
CSE 311 Section 3

Number Theory & Induction



Announcements & Reminders

● HW3 due Friday @ 11:00PM on Gradescope
○ Use late days if you need to!
○ Make sure you tagged pages on gradescope correctly

● Quiz next Tuesday
○ Remember to review feedback in homework!



Mod and Proving Divisibility



a ≡ b (mod m) 

Imagine a clock with m numbers

We can say that a ≡ b (mod m) where a and b are 
in the same position in the mod clock 
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1 ≡ 10 (mod 3)
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Divides

What if we “unroll” this clock?

 1 (mod 3) VS 10 (mod 3)

0

12

0

12
≡ 

101

(10-1) = 9
9 ÷ 3 = 3 so 3 | 9

3∤10 and 3∤1 BUT 3|9

So m divides the difference 
between a and b!  



Formalizing Mod and Divides

n | (b-a)



“Unwrapping”

a ≡ b (mod n)     n|(b-a)   (b-a) = n * k

This expression is generally 
easier to deal with

Divides is an operation that 
outputs true/false! It is not 
the same as divided by!



Extended Euclid



Problem 2 – Extended Euclidean Algorithm
  



Problem 2 – Extended Euclidean Algorithm
  

First, we find the gcd: 
gcd(33,7) = gcd(7,5) 33 = 4 • 7 + 5

= gcd(5,2) 7  = 1 • 5 + 2
= gcd(2,1) 5  = 2 • 2 + 1
= gcd(1,0) 2  = 2 • 1 + 0



Problem 2 – Extended Euclidean Algorithm
  

Next, we re-arrange the 
equations by solving for the 
remainder: 
1 = 5 - 2 • 2
2 = 7 - 1 • 5
5 = 33 - 4 • 7

First, we find the gcd: 
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= gcd(5,2) 7  = 1 • 5 + 2
= gcd(2,1) 5  = 2 • 2 + 1
= gcd(1,0) 2  = 2 • 1 + 0



Problem 2 – Extended Euclidean Algorithm
  

Now, we backward substitute into the boxed numbers 
using the equations: 

1   =  5 − 2 • 2
    =   5 −   2  •   (7 − 1 • 5) 
    =   3 • 5 − 2 • 7
    =   3 • (33 − 4 • 7) − 2 •  7
    =   3 • 33 + −14 • 7

Next, we re-arrange the 
equations by solving for the 
remainder: 
1 = 5 - 2 • 2
2 = 7 - 1 • 5
5 = 33 - 4 • 7

First, we find the gcd: 
gcd(33,7) = gcd(7,5) 33 = 4 • 7 + 5

= gcd(5,2) 7  = 1 • 5 + 2
= gcd(2,1) 5  = 2 • 2 + 1
= gcd(1,0) 2  = 2 • 1 + 0



Problem 2 – Extended Euclidean Algorithm
  

So, 1 = 3 • 33 + −14 • 
7. Thus, 33 − 14 = 19 
is the multiplicative 
inverse of 7 mod 33

Now, we backward substitute into the boxed numbers 
using the equations: 

1   =  5 − 2 • 2
    =   5 −   2  •   (7 − 1 • 5) 
    =   3 • 5 − 2 • 7
    =   3 • (33 − 4 • 7) − 2 •  7
    =   3 • 33 + −14 • 7

Next, we re-arrange the 
equations by solving for the 
remainder: 
1 = 5 - 2 • 2
2 = 7 - 1 • 5
5 = 33 - 4 • 7

First, we find the gcd: 
gcd(33,7) = gcd(7,5) 33 = 4 • 7 + 5

= gcd(5,2) 7  = 1 • 5 + 2
= gcd(2,1) 5  = 2 • 2 + 1
= gcd(1,0) 2  = 2 • 1 + 0



Problem 2 – Extended Euclidean Algorithm
  

Try this problem with the people around you, and then we’ll go over it together!



Problem 2 – Extended Euclidean Algorithm
 



Problem 2 – Extended Euclidean Algorithm
  

If we have 7z ≡ 2 (mod 33), multiplying both sides by 19, we get:  

19 · 7z ≡ 19 · 2 (mod 33)
         z ≡ 5 (mod 33)

Thus z = 5 + 33k
This means that the set of solutions is {5 + 33k | k ∈ Z}



Introducing Induction (kind of)



Climb the ladder!

You are scared of heights and there is a prize at the 
top of a very very tall ladder. 

You do not want to climb this ladder…



Climb the ladder!

You are scared of heights and there is a prize at the 
top of a very very tall ladder. 

You do not want to climb this ladder…

Lets convince your friend to climb it instead!!!
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Claim: “You can climb a ladder with n steps” for n >=1
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Climb the ladder!
Claim: “You can climb a ladder with n steps” for n >=1
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“Suppose you can climb a ladder with k steps (k is arbitrary).”

“Since you can climb to the kth step, climb up to there and then 
after your reach the kth step, you can lift your foot one more    
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Why does it work?
Claim: “You can climb a ladder with n steps” for n >=1

“If a ladder has just one step, I know you can lift your 
foot so after one step you will reach the top of the 
ladder.”

