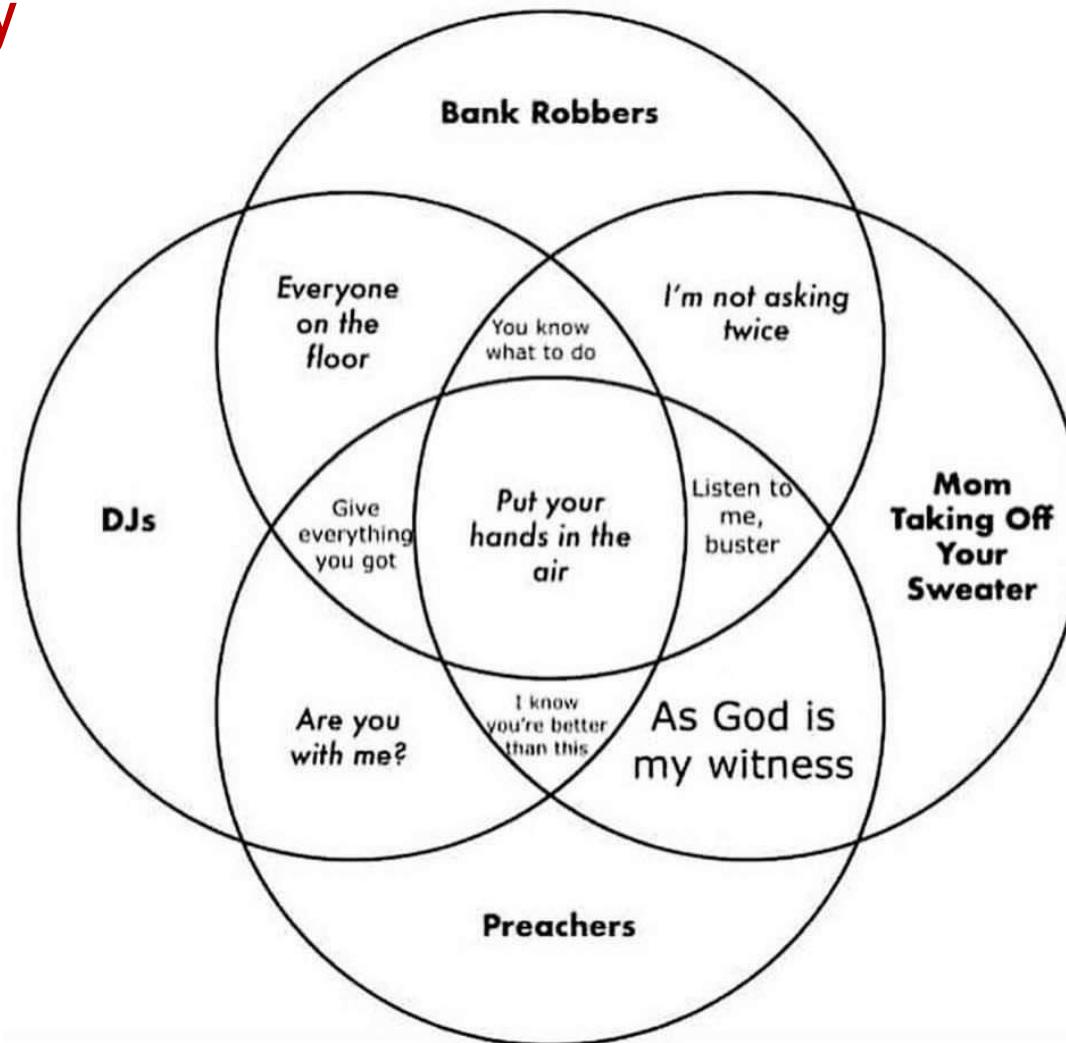


CSE 311: Foundations of Computing

Topic 4: Set Theory



Sets

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B ,
and $a \notin B$ to say that it is not.

