A PREDICATE, IT

HAS A BOOLEAN VALUE
(Weak) Induction Template NOT A NUMERICAL ONE

YOU MUST INTRODUCE
« ; : » !2: AN ARBITRARY
Let P(n) be “(whateveryou’re trying to prove)”. VARIABLE IN YOUR IH

We show P(n) holds for allm € N by induction on n f START WITH LHS OF

EXPRESSION AND END
WITH RHS (FOR BASE

Base Case: Show P(b) is true. CASE AND IS)

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




Weak Induction




= 1
For all n € N, prove that 2 i = gn(n +1)(2n +1).

Task 4



= 1
For all n € N, prove that 2 i = gn(n +1)(2n +1).

Task 4

Let P(n) be the statement “Y." (i? = gn(n + 1)(2n + 1)" defined for all n € N. We
prove that P(n) is true for all n» € N by induction on n.



= 1
For all n € N, prove that 2 i = En(n +1)(2n +1).

Task 4

Let P(n) be the statement “Y." (i? = gn(n + 1)(2n + 1)" defined for all n € N. We
prove that P(n) is true for all n € N by induction on n.

Base Case.

e

n
1=

0



= 1
For all n € N, prove that 2 i = En(n +1)(2n +1).

Task 4

Let P(n) be the statement [ , zf!=[%n(n +1)(2n + 1}” defined for all n € N. We
prove that P(n) is true for all m € N by induction on 7.

n
St
1=0

Base Case.



= 1
For all n € N, prove that 2 i = En(n +1)(2n +1).

Task 4

Let P(n) be the statement “Y; (i = gn(n + 1)(2n + 1)" defined for all n € N. We
prove that P(n) is true for all n € N by induction on n.

Base Case.

§2 = 0?

n

1=0

T

(0)(0 + 1)(2(0) + 1)]




= 1
For all n € N, prove that 2 i = En(n +1)(2n +1).

Task 4

Let P(n) be the statement “Y; (i = gn(n + 1)(2n + 1)" defined for all n € N. We
prove that P(n) is true for all n € N by induction on n.

Base Case.

§2 = 0?

n

1=0

S(0)(0+1)(2(0) +1)

Thus P(0) is true.



= 1
For all n € N, prove that 2 i = En(n +1)(2n +1).

Task 4 &

Let P(n) be the statement “Y; (i = gn(n + 1)(2n + 1)" defined for all n € N. We
prove that P(n) is true for all n € N by induction on n.

Base Case.

S i2 — 02
1=0
= (0)(0+1)(2(0) + 1)

Thus P(0) is true.
%

Inductive Hypothesis. Suppose that P(k) is true for some arbitrary k e N (i.e| >, %|=
sk(k+1)(2(k) +1).)




= 1
For all n € N, prove that 2 i = En(n +1)(2n +1).

Task 4 &

Let P(n) be the statement “Y; (i = gn(n + 1)(2n + 1)" defined for all n € N. We
prove that P(n) is true for all n € N by induction on n.

Base Case.

n
§2 = 0?
1=0

= (0)(0+ 1)(2(0) + 1)

Thus P(0) is true.
%

Inductive Hypothesis. Suppose that P(k) is true for some arbitrary k e N (i.e| >, %|=
gk(k+1)(2(k) +1).)

Inductive Step. |Goal: P(k+1) i.e. 3570 i% = L(k +1)(k +2)(2(k + 1) + 1)




= 1
For all n € N, prove that 2 i = En(n +1)(2n +1).

Task 4 2

Inductive Hypothesis. Suppose that P(k) is true for some arbitrary k € N (i.e > 7%=
(sk(k+1)(2(k) +1).))

Inductive Step. |Goal: P(k+1) i.e. 357142 = L(k +1)(k +2)(2(k + 1) + 1)

k+1 k
Z 32 2+ (k+1)2 by definition
i=0 i=0




= 1
For all n € N, prove that 2 i = én(n +1)(2n +1).

fask 4
Inductive Hypothesis. Suppose that P(k) is true for some arbitrary k € N (i‘e‘=
(sk(E + 1)(2(k) +1).))

