CSE 311: Foundations of Computing

Topic 3: Number Theory

"l asked you a question, buddy. ... What's the square root of
5,2487”



Number Theory

* Direct relevance to computing

— everything in a computer is a number
colors on the screen are encoded as numbers

* Many significant applications
— Cryptography & Security
— Data Structures
— Distributed Systems



I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 365*24*60*60;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)5



I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 365*24*60*60;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)s

----JjGRASP exec: java Test
I will be alive for at least -186619904 seconds.

----JGRASP: operation complete.



Modular Arithmetic



Modular Arithmetic

 Arithmetic over a finite domain

 Almost all computation is over a finite domain



Recall: Elementary School Division

For a, b with b > 0, we can divide b into a.

If b } a, then we end up with a remainder r with 0 < r < b.
Now,

a
instead of 5 =q we have

Multiplying both sides by b gives us a=gqgb+r



Recall: Elementary School Division

For a, b with b > 0, we can divide b into a.

If b | a, then we have a = gb for some q.
If b t a, then we have a = gb + r for some g, with 0 <r <b.

In general, we have a = gb + r for some g, with 0 < r < b,
where r = 0 iff b | a.



Division Theorem

Domain of Discourse

Integers

Division Theorem

Fora,b withb > 0

9 such thata = gb + r.

there exist unique integers g, rwith0 <r <b»b

To put it another way, if we divide b into a, we get a

unique quotient | g = a div b
and non-negative remainder [r=amod b

a=(adivb) b+ (amodb)

Ya Vb ((b >0) - (a = (adivb)b + (a mod b)))




Ordinary arithmetic

3+5=8

+5

3-2-101 2 3 456 7 8




Arithmetic on a Clock

3+5=8

8=7-1+1
15=7-2+1
22=7-3+1

Ifa =7q+r,thenr (=amodb)is
where you stop after taking a steps on the clock



Arithmetic, mod 7

(@a+ b)mod 7
(@ x b) mod 7

0 |0 (O

0

O J0 [0 |O




Domain of Discourse

Modular Arithmetic __Integers

Definition: “a is congruent to b modulo m”

Fora,b,m withm > 0
a=,b = m|(a —Db)

New notion of “sameness” that will help us
understand modular arithmetic




Domain of Discourse

Modular Arithmetic __Integers

Definition: “a is congruent to b modulo m”

Fora,b,m withm > 0

a=,b = m|(a —Db)
- J

The standard math notation is

a = b (mod m)

A chain of equivalences is written

a=b=c=d(modm)

Many students find this confusing,
so we will use =,,, instead.




Domain of Discourse

Modular Arithmetic ___Integers

\

Definition: “a is congruent to b modulo m”

Fora,b,m withm > 0

a=,b = m|(a —Db)
- J

Check Your Understanding. What do each of these mean?
When are they true?

1219
This statement is true. 19 - (-1) = 20 which is divisible by 5

This statement is the same as saying “x is even”; so, any x that is
even (including negative even numbers) will work.

y =72
This statement is true for yin{...,-12,-5, 2, 9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.




The mod m function vs the =.,, predicate

— The mod m function maps any integer a to a
remainder a mod m € {0,1,..,m — 1}.

Tells you where it lands on the clock.

— Imagine grouping together all integers that

have the same value of the mod m function.
They must differ by a multiple of m (gym +7r vs g;m + 1)

— The =,,, predicate compares integers a, b
to see if if they differ by a multiple of m.

If they differ by a multiple of m, then walking from one to
the other leaves you at the same spot on the clock.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

This claim is an < ("iff")
Proof Plan:

1. (amodm=bmodm) - (a=,,b) ??
2.(a=,,b) > (amodm=bmodm) ??
3.(amodm =bmodm) - (a =,, b) A
(a=,,b) > (amodm=bmodm) Intron:1,2
4. (a =, b) © (amodm = bmod m) Biconditional: 3



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

1. (amodm = bmodm) - (a =, b) ??



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

1.1. amod m = b mod m Assumption

1?2a=,b ??
1. (amodm =bmodm) - (a=,, b) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if amod m = b mod m.

1.1.amodm=bmodm

1?2mla—>b
12a=,, b
1. (amodm = bmodm) - (a =, b)

Assumption

7
Def of =
Direct Proof




Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

1.1. amod m = b mod m Assumption
1.?73q (a—b =qm) ??
1?72mlia—>b Def of |
12a=,Db Def of =

1. (amodm =bmodm) - (a=,, b) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

1.1. amod m = b mod m Assumption
1.2. a = (adivm) m + (a mod m) Apply Division
1.3.b = (b divm) m + (b mod m) Apply Division
1.?73q (a—b =qm) ??
1?2m|a—»>b Def of |
12a=,Db Def of =

1. (amodm =bmodm) - (a=,, b) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if amod m = b mod m.