Some simple examples

$$A = \{1\}$$

$$B = \{1, 3, 2\}$$

$$C = \{\square, 1\}$$

$$D = \{\{17\}, 17\}$$

$$E = \{1, 2, 7, \text{cat}, \text{dog}, \emptyset, \alpha\}$$

Some Common Sets

\mathbb{N} is the set of **Natural Numbers**; $\mathbb{N} = \{0, 1, 2, \dots\}$

\mathbb{Z} is the set of **Integers**; $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$

\mathbb{Q} is the set of **Rational Numbers**; e.g. $\frac{1}{2}, -17, 32/48$

\mathbb{R} is the set of **Real Numbers**; e.g. $1, -17, 32/48, \pi, \sqrt{2}$

$[\mathbf{n}]$ is the set $\{1, 2, \dots, n\}$ when n is a natural number

$\emptyset = \{\}$ is the **empty set**; the *only* set with no elements

Sets can be elements of other sets

For example

$$A = \{\{1\}, \{2\}, \{1,2\}, \emptyset\}$$

$$B = \{1,2\}$$

Then $B \in A$.

Definition: Equality

A and B are *equal* if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

Examples:

- $\{1\} = \{1, 1, 1\}$
- \emptyset is **the** empty set

Definition: Equality

A and B are *equal* if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

$$A = \{1, 2, 3\}$$

$$B = \{3, 4, 5\}$$

$$C = \{3, 4\}$$

$$D = \{4, 3, 3\}$$

$$E = \{3, 4, 3\}$$

$$F = \{4, \{3\}\}$$

Which sets are equal?

Definition: Subset

A is a *subset* of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

$$\begin{aligned} A &= \{1, 2\} \\ B &= \{1, 2, 3\} \end{aligned}$$

$A \subseteq B$ is **true**
 $B \subseteq A$ is **false**

Definition: Subset

A is a *subset* of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

$$\begin{aligned} A &= \{1, 2, 3\} \\ B &= \{3, 4, 5\} \\ C &= \{3, 4\} \end{aligned}$$

QUESTIONS

$$A \subseteq B?$$

$$C \subseteq B?$$

$$\emptyset \subseteq A?$$

Definitions

- A and B are *equal* if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

- A is a *subset* of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

- Notes: $(A = B) \equiv (A \subseteq B) \wedge (B \subseteq A)$

$A \supseteq B$ means $B \subseteq A$

$A \subset B$ means $A \subseteq B$

Sets & Logic

Proofs About Sets

1. $A \subseteq B$

Given

2. $B \subseteq A$

Given

? . $A = B$

??

Proofs About Sets

1. $A \subseteq B$

Given

2. $B \subseteq A$

Given

3. $\forall x (x \in A \rightarrow x \in B)$

Def of Subset: 1

4. $\forall x (x \in B \rightarrow x \in A)$

Def of Subset: 2

? . $A = B$

??

Proofs About Sets

1. $A \subseteq B$	Given
2. $B \subseteq A$	Given
3. $\forall x (x \in A \rightarrow x \in B)$	Def of Subset: 1
4. $\forall x (x \in B \rightarrow x \in A)$	Def of Subset: 2
?. $\forall x (x \in A \leftrightarrow x \in B)$??
?. $A = B$	Def of Same Set

Proofs About Sets

1. $A \subseteq B$

Given

2. $B \subseteq A$

Given

3. $\forall x (x \in A \rightarrow x \in B)$

Def of Subset: 1

4. $\forall x (x \in B \rightarrow x \in A)$

Def of Subset: 2

Let y be arbitrary.

5.?. $y \in A \leftrightarrow y \in B$

??

5. $\forall x (x \in A \leftrightarrow x \in B)$

Intro \forall

6. $A = B$

Def of Same Set: 5

Proofs About Sets

1. $A \subseteq B$

Given

2. $B \subseteq A$

Given

3. $\forall x (x \in A \rightarrow x \in B)$

Def of Subset: 1

4. $\forall x (x \in B \rightarrow x \in A)$

Def of Subset: 2

Let y be arbitrary.

5.1. $y \in A \rightarrow y \in B$

Elim \forall : 3

5.2. $y \in B \rightarrow y \in A$

Elim \forall : 4

5.?. $y \in A \leftrightarrow y \in B$

??

