
CSE 311 Section 1

Propositional Logic

Announcements & Reminders
● Sections are Graded

○ You will be graded on section participation, so please try to come ☺
○ If you cannot attend you will need to submit ALL the section problems to

gradescope by 6:00 pm on the day after section

● HW1 due Friday (1/16) @ 11:00 PM on Gradescope
○ Remember, you only have 3 late days to use throughout the quarter
○ You can use only 1 late days on any 1 assignment

● Check the course website for OH times!

● Concept Checks!
○ Absolute deadline on the day after the lecture is given @ 11:00 pm

Problem 1

Problem 1a – Stop, Prop, and Roll
Steps:

1. Create propositional
variables

2. Replace all propositions
with created variables

3. Replace the operators

a) If I haven't had my coffee and the
sun is not up, then I am angry. But
if I have had my coffee or the sun
is up, then I am happy.

Problem 1a – Stop, Prop, and Roll
Steps:

1. Create propositional
variables

2. Replace all propositions
with created variables

3. Replace the operators

a) If I haven't had my coffee and the
sun is not up, then I am angry. But
if I have had my coffee or the sun
is up, then I am happy.

Step 1
p: I have had my coffee
q: The sun is up
r: I am angry
s: I am happy

Problem 1a – Stop, Prop, and Roll
Steps:

1. Create propositional
variables

2. Replace all propositions
with created variables

3. Replace the operators

a) If I haven't had my coffee and the
sun is not up, then I am angry. But
if I have had my coffee or the sun
is up, then I am happy.

Step 1
p: I have had my coffee
q: The sun is up
r: I am angry
s: I am happy

Step 2
If not p and not q, then r. If p or q, then s.

Problem 1a – Stop, Prop, and Roll
Steps:

1. Create propositional
variables

2. Replace all propositions
with created variables

3. Replace the operators

a) If I haven't had my coffee and the
sun is not up, then I am angry. But
if I have had my coffee or the sun
is up, then I am happy.

Step 1
p: I have had my coffee
q: The sun is up
r: I am angry
s: I am happy

Step 2
If not p and not q, then r. If p or q, then s.

Step 3
((¬p ⋀ ¬q) → r) ⋀ ((p ∨ q) → s)

Problem 1 – Stop, Prop, and Roll
b)

i) If the stack is empty, you can push but not pop.

ii) If the stack is full, you can pop but not push.

iii) If the stack is neither full nor empty, you can both pop and push.

c)

i) You can have your cake or you can eat your cake, but not both.

ii) If you have your cake and you drop your cake, then you are sad and you don’t have
your cake. But if you eat your cake and are sad, then you don’t have your cake.

Work on parts b and c with the people around you, and then we’ll go over it together!

1. Create propositional
variables

2. Replace all propositions
with created variables

2b. Convert the sentence to
 an “if then” statement
3. Replace the operators

Problem 1 – Stop, Prop, and Roll
i) If the stack is empty, you can push but not pop.
ii) If the stack is full, you can pop but not push.
iii) If the stack is neither full nor empty, you can both pop and push.

Step 1
a: The stack is empty.
b: The stack is full.
c: You can push.
d: You can pop.

1. Create propositional
variables

2. Replace all propositions
with created variables

2b. Convert the sentence to
 an “if then” statement
3. Replace the operators

Problem 1 – Stop, Prop, and Roll
i) If the stack is empty, you can push but not pop.
ii) If the stack is full, you can pop but not push.
iii) If the stack is neither full nor empty, you can both pop and push.

Step 1
a: The stack is empty.
b: The stack is full.
c: You can push.
d: You can pop.

Step 2
i) If a, then c and not d
ii) If b, then d and not c
iii) If not a and not b, then c and d

1. Create propositional
variables

2. Replace all propositions
with created variables

2b. Convert the sentence to
 an “if then” statement
3. Replace the operators

Problem 1 – Stop, Prop, and Roll
i) If the stack is empty, you can push but not pop.
ii) If the stack is full, you can pop but not push.
iii) If the stack is neither full nor empty, you can both pop and push.

Step 1
a: The stack is empty.
b: The stack is full.
c: You can push.
d: You can pop.

Step 2
i) If a, then c and not d
ii) If b, then d and not c
iii) If not a and not b, then c and d

1. Create propositional
variables

2. Replace all propositions
with created variables

2b. Convert the sentence to
 an “if then” statement
3. Replace the operators

Step 3
i) a → (c ⋀ ¬d)
ii) b → (d ⋀ ¬c)
iii) (¬a ⋀ ¬b) → (c ⋀ d) OR ¬(a ⋁ b) → (c ⋀ d)

Problem 1 – Stop, Prop, and Roll
i) You can have your cake or you can eat your cake, but not both.
ii) If you have your cake and you drop your cake, then you are sad
and you don’t have your cake. But if you eat your cake and are sad,
then you don’t have your cake.