1.1. amod m = bmod m
1.2. a = (adivm) m + (a mod m)
1.3. b = (bdivm) m + (b mod m)
1.4.a—b = ((adivm) — (bdivm)) m
1.5.3q9g (a— b = qm)
1.6.m|a—>b
1.7.a=,b
1. (amodm = bmodm) - (a =,, b)

Assumption
Apply Division
Apply Division
Algebra

Intro 3

Def of |

Def of =
Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

Suppose that a mod m = b mod m.

Therefore, a =, b.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

Suppose that a mod m = b mod m.

By the Division Theorem, we can write
a = (a divm) m + (a mod m) and
b = (b divm) m + (b mod m).

Therefore, a =,,, b.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

Suppose that a mod m = b mod m.

By the Division Theorem, we can write

a = (a divm) m + (a mod m) and

b = (b divm) m + (b mod m).

Subtracting these we can see that

a—b = ((a divm) — (b div m))m +
((a mod m) — (b mod m))

= ((a divm) — (b div m)) m

since (a mod m) — (b mod m) = 0.

Therefore, a =,,, b.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

Suppose that a mod m = b mod m.

By the Division Theorem, we can write
a = (a divm) m + (a mod m) and
b = (b divm) m + (b mod m).

Subtracting these we can see that
a—b = ((a divm) — (b div m))m +
((a mod m) — (b mod m))
= ((a divm) — (b div m)) m
since (a mod m) — (b mod m) = 0.
Therefore, by definition of divides, m | (a — b)
and so a =,,, b, by definition of congruent.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

2.(a=, b)> (amodm=bmodm) ??



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

21.a=,, b Assumption

2.?2amodm = bmod m ”
2.(a=,, b) > (amodm = bmodm) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if amod m = b mod m.

21.a=,Db
22.m|la—>b

2.2amodm = bmodm
2. (a=,, b) > (amodm = b mod m)

Assumption
Def of |

7?
Direct Proof




Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if amod m = b mod m.

21.a=,Db
22.m|la—>b
2.3.3dq (a—b =qm)

2.2amodm = bmodm
2. (a=,, b) > (amodm = b mod m)

Assumption
Def of =
Def of |

7?
Direct Proof




Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

21.a=,,, b Assumption
22.m|la—>b Def of =
2.3.3q (a— b = gqm) Def of |
24.a— b =km Elim 3
2?2amodm = bmodm 27?

2.(a=,, b) > (amodm = bmodm) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

21.a=,,, b Assumption
22.m|a—>b Def of =
2.3.3q (a— b = gqm) Def of |
24.a— b =km Elim 3
2.5.a = (adivm) m + (a mod m) Apply Division
2.?2amod m = b mod m ??

2.(a=,, b) > (amodm = bmodm) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

21.a=,,, b Assumption
22.m|a—>b Def of =
2.3.3q (a— b = gqm) Def of |
24.a—b=km Elim 3
2.5.a = (adivm) m + (a mod m) Apply Division

26.b = (adivm — k) m+ (amod m) Algebra

2.?2amodm = bmod m ”
2.(a=,, b) > (amodm = bmodm) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

21.a=,,, b Assumption
22.m|a—>b Def of =
2.3.3q (a— b = qm) Def of |
24.a—b=km Elim 3

2.5.a = (adivm) m + (a mod m) Apply Division
26.b = (adivm — k) m+ (amod m) Algebra
2.7.bdivm = (adivm — k) A Apply DivUnique

b mod m = a mod m

2.?2amodm = bmod m ”
2.(a=,, b) > (amodm = bmodm) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if amod m = b mod m.

21.a=,Db
22.m|la—>b
2.3.3dq (a—b =qm)
24.a—b=km
2.5.a = (adivm) m + (a mod m)
26.b = (adivm — k) m+ (amod m)
2.7.bdivm = (adivm — k) A
b mod m = amodm
2.8.amod m = bmodm
2.(a=,, b) > (amodm = b mod m)

Assumption

Def of =

Def of |

Elim 3

Apply Division
Algebra

Apply DivUnique

Elim A
Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

Suppose that a =,,, b.