5. $\forall x (x \in A \leftrightarrow x \in B)$

Intro \forall

6. $A = B$

Def of Same Set: 5

Proofs About Sets

1. $A \subseteq B$	Given
2. $B \subseteq A$	Given
3. $\forall x (x \in A \rightarrow x \in B)$	Def of Subset: 1
4. $\forall x (x \in B \rightarrow x \in A)$	Def of Subset: 2
Let y be arbitrary.	
5.1. $y \in A \rightarrow y \in B$	Elim \forall : 3
5.2. $y \in B \rightarrow y \in A$	Elim \forall : 4
5.3. $(y \in A \rightarrow y \in B) \wedge$ $(y \in B \rightarrow y \in A)$	Intro \wedge : 5.1, 5.2
5.4. $y \in A \leftrightarrow y \in B$	Biconditional: 5.3
5. $\forall x (x \in A \leftrightarrow x \in B)$	Intro \forall
6. $A = B$	Def of Same Set: 5

Building Sets from Predicates

Every set S defines a predicate $P(x) := "x \in S"$

We can also define a set from a predicate P :

$$S := \{x : P(x)\}$$

S = the set of all x for which $P(x)$ is true

$$S := \{x \in U : P(x)\} = \{x : (x \in U) \wedge P(x)\}$$

Inference Rules on Sets

$$S := \{x : P(x)\}$$

When a set is defined this way,
we can reason about it using its definition:

1. $x \in S$ Given
2. $P(x)$ Def of S
- ...
8. $P(y)$
9. $y \in S$ Def of S

This will be our **only**
inference rule for sets!

Proofs About Sets

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Suppose we want to prove $A \subseteq B$.

We have a definition of subset:

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

We need to show that is definition holds

Proofs About Sets

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

9. $A \subseteq B$

??

Proofs About Sets

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

$$8. \quad \forall x (x \in A \rightarrow x \in B)$$

??

$$9. \quad A \subseteq B$$

Def of Subset: 8

Proofs About Sets

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Let x be arbitrary

$$1.1. \ x \in A \rightarrow x \in B$$

??

$$1. \ \forall x (x \in A \rightarrow x \in B)$$

Intro \forall : 1

$$2. \ A \subseteq B$$

Def of Subset: 2

Proofs About Sets

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Let x be arbitrary

1.1.1. $x \in A$

Assumption

1.1.? $x \in B$

??

1..1. $x \in A \rightarrow x \in B$

Direct Proof

1. $\forall x (x \in A \rightarrow x \in B)$

Intro $\forall: 1$

2. $A \subseteq B$

Def of Subset: 2

Proofs About Sets

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Let x be arbitrary

- 1.1.1. $x \in A$
- 1.1.2. $P(x)$

Assumption
Def of A

$$1.1.? \ Q(x)$$

??

$$1.1.? \ x \in B$$

Def of B

$$1..1. \ x \in A \rightarrow x \in B$$

Direct Proof

$$1. \ \forall x (x \in A \rightarrow x \in B)$$

Intro $\forall: 1$

$$2. \ A \subseteq B$$

Def of Subset: 2

Proofs About Sets

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Prove that $A \subseteq B$.

Proof: Let x be an arbitrary object.

Suppose that $x \in A$. By definition of A , this means $P(x)$.

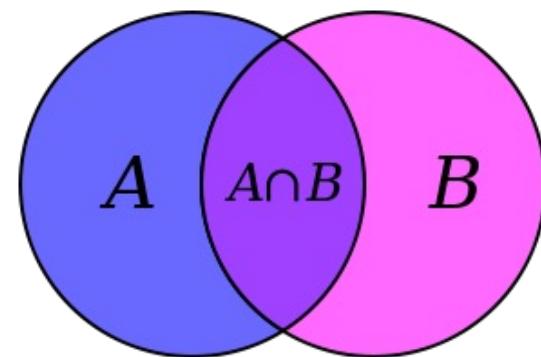
...

Thus, we have $Q(x)$. By definition of B , this means $x \in B$.

Since x was arbitrary, we have shown, by definition of subset, that $A \subseteq B$.