Step 1
a: You can have your cake.
b: You can eat your cake.
c: You drop your cake.
d: You are sad.

1. Create propositional
variables

2. Replace all propositions
with created variables

2b. Convert the sentence to
 an “if then” statement
3. Replace the operators

Problem 1 – Stop, Prop, and Roll
i) You can have your cake or you can eat your cake, but not both.
ii) If you have your cake and you drop your cake, then you are sad
and you don’t have your cake. But if you eat your cake and are sad,
then you don’t have your cake.

Step 1
a: You can have your cake.
b: You can eat your cake.
c: You drop your cake.
d: You are sad.

Step 2
i) a or b, but not both
ii) If a and c, then d and not a. If b and d, then not a.

1. Create propositional
variables

2. Replace all propositions
with created variables

2b. Convert the sentence to
 an “if then” statement
3. Replace the operators

Problem 1 – Stop, Prop, and Roll
i) You can have your cake or you can eat your cake, but not both.
ii) If you have your cake and you drop your cake, then you are sad
and you don’t have your cake. But if you eat your cake and are sad,
then you don’t have your cake.

Step 1
a: You can have your cake.
b: You can eat your cake.
c: You drop your cake.
d: You are sad.

Step 2
i) a or b, but not both
ii) If a and c, then d and not a. If b and d, then not a.

1. Create propositional
variables

2. Replace all propositions
with created variables

2b. Convert the sentence to
 an “if then” statement
3. Replace the operators

Step 3
i) a ⊕ b
ii) ((a ⋀ c) → (d ⋀ ¬a)) ⋀ ((b ⋀ d) → ¬a)

Problem 2

Problem 2

Or, equivalently:

Both calculate the CNF (AND of ORs) expression for

(a ⋁ b) ⋀ (¬a ⋁ ¬b) ⋀ (a ⋁ c) ⋀ (b ⋁ ¬d)

Problem 2

a) Write a truth table for E. Include columns for a, b, c, d, all four
disjunctions, and E.
E calculates (a ⋁ b) ⋀ (¬a ⋁ ¬b) ⋀ (a ⋁ c) ⋀ (b ⋁ ¬d).

b) Write the canonical DNF expression for E.

c) Translate your DNF expression into a new Java implementation of E.

Work on problem 2 with the people around you, and then we’ll go over it together!

Problem 2

a b a ⋁ b ¬a ⋁ ¬b

F F

F T

T F

T T

b d b ⋁ ¬d

F F

F T

T F

T T

a c a ⋁ c

F F

F T

T F

T T

Write a truth table for E. Include columns for a, b, c, d, all four disjunctions, and E.
E calculates (a ⋁ b) ⋀ (¬a ⋁ ¬b) ⋀ (a ⋁ c) ⋀ (b ⋁ ¬d).

Problem 2

a b a ⋁ b ¬a ⋁ ¬b

F F F T

F T T T

T F T T

T T T F

b d b ⋁ ¬d

F F T

F T F

T F T

T T T

a c a ⋁ c

F F F

F T T

T F T

T T T

Write a truth table for E. Include columns for a, b, c, d, all four disjunctions, and E.
E calculates (a ⋁ b) ⋀ (¬a ⋁ ¬b) ⋀ (a ⋁ c) ⋀ (b ⋁ ¬d).

Problem 2

Problem 2

True
Rows

Problem 2

a b c d E

F T T F T

F T T T T

T F F F T

T F T F T

b) Write the canonical DNF (OR of ANDs) expression for E.

Problem 2

a b c d E

F T T F T

F T T T T

T F F F T

T F T F T

b) Write the canonical DNF expression for E.

(¬a ⋀ b ⋀ c ⋀ ¬d)
⋁

(¬a ⋀ b ⋀ c ⋀ d)
⋁

(a ⋀ ¬b ⋀ ¬c ⋀ ¬d)
⋁

(a ⋀ ¬b ⋀ c ⋀ ¬d)

Problem 2

c) Translate your DNF expression into a new Java implementation of E.

(¬a ⋀ b ⋀ c ⋀ ¬d) ⋁ (¬a ⋀ b ⋀ c ⋀ d) ⋁ (a ⋀ ¬b ⋀ ¬c ⋀ ¬d) ⋁ (a ⋀ ¬b ⋀ c ⋀ ¬d)

Problem 2

c) Translate your DNF expression into a new Java implementation of E.

