

CSE 311: Foundations of Computing I

Modular Arithmetic: Definitions and Properties

Definition: "b divides a"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ (usually with $b \neq 0$):

$$b \mid a \leftrightarrow \exists q \in \mathbb{Z} (a = qb)$$

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d > 0$, there exist *unique integers* q, r with $0 \leq r < d$, such that $a = dq + r$.

To put it another way, if we divide d into a , we get a unique quotient ($q = a \text{ div } d$) and non-negative remainder smaller than d ($r = a \text{ mod } d$).

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with $m > 0$:

$$a \equiv_m b \leftrightarrow m \mid (a - b)$$

Properties of mod

- Let a, b, m be integers with $m > 0$. Then, $a \equiv_m b$ if and only if $a \text{ mod } m = b \text{ mod } m$.
- Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.
- Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.
- Let a, b, m be integers with $m > 0$. Then, $(ab) \text{ mod } m = ((a \text{ mod } m)(b \text{ mod } m)) \text{ mod } m$.
 - You can derive this using the Multiplication Property of Congruences; note that $a \equiv_m (a \text{ mod } m)$ and $b \equiv_m (b \text{ mod } m)$.

GCD and Euclid's algorithm

- $\gcd(a, b)$ is the largest integer d such that $d \mid a$ and $d \mid b$.
- Euclid's algorithm:** To efficiently compute $\gcd(a, b)$, you can repeatedly apply these facts:
 - $\gcd(a, b) = \gcd(b, a \text{ mod } b)$
 - $\gcd(a, 0) = a$

Bézout's Theorem and Multiplicative Inverses

- Bézout's Theorem:** If a and b are positive integers, then there exist integers s and t such that $\gcd(a, b) = sa + tb$.
 - To find s and t , you can use the Extended Euclidean Algorithm. See slides for a full walkthrough.
- The **multiplicative inverse mod m** of $a \text{ mod } m$ is $b \text{ mod } m$ iff $ab \equiv_m 1$.
- Suppose $\gcd(a, m) = 1$. By Bézout's Theorem, there exist integers s and t such that $sa + tm = 1$. Taking the mod of both sides, we get $(sa + tm) \text{ mod } m = 1 \text{ mod } m = 1$, so $sa \equiv_m 1$. Thus, $s \text{ mod } m$ is the multiplicative inverse of a .