“Suppose you can climb a ladder with k>=1 steps (k is 
arbitrary).”

“Since you can climb to the kth step, climb up to there 
and then after your reach the kth step, you can lift your 
foot one more step to reach the k+1 step of the ladder. 
Therefore, you can climb a ladder with k+1 steps.”

“By the principle of induction, you can climb any ladder!”

Base Case: You 
were able to start 
climbing at some 
point

Inductive Step: k 
was arbitrary, so no 
matter how far you 
go, you can always 
go one step higher



Induction Proof Structure
Claim: “You can climb a ladder with n steps” for n >=1

“If a ladder has just one step, I know you can lift your 
foot so after one step you will reach the top of the 
ladder.”

“Suppose you can climb a ladder with k>=1 steps (k is 
arbitrary).”

“Since you can climb to the kth step, climb up to there 
and then after your reach the kth step, you can lift your 
foot one more step to reach the k+1 step of the ladder. 
Therefore, you can climb a ladder with k+1 steps.”

“By the principle of induction, you can climb any ladder!”

Base Case

Inductive Step:
Show P(k+1) holds

P(n)

Inductive Hypothesis:
Suppose P(k) holds

Conclusion:
P(n) holds for all n!



Why k>=1? Why not just k>1?
Claim: “You can climb a ladder with n steps” for n >=1

“If a ladder has just one step, I know you can lift your 
foot so after one step you will reach the top of the 
ladder.”

“Suppose you can climb a ladder with k>=1 steps (k is 
arbitrary).”

“Since you can climb to the kth step, climb up to there 
and then after your reach the kth step, you can lift your 
foot one more step to reach the k+1 step of the ladder. 
Therefore, you can climb a ladder with k+1 steps.”

“By the principle of induction, you can climb any ladder!”



Why k>=1? Why not just k>1?

Base Case: You 
can climb to the 
first rung



Why k>=1? Why not 
just k>1?

Inductive Step: If you can climb to 
rung k>=1, then you can climb to 
rung k+1. k can be as small as 1, so 
inductive step handles the case of 
going from rung 1 to rung 2



Why k>=1? Why not 
just k>1?

If k>1, then the smallest k can be is 
2. So if you can climb to rung 2, then 
you can climb to rung 3. But how can 
you climb to rung 2?



Induction: How it actually works
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(Weak) Induction Template
 

P(n) IS A PREDICATE, IT 
HAS A BOOLEAN VALUE 
NOT A NUMERICAL ONE

YOU MUST INTRODUCE 
AN ARBITRARY 
VARIABLE IN YOUR IH 

START WITH LHS OF 
EXPRESSION AND END 
WITH RHS (FOR BASE 
CASE AND IS)

∈ N by induction on n



Weak Induction
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Strong Induction



Why Strong Induction?
 



Strong Induction Template
 



Task 5: Strong Induction
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Let P(n) be “a(n) = 2n − 1“. We will show that P(n) is true for all n ≥ 1 by strong induction.
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Strong Induction
Let P(n) be “a(n) = 2n − 1“. We will show that P(n) is true for all n ≥ 1 by strong induction.

Base Cases (n = 1, n = 2):
 (n = 1)
  a(1) = 1 = 2 · 1 − 1
(n = 2)
  a(2) = 3 = 2 · 2 − 1
So, P(1) and P(2) hold.

Inductive Hypothesis:
 Suppose that P(j) is true for all integers 1 ≤ j ≤ k for some arbitrary k ≥ 2. 
Inductive Step:
 We will show P(k + 1) holds.
 a(k + 1) = 2a(k) − a(k − 1)                  [Definition of a]
       = 2(2k − 1) − (2(k − 1) − 1)             [Inductive Hypothesis]
       = 2k + 1                   [Algebra]
       

= 2(k + 1) − 1 



Strong Induction
Let P(n) be “a(n) = 2n − 1“. We will show that P(n) is true for all n ≥ 1 by strong induction.

Base Cases (n = 1, n = 2):
 (n = 1)
  a(1) = 1 = 2 · 1 − 1
(n = 2)
  a(2) = 3 = 2 · 2 − 1
So, P(1) and P(2) hold.
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Strong Induction
Let P(n) be “a(n) = 2n − 1“. We will show that P(n) is true for all n ≥ 1 by strong induction.

Base Cases (n = 1, n = 2):
 (n = 1)
  a(1) = 1 = 2 · 1 − 1
(n = 2)
  a(2) = 3 = 2 · 2 − 1
So, P(1) and P(2) hold.

Inductive Hypothesis:
 Suppose that P(j) is true for all integers 1 ≤ j ≤ k for some arbitrary k ≥ 2. 
Inductive Step:
 We will show P(k + 1) holds.
 a(k + 1) = 2a(k) − a(k − 1)                  [Definition of a]
       = 2(2k − 1) − (2(k − 1) − 1)             [Inductive Hypothesis]
       = 2k + 1                   [Algebra]
       = 2(k + 1) − 1                [Algebra]
So, P(k + 1) holds.
 
Conclusion:
 Therefore, P(n) holds for all integers n ≥ 1 by the principle of strong induction.



That’s All, Folks!

Thanks for coming to section this week!
Any questions?