English template for a Subset Proof

Operations on Sets



Set Operations

$$A \cup B := \{ x : (x \in A) \vee (x \in B) \}$$

Union

$$A \cap B := \{ x : (x \in A) \wedge (x \in B) \}$$

Intersection

$$A \setminus B := \{ x : (x \in A) \wedge (x \notin B) \}$$

Set Difference

$$A = \{1, 2, 3\}$$

$$B = \{3, 5, 6\}$$

$$C = \{3, 4\}$$

QUESTIONS

Using A, B, C and set operations, make...

$$[6] =$$

$$\{3\} =$$

$$\{1,2\} =$$

More Set Operations

$$A \oplus B := \{ x : (x \in A) \oplus (x \in B) \}$$

Symmetric Difference

$$\bar{A} = A^C := \{ x : x \in U \wedge x \notin A \}$$

(with respect to universe U)

Complement

$$A = \{1, 2, 3\}$$

$$B = \{1, 2, 4, 6\}$$

Universe:

$$U = \{1, 2, 3, 4, 5, 6\}$$

$$A \oplus B = \{3, 4, 6\}$$

$$\bar{A} = \{4, 5, 6\}$$

Note that $A \cup \bar{A} = U$

De Morgan's Laws

$$\overline{A \cup B} = \bar{A} \cap \bar{B}$$

$$\overline{A \cap B} = \bar{A} \cup \bar{B}$$

De Morgan's Laws

Prove that $(A \cup B)^c = A^c \cap B^c$

Formally, prove $\forall x (x \in (A \cup B)^c \leftrightarrow x \in A^c \cap B^c)$

Equivalently, prove $(A \cup B)^c \subseteq A^c \cap B^c$ and
 $A^c \cap B^c \subseteq (A \cup B)^c$

Recall: Proofs About Sets

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Prove that $A \subseteq B$.

Proof: Let x be an arbitrary object.

Suppose that $x \in A$. By definition of A , this means $P(x)$.

...

Thus, we have $Q(x)$. By definition of B , this means $x \in B$.

Since x was arbitrary, we have shown, by definition of subset, that $A \subseteq B$.

De Morgan's Laws

Prove that $(A \cup B)^c \subseteq A^c \cap B^c$

Formally, prove $\forall x (x \in (A \cup B)^c \rightarrow x \in A^c \cap B^c)$

Proof: Let x be an arbitrary object.

Suppose that $x \in (A \cup B)^c$. By the definition of ...

By the definition of ..., this means $x \in A^c \cap B^c$.

Since x was arbitrary, we have shown, by the definition of subset, that $A \subseteq B$.

De Morgan's Laws

Prove that $(A \cup B)^c \subseteq A^c \cap B^c$

Formally, prove $\forall x (x \in (A \cup B)^c \rightarrow x \in A^c \cap B^c)$

Proof: Let x be an arbitrary object.

Suppose that $x \in (A \cup B)^c$. By the definition of complement, we have $\neg(x \in A \cup B)$.

By the definition of ..., this means $x \in A^c \cap B^c$.

Since x was arbitrary, we have shown, by the definition of subset, that $A \subseteq B$.

De Morgan's Laws

Prove that $(A \cup B)^c \subseteq A^c \cap B^c$

Formally, prove $\forall x (x \in (A \cup B)^c \rightarrow x \in A^c \cap B^c)$

Proof: Let x be an arbitrary object.

Suppose that $x \in (A \cup B)^c$. By the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

...

By the definition of ..., this means $x \in A^c \cap B^c$.

Since x was arbitrary, we have shown, by the definition of subset, that $A^c \subseteq B^c$.

De Morgan's Laws

Prove that $(A \cup B)^c \subseteq A^c \cap B^c$

Formally, prove $\forall x (x \in (A \cup B)^c \rightarrow x \in A^c \cap B^c)$

Proof: Let x be an arbitrary object.

Suppose that $x \in (A \cup B)^c$. By the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

...

Thus, $x \in A^c$ and $x \in B^c$. By the definition of intersection, this means $x \in A^c \cap B^c$.

Since x was arbitrary, we have shown, by the definition of subset, that $A^c \subseteq B^c$.

De Morgan's Laws

Prove that $(A \cup B)^c \subseteq A^c \cap B^c$

Formally, prove $\forall x (x \in (A \cup B)^c \rightarrow x \in A^c \cap B^c)$

Proof: Let x be an arbitrary object.

Suppose that $x \in (A \cup B)^c$. By the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

...

So $\neg(x \in A)$ and $\neg(x \in B)$. Thus, $x \in A^c$ and $x \in B^c$ by the definition of complement. By the definition of intersection, this means $x \in A^c \cap B^c$.

Since x was arbitrary, we have shown, by the definition of subset, that $A^c \subseteq B^c$.