(¬a ⋀ b ⋀ c ⋀ ¬d) ⋁ (¬a ⋀ b ⋀ c ⋀ d) ⋁ (a ⋀ ¬b ⋀ ¬c ⋀ ¬d) ⋁ (a ⋀ ¬b ⋀ c ⋀ ¬d)

Problem 3

Predicates & Quantifiers

● Predicate: A function that outputs booleans.
○ Red(x) outputs true if x is red
○ EqualTo(x, y) outputs true if x is equal to y

● Domain of Discourse: The types of things that can be inputs to a predicate.
○ Integers, real numbers, colors, mammals, students, etc

● Quantifiers
○ Universal Quantifier ∀x P(x): For all x, P(x) is true. (In latex, \forall)
○ Existential Quantifier ∃x P(x)” There exists an x, such that P(x) is true. (In latex, \exists)

● Domain Restrictions
○ When restricting ∀, add the domain restriction as the hypothesis of an implication
○ When restricting ∃, AND the domain restriction with the statement

Problem 3 – Predicates
CS(x) returns true if and only if x majors in CS
CE(x) returns true if and only if x majors in CE
CSE(y) returns true if and only if y is a CSE class
MATH(y) returns true if and only if y is a MATH class
Wants(x,y) returns true if and only if x wants to take y
Likes(x,y) returns true if and only if x likes y
HasToTake(x,y) returns true if and only if x has to take y

a) ¬∃x (CS(x) ⋀ CE(x))
b) ∃x (CS(x) ⋀ ∃y(CSE(y) ⋀ ¬HasToTake(x,y) ⋀ Likes(x,y)))
c) ∀x (CE(x) → ∃y (MATH(y) ⋀ HasToTake(x,y)))
d) ∃x ((CS(x) ⋁ CE(x)) ⋀ ∀y (CSE(y) → Wants(x,y)))

Problem 3 – Predicates
a) ¬∃x (CS(x) ⋀ CE(x))

b) ∃x (CS(x) ⋀ ∃y(CSE(y) ⋀ ¬HasToTake(x,y) ⋀ Likes(x,y)))

c) ∀x (CE(x) → ∃y (MATH(y) ⋀ HasToTake(x,y)))

d) ∃x ((CS(x) ⋁ CE(x)) ⋀ ∀y (CSE(y) → Wants(x,y)))

Problem 3 – Predicates
a) ¬∃x (CS(x) ⋀ CE(x))

There is no student that majors in both CS and CE.

b) ∃x (CS(x) ⋀ ∃y(CSE(y) ⋀ ¬HasToTake(x,y) ⋀ Likes(x,y)))

c) ∀x (CE(x) → ∃y (MATH(y) ⋀ HasToTake(x,y)))

d) ∃x ((CS(x) ⋁ CE(x)) ⋀ ∀y (CSE(y) → Wants(x,y)))

Problem 3 – Predicates
a) ¬∃x (CS(x) ⋀ CE(x))

There is no student that majors in both CS and CE.

b) ∃x (CS(x) ⋀ ∃y(CSE(y) ⋀ ¬HasToTake(x,y) ⋀ Likes(x,y)))
There is a CS student who likes a CSE class they don't have to take.

c) ∀x (CE(x) → ∃y (MATH(y) ⋀ HasToTake(x,y)))

d) ∃x ((CS(x) ⋁ CE(x)) ⋀ ∀y (CSE(y) → Wants(x,y)))

Problem 3 – Predicates
a) ¬∃x (CS(x) ⋀ CE(x))

There is no student that majors in both CS and CE.

b) ∃x (CS(x) ⋀ ∃y(CSE(y) ⋀ ¬HasToTake(x,y) ⋀ Likes(x,y)))
There is a CS student who likes a CSE class they don't have to take.

c) ∀x (CE(x) → ∃y (MATH(y) ⋀ HasToTake(x,y)))
All CE students have a MATH class they have to take.

d) ∃x ((CS(x) ⋁ CE(x)) ⋀ ∀y (CSE(y) → Wants(x,y)))

Problem 3 – Predicates
a) ¬∃x (CS(x) ⋀ CE(x))

There is no student that majors in both CS and CE.

b) ∃x (CS(x) ⋀ ∃y(CSE(y) ⋀ ¬HasToTake(x,y) ⋀ Likes(x,y)))
There is a CS student who likes a CSE class they don't have to take.

c) ∀x (CE(x) → ∃y (MATH(y) ⋀ HasToTake(x,y)))
All CE students have a MATH class they have to take.

d) ∃x ((CS(x) ⋁ CE(x)) ⋀ ∀y (CSE(y) → Wants(x,y)))
There is a student who majors in CS or CE and wants to take all CSE classes.

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