Inductive Step. |Goal: P(k+1) i.e. Zf:ol i2=1(k+1)(k+2)(2(k+1)+1)

k+1 k
X P i+ (k+1)%2 by definition
=0 =0

:[é(k +1)((k+1)+1)(2(k+1) + 1)]




= 1
For all n € N, prove that 2 i = én(n +1)(2n +1).

fask 4
Inductive Hypothesis. Suppose that P(k) is true for some arbitrary k € N (i‘e‘=
(sk(E + 1)(2(k) +1).))

Inductive Step. |Goal: P(k+1) i.e. Zf:ol i2=1(k+1)(k+2)(2(k+1)+1)

k+1 k
M (k+1)> by definition
i=0 i=0

:[é(k +1)((k+1)+1)(2(k+1) + 1)]




= 1
For all n € N, prove that 2 i2 = én(n +1)(2n +1).

fask 4
Inductive Hypothesis. Suppose that P(k) is true for some arbitrary k € N (i‘e‘=
[ék(k +1)(2(k) + 1))J

Inductive Step. |Goal: P(k+1) i.e. 35142 = tk+1)(k+2)(2(k+1)+1)

+ (k+1)2 by definition

Il
| =

k(k +1)(2k + 1)]+ (k+1)2 by the LH.

{é(k +D((k+1)+1)(2(k+1) + 1)]




= 1
For all n € N, prove that 2 i = én(n +1)(2n +1).

Task 4

Inductive Step. |Goal: P(k+1) i.e. Zf:ol i2=L1(k+1)(k+2)(2k+1)+1)

= >+ (k+1)> by definition
i=0 1=0
= %k(k+1)(2k+1)+(k+1)2 by the I.H.

. — + 1) +(k+ using common factor (k + 1
k+1 ék 2k +1 k+1 i f; k

‘[é(’“ +1)((k+1)+1)(2(k+1) + 1)]




= 1
For all n € N, prove that 2 i = én(n +1)(2n +1).

Task 4

Inductive Step. |Goal: P(k+1) i.e. Zk“"l 2=3(k+1)(k+2)(2(k+1)+1)

k+1 k
Z Z (k+1)2 by definition
%k(k+1)(2k+1)+(k+1)2 by the I.H.
=(k+1) <%k(2k +1)+ (k+ 1)) using common factor (k + 1)

(k+1) (k(2k + 1) + 6(k + 1))

@Ib—‘

:[é(k +1)((k+1)+1)(2(k+1) + 1)]




= 1
For all n € N, prove that 2 i = én(n +1)(2n +1).

Task 4

Inductive Step. |Goal: P(k+1) i.e. Zk“"l 2=3(k+1)(k+2)(2(k+1)+1)

k+1 k
Z Z (k+1)%2 by definition
%k(k+1)(2k+1)+(k+1)2 by the I.H.
=(k+1) <%k(2k +1)+ (k+ 1)) using common factor (k + 1)

(k +1) (k(2k + 1) + 6(k + 1))

QIP—‘@ID—‘

(k + 1) (2k* + Tk + 6)

:[é(k +1)((k+1)+1)(2(k+1) + 1)]




= 1
For all n e N, prove that Y > = “n(n+1)(2n +1).
Task 4 5

=0

Inductive Step. |Goal: P(k+1) i.e. Zf“"ol i2=L1(k+1)(k+2)(2k+1)+1)

(k +1)2 by definition

IIM?:-

k(k+1)(2k+1)+(k+1)2 by the I.H.

_—
o~ @IH

+1) <%k(2k +1)+ (k+ 1)) using common factor (k + 1)
(k+1)(k(2k+1)+6(k+1))

(k + 1) (2k* + Tk + 6)

@lr—‘@lr—‘

= L kE+1)(kE+2)(2k+3 factoring the quadratic term
6

:[é(k +1)((k+1)+1)(2(k+1) + 1)]




Task 4
Inductive Step.

n
For all n € N, prove that 2 2 =

Goal: P(k+1) i.e. 3520 i% = L(k +1)(k +2)(2(k + 1) +1)

(k +1)2 by definition

IIM?:-

%k(k +1)(2k+ 1)+ (k+1)° by the LH.