De Morgan's Laws

Prove that $(A \cup B)^c \subseteq A^c \cap B^c$

Formally, prove $\forall x (x \in (A \cup B)^c \rightarrow x \in A^c \cap B^c)$

Proof: Let x be an arbitrary object.

Suppose that $x \in (A \cup B)^c$. By the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$, or equivalently, $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. Thus, $x \in A^c$ and $x \in B^c$ by the definition of complement. By the definition of intersection, this means $x \in A^c \cap B^c$.

Since x was arbitrary, we have shown, by the definition of subset, that $A^c \subseteq B^c$.

De Morgan's Laws

Prove that $A^C \cap B^C \subseteq (A \cup B)^C$

Formally, prove $\forall x (x \in A^C \cap B^C \rightarrow x \in (A \cup B)^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in A^C \cap B^C$. Then, by the definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement.

Since x was arbitrary, we have shown, by the definition of subset, that $A^C \cap B^C \subseteq (A \cup B)^C$.

Proofs About Set Equality

A lot of *repetitive* work to show \rightarrow and \leftarrow .

Suppose $x \in (A \cup B)^c$.

Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$,
or equivalently, $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law.

Thus, we have $x \in A^c$ and $x \in B^c$ by the definition of complement,
and we can see that $x \in A^c \cap B^c$ by the definition of intersection.

Suppose $x \in A^c \cap B^c$.

Then, by the definition of intersection, we have $x \in A^c$ and $x \in B^c$.

We then have $\neg(x \in A) \wedge \neg(x \in B)$ by the definition of complement.
which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law.

The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union,
so we have shown $x \in (A \cup B)^c$, by the definition of complement.

Proofs About Set Equality

A lot of *repetitive* work to show \rightarrow and \leftarrow .

Suppose $x \in (A \cup B)^c$.

Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$,
or equivalently, $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law.

Thus, we have $x \in A^c$ and $x \in B^c$ by the definition of compliment,
and we can see that $x \in A^c \cap B^c$ by the definition of intersection.

Suppose $x \in A^c \cap B^c$.

Then, by the definition of intersection, we have $x \in A^c$ and $x \in B^c$.

We then have $\neg(x \in A) \wedge \neg(x \in B)$ by the definition of complement,
which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law.

The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union,
so we have shown $x \in (A \cup B)^c$, by the definition of complement.

Proofs About Set Equality

A lot of *repetitive* work to show \rightarrow and \leftarrow .

Do we have a way to prove \leftrightarrow directly?

Recall that $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

We can use an equivalence chain to prove that a biconditional holds.

De Morgan's Law

Prove that $(A \cup B)^c = A^c \cap B^c$

Formally, prove $\forall x (x \in (A \cup B)^c \leftrightarrow x \in A^c \cap B^c)$

Proof: Let x be an arbitrary object.

The stated biconditional holds since:

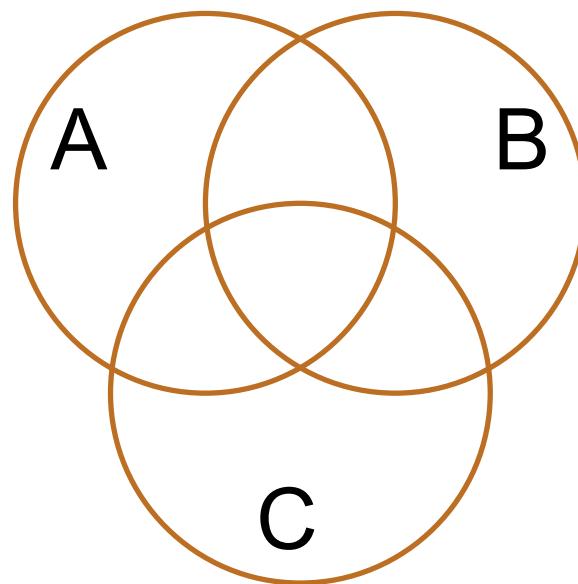
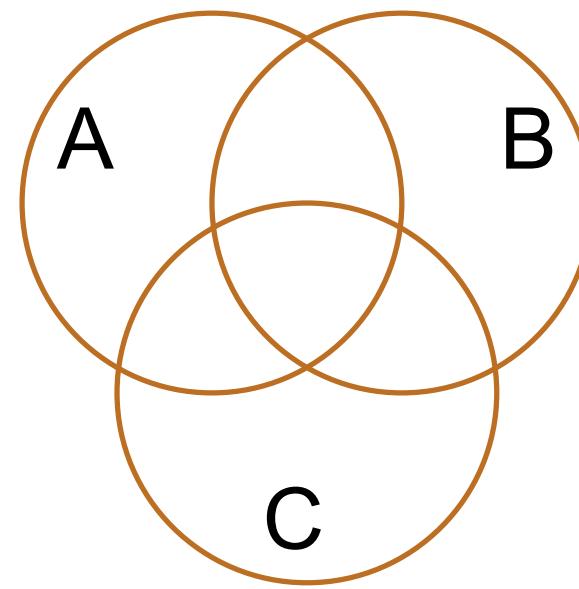
$$\begin{aligned} x \in (A \cup B)^c &\equiv \neg(x \in A \cup B) && \text{Def of Comp} \\ &\equiv \neg(x \in A \vee x \in B) && \text{Def of Union} \\ &\equiv \neg(x \in A) \wedge \neg(x \in B) && \text{De Morgan} \\ &\equiv x \in A^c \wedge x \in B^c && \text{Def of Comp} \\ &\equiv x \in A^c \cap B^c && \text{Def of Intersection} \end{aligned}$$

Chains of equivalences
are often easier to read
like this rather than as
English text

Since x was arbitrary, we have shown, by definition,
that the sets are equal. ■

Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$



Distributive Law

Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof: Let x be an arbitrary object.

The stated biconditional holds since:

$$x \in A \cap (B \cup C)$$

$$\equiv (x \in A) \wedge (x \in B \cup C) \quad \text{Def of Intersection}$$

$$\equiv (x \in A) \wedge ((x \in B) \vee (x \in C)) \quad \text{Def of Union}$$

$$\equiv ((x \in A) \wedge (x \in B)) \vee ((x \in A) \wedge (x \in C)) \quad \text{Distributive}$$

$$\equiv (x \in A \cap B) \vee (x \in A \cap C) \quad \text{Def of Intersection}$$

$$\equiv x \in (A \cap B) \cup (A \cap C) \quad \text{Def of Union}$$

Since x was arbitrary, we have shown, by definition,
that the sets are equal. ■

The Meta Theorem

Meta-Theorem: Translate any Propositional Logic equivalence into “=” relationship between sets by replacing \cup with \vee , \cap with \wedge , and \cdot^C with \neg .

Example: $\neg(A \vee B) \equiv \neg A \wedge \neg B$ becomes

$$(A \cup B)^C = A^C \cap B^C$$

Example: $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$ becomes

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

The Meta Theorem Proof Template

Meta-Theorem: Translate any Propositional Logic equivalence into “=” relationship between sets by replacing \cup with \vee , \cap with \wedge , and \cdot^C with \neg .

“Proof”: Let x be an arbitrary object.

The stated bi-condition holds since:

$x \in \text{left side}$ \equiv replace set ops with propositional logic
 \equiv apply Propositional Logic equivalence
 \equiv replace propositional logic with set ops
 $\equiv x \in \text{right side}$

Since x was arbitrary, we have shown, by definition, that the sets are equal. ■

Power Set

- Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

- e.g., let $\text{Days} = \{\text{M,W,F}\}$ and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(\text{Days}) = ?$$

Power Set

- Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

- e.g., let $\text{Days}=\{\text{M,W,F}\}$ and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(\text{Days}) = \{\{\text{M, W, F}\}, \{\text{M, W}\}, \{\text{M, F}\}, \{\text{W, F}\}, \{\text{M}\}, \{\text{W}\}, \{\text{F}\}, \emptyset\}$$

$$\mathcal{P}(\emptyset) = ?$$

Power Set

- Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

- e.g., let $\text{Days}=\{\text{M,W,F}\}$ and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(\text{Days}) = \{\{\text{M, W, F}\}, \{\text{M, W}\}, \{\text{M, F}\}, \{\text{W, F}\}, \{\text{M}\}, \{\text{W}\}, \{\text{F}\}, \emptyset\}$$

$$\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$$

Cartesian Product

$$A \times B := \{x : \exists a \exists b ((a \in A) \wedge (b \in B) \wedge (x = (a, b)))\}$$

- $\mathbb{R} \times \mathbb{R}$ is the real plane.
 - you've seen ordered pairs before... these are just for arbitrary sets.
- $\mathbb{Z} \times \mathbb{Z}$ is “the set of all pairs of integers”

If $A = \{1, 2\}$, $B = \{a, b, c\}$, then $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$.