=(k+1) <%k(2k +1)+ (k+ 1)) using common factor (k + 1)
%(k +1) (k(2k + 1) + 6(k + 1))

é(k+ 1) (2k* + 7k + 6)

1

=—-(k+1)(k+2)(2k+3 factoring the quadratic term
6

;[%(k +1)((k+1) + D)2k +1) + 1%

Thus, we can conclude that P(k + 1) is true.

=0

—n(n+1)(2n + 1).



= 1
For all n € N, prove that 2 i = én(n +1)(2n +1).

Task 4

Inductive Step. |Goal: P(k+1) i.e. Zf:ol i2=L1(k+1)(k+2)(2(k+1)+1)

k+1 k
i2 = Z 2+ (k +1)2 by definition
i=0 =0
= %k(k+1)(2k+1)+(k+1)2 by the I.H.
=(k+1) <%k(2k +1)+ (k+ 1)) using common factor (k + 1)

(k + 1) (k(2k + 1) + 6(k + 1))

—o| =

= 5(k+1) (2k* + 7k + 6)

= L kE+1)(kE+2)(2k+3 factoring the quadratic term
6

_ é(k F)((k+1) + 1)@k +1) +1)

Thus, we can conclude that P(k + 1) is true.

Conclusion: Therefore, P(n) is true for all n € N by induction.



Strong Induction




Why Strong Induction?

In weak induction, the inductive hypothesis only assumes that P(k) is true
and uses that in the inductive step to prove the implication P(k) —» P(k + 1).

In strong induction, the inductive hypothesis assumesthe predicate holds
for every step from the base case(s) up to P(k). This usually looks something
like P(b;) A P(by) A--- AP(k).Then it uses this strongerinductive hypothesis
in the inductive step to prove the implication P(by) A--- A P(k) = P(k + 1).

Strong induction is necessary when we have multiple base cases, or when we
need to go back to a smaller number than k in our inductive step.



Strong Induction Template

Let P(n) be “(whateveryou’re trying to prove)”.
We show P(n) holds for alln = b,,;,, by induction on n.

Base Case: Show P(b,,in), P(biin+1), - » P(bimgy) are all true.

Inductive Hypothesis: Suppose P(b,,in) A - A P(k) hold for an arbitrary
k = by g

Inductive Step: Show P(k + 1) (i.e. get P(b,yin) A-- AP(k) = P(k + 1))

Conclusion: Therefore, P(n) holds for alln = b,,;;, by the principle of
induction.




Task 5: Strong Induction

Consider the function a(n) defined for n > 1 recursively as follows.
a(l) =1
a(2) =3
a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) =2n — 1 for all n > 1.



Strong Induction

Let P(n) be “a(n) = 2n - 1. We will show that P(n) is true for all n = 1 by strong induction.



Strong Induction

Let P(n) be “a(n) = 2n - 1. We will show that P(n) is true for all n = 1 by strong induction.

Base Cases (n=1,n=2):
(n=1)
a(l)=1=2-1-1
(n=2)
ai2)=3=2-2-1
So, P(1) and P(2) hold.



Strong Induction

Let P(n) be “a(n) = 2n - 1. We will show that P(n) is true for all n = 1 by strong induction.

Base Cases (n=1,n=2):
(n=1)
a(l)=1=2-1-1
(n=2)
ai2)=3=2-2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < < k for some arbitrary k = 2.



Strong Induction

Let P(n) be “a(n) = 2n - 1. We will show that P(n) is true for all n = 1 by strong induction.

Base Cases (n=1,n=2):
(n=1)
a(l)=1=2-1-1
(n=2)
ai2)=3=2-2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < < k for some arbitrary k = 2.
Inductive Step:
We will show P(k + 1) holds.
ak+1)=



Strong Induction

Let P(n) be “a(n) = 2n - 1. We will show that P(n) is true for all n = 1 by strong induction.

Base Cases (n=1,n=2):
(n=1)
a(l)=1=2-1-1
(n=2)
ai2)=3=2-2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < < k for some arbitrary k = 2.
Inductive Step:
We will show P(k + 1) holds.
atkk+1)=2a(k) —atk—-1) [Definition of a]

=2(k+1) -1



Strong Induction
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Base Cases (n=1,n=2):
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So, P(k + 1) holds.

Conclusion:
Therefore, P(n) holds for all integers n = 1 by the principle of strong induction.



That's All, Folks!

Thanks for coming to section this week!
Any questions?