Cartesian Product

$$A \times B := \{x : \exists a \exists b ((a \in A) \wedge (b \in B) \wedge (x = (a, b)))\}$$

- $\mathbb{R} \times \mathbb{R}$ is the real plane.
 - you've seen ordered pairs before... these are just for arbitrary sets.
- $\mathbb{Z} \times \mathbb{Z}$ is “the set of all pairs of integers”

If $A = \{1, 2\}$, $B = \{a, b, c\}$, then $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$.

What is $A \times \emptyset$?

Cartesian Product

$$A \times B := \{x : \exists a \exists b ((a \in A) \wedge (b \in B) \wedge (x = (a, b)))\}$$

- $\mathbb{R} \times \mathbb{R}$ is the real plane.
 - you've seen ordered pairs before... these are just for arbitrary sets.
- $\mathbb{Z} \times \mathbb{Z}$ is “the set of all pairs of integers”

If $A = \{1, 2\}$, $B = \{a, b, c\}$, then $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$.

$$\begin{aligned} A \times \emptyset &= \{x : \exists a \exists b (a \in A \wedge b \in \emptyset \wedge x = (a, b))\} \\ &= \{x : \exists a \exists b (a \in A \wedge \text{F} \wedge x = (a, b))\} \\ &= \{x : \text{F}\} = \emptyset \end{aligned}$$

More Set Builder Notation

$$A \times B := \{x : \exists a \exists b ((a \in A) \wedge (b \in B) \wedge (x = (a, b)))\}$$

- This can be written more concisely as follows...

$$A \times B := \{(a, b) : a \in A, b \in B\}$$

- within set builder variables are implicitly \exists -quantified

this is the one exception to the rule that
unbound variables are implicitly \forall -quantified

More Set Builder Notation

$$S := \{ x \in U : P(x) \}$$

"filter"

- Then $x \in S$ tells us that $P(x)$ holds

$$T := \{ f(x) : x \in U \}$$

"map"

- Then $y \in T$ tells us that $y = f(x)$ for **some** $x \in U$

More Set Builder Notation

- Both notations can be used together, e.g.

$$V := \{ f(x) : x \in U \wedge P(x) \}$$

- Then $y \in V$ tells us that $y = f(x)$ for **some** x such that $P(x)$ holds

these two notations can be thought of as "filter" and "map"
they are widely used operations in programming as well

Domain-Restriction to Sets

Often want to prove facts about all elements of a set

$$\forall x (x \in A \rightarrow P(x))$$

Note the domain restriction!

We will use a shorthand restriction to a set

$$\forall x \in A (P(x))$$

means

$$\forall x (x \in A \rightarrow P(x))$$

Restricting set-restricted variables improves *clarity*

Sets of Numbers

- Define some familiar sets of numbers

$$\mathbb{E} = \{n \in \mathbb{Z} \mid \exists k (n = 2k)\}$$

$$\mathbb{O} = \{n \in \mathbb{Z} \mid \exists k (n = 2k + 1)\}$$

- previously, we defined these as predicates

Recall: Even and Odd

Prove “The square of every even integer is even.”

Formally, prove $\forall x (\text{Even}(x) \rightarrow \text{Even}(x^2))$

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, $a = 2b$ for some integer b . Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$. So a^2 is, by definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even. ■

Even and Odd As Sets

Prove “The square of every even integer is even.”

Formally, prove $\forall x \in \mathbb{E} (x^2 \in \mathbb{E})$

Proof: Let a be an arbitrary **even** integer.

Suppose ~~a is even~~. Then, by definition, $a = 2b$ for some integer b . Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$. So a^2 is, by definition, even.

Since a was arbitrary, we have shown that the square of every even number is even. ■

The structure of the proof follows the structure of the claim.

Recall: Even and Odd

Prove “The sum of any two odd numbers is even.”

Formally, prove $\forall x \forall y ((\text{Odd}(x) \wedge \text{Odd}(y)) \rightarrow \text{Even}(x+y))$

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have $x = 2a+1$ for some integer a and $y = 2b+1$ for some integer b . Their sum is $x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1)$, so $x+y$ is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■

Recall: Even and Odd

Prove “The sum of any two odd numbers is even.”

Formally, prove $\forall x \in \mathbb{O}, \forall y \in \mathbb{O} (x + y \in \mathbb{E})$

Proof: Let x and y be arbitrary **odd** integers.

~~Suppose that both are odd.~~ Then, we have $x = 2a+1$ for some integer a and $y = 2b+1$ for some integer b . Their sum is $x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1)$, so $x+y$ is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■

Another Odd One

“The square of the sum of any even and odd is congruent to 1 mod 4”

Formally, prove $\forall x \in \mathbb{E}, \forall y \in \mathbb{O} ((x + y)^2 \equiv_4 1)$

Proof:

Let x be an arbitrary **even** and y an arbitrary **odd**.

Then, we have $x = 2j$ for some integer j , and $y = 2k + 1$ for some integer k . We can now see that

$$\begin{aligned}(x+y)^2 &= (2j + 2k+1)^2 \\ &= (2(j+k) + 1)^2 \\ &= 4(j+k)^2 + 4(j+k) + 1\end{aligned}$$

This shows that $4 \mid (x+y)^2 - 1$ by definition of divides, which means that $(x+y)^2 \equiv_4 1$ by definition of congruent.

Since x and y were arbitrary, we have proven the claim. ■

Russell's Paradox

$$S := \{x : x \notin x\}$$

Suppose that $S \in S\ldots$

Russell's Paradox

$$S := \{x : x \notin x\}$$

Suppose that $S \in S$. Then, by the definition of S , $S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of S , $S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement “This statement is false.”

Recall: Formal Proofs

- In principle, formal proofs are the standard for what it means to be “proven” in mathematics
 - almost all math (and theory CS) done in Predicate Logic
- But they can be tedious and impractical
 - e.g., applications of commutativity and associativity
 - Russell & Whitehead’s formal proof that $1+1 = 2$ is *several hundred pages long*
 - we allow ourselves to cite “Arithmetic”, “Algebra”, etc.

Recall: Recursive definitions of functions

- $0! = 1$; $(n + 1)! = (n + 1) \cdot n!$ **for all** $n \geq 0$.
- $F(0) = 0$; $F(n + 1) = F(n) - 1$ **for all** $n \geq 0$.
- $G(0) = 1$; $G(n + 1) = 2 \cdot G(n)$ **for all** $n \geq 0$.
- $H(0) = 1$; $H(n + 1) = 2^{H(n)}$ **for all** $n \geq 0$.

Recursive Definitions of Sets

Recursive Definitions of Sets (Data)

Natural numbers

Basis: $0 \in S$

Recursive: If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$

Recursive: If $x \in S$, then $x+2 \in S$

In comparison to earlier definitions:

- $\mathbb{N} := \{x \in \mathbb{Z} \mid x \geq 0\}$
- $\mathbb{E} := \{x \in \mathbb{Z} \mid \exists k (x = 2k)\}$

these definitions are constructive.

Recursive Definition of Sets

Recursive definition of set S

- **Basis Step:** $0 \in S$
- **Recursive Step:** If $x \in S$, then $x + 2 \in S$

The only elements in S are those that follow from the basis step and a finite number of recursive steps

Recursive Definitions of Sets

Natural numbers

Basis: $0 \in S$

Recursive: If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$

Recursive: If $x \in S$, then $x+2 \in S$

Powers of 3:

Basis: $1 \in S$

Recursive: If $x \in S$, then $3x \in S$.

Basis: $(0, 0) \in S, (1, 1) \in S$

Recursive: If $(n-1, x) \in S$ and $(n, y) \in S$,
then $(n+1, x + y) \in S$.

?

Recursive Definitions of Sets

Natural numbers

Basis: $0 \in S$

Recursive: If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$

Recursive: If $x \in S$, then $x+2 \in S$

Powers of 3:

Basis: $1 \in S$

Recursive: If $x \in S$, then $3x \in S$.

Basis: $(0, 0) \in S, (1, 1) \in S$

Recursive: If $(n-1, x) \in S$ and $(n, y) \in S$,
then $(n+1, x + y) \in S$.

Fibonacci numbers