Therefore, a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by the definition of congruence.
So, a - b = km for some integer k by the definition of

divides. Equivalently, a = b + km.

Therefore, a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by the definition of congruence.
So, a - b = km for some integer k by the definition of
divides. Equivalently, a = b + km.

By the Division Theorem, we have a = (a divm) m +
(a mod m), with 0 < (a mod m) < m.

Therefore, a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by the definition of congruence.
So, a - b = km for some integer k by the definition of
divides. Equivalently, a = b + km.

By the Division Theorem, we have a = (a divm) m +
(a mod m), with 0 < (a mod m) < m.

Combining these, we have (a divm)m + (a mod m) =
a = b + km. Solving for b gives b = (a divm) m +
(amodm) — km = ((a divm) — k)m + (a mod m).

Therefore, a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if amod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by the definition of congruence.
So, a - b = km for some integer k by the definition of
divides. Equivalently, a = b + km.

By the Division Theorem, we have a = (a divm) m +
(a mod m), with 0 < (a mod m) < m.

Combining these, we have (a divm)m + (a mod m) =
a = b + km. Solving for b gives b = (a divm) m +
(amodm) — km = ((a divm) — k)m + (a mod m).

By the uniqueness property in the Division Theorem, we
must have b mod m = a mod m.



Recall: Familiar Properties of “="

e Ifa=bandb =c,then a = c.
- j.e.,ifa=b=c,thena=c

e fa=bandc=d,thena+c=b+d.

— since ¢ = c is true, we can “+ c¢” to both sides

e Ifa=bandc =d,then ac = bd.

— since ¢ = c is true, we can “X ¢” to both sides

These facts allow us to use
algebra to solve problems




The Algebra Rule

Algebra Xl — Vl Xﬂ =V
o X = y

* Algebra rule applies these properties:
— adding equations
— multiplying equations by a constant Note: no division

(since domain is integers)

* But also uses knowledge of
— arithmetic with constants
— commutativity of multiplication (e.g., yx = xy)
— distributivity (e.g., a(b+c) = ab + bc)



Recall: Familiar Properties of “="

e Ifa=bandb =c,then a = c.

- j.e.,ifa=b=c,thena=c

e fa=bandc=d,thena+c=b+d.

— since ¢ = c is true, we can “+ c¢” to both sides

e Ifa=bandc =d,then ac = bd.

— since ¢ = c is true, we can “X ¢” to both sides

Same facts apply to “<”

with non-negative numbers

What about “=,,”?



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=, band b =, ¢, then a =, c.

1. (a=,bAb=,c) - (a=, ) ??



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=, band b =, ¢, then a =, c.

Suppose thata =,,, band b =, c.

Therefore, a =, c.



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=, band b =, ¢, then a =, c.

Suppose thata =,,, band b =,, c.

By the definition of congruence, we know that
m|(a-b)andm| (b -c).

Therefore, a =, c.



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=, band b =, ¢, then a =, c.

Suppose thata =,,, band b =, c.

By the definition of congruence, we know that

m | (a-b)andm | (b -c). By the definition of
divides, we know thata-b = kmand b -¢c = jm
for some integers k and J.

Therefore, a =, c.



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=, band b =, ¢, then a =, c.

Suppose thata =,,, band b =,, c.

By the definition of congruence, we know that
m| (a-b)andm | (b -c). By the definition of
divides, we know thata-b = kmand b -¢c = jm
for some integers k and J.

Therefore, we have m | (a - ¢), so a =,,, ¢ by the
definition of congruence.



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=, band b =, ¢, then a =, c.

Suppose thata =,,, band b =, c.

By the definition of congruence, we know that

m | (a-b)andm | (b -c). By the definition of
divides, we know thata-b = kmand b -¢c = jm
for some integers k and J.

Therefore, by the definition of divides, we have
shown that m | (a - ¢), and then, a =,,, ¢ by the
definition of congruence.



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=, band b =, ¢, then a =, c.

Suppose thata =,,, band b =,, c.

By the definition of congruence, we know that
m| (a-b)andm | (b -c). By the definition of
divides, we know thata-b = kmand b -¢c = jm
for some integers k and J.

Adding these, givesa -c = km + jm = (k + j)m.

Therefore, by the definition of divides, we have
shown that m | (a - ¢), and then, a =,,, ¢ by the
definition of congruence.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, bandc =,, d,
thena+c=, b +d.

1. (a=, bAc=,d)-»>(a+c=,b+d) ??



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, bandc =,, d,
thena+c=, b +d.

Suppose thata =,,, band c =, d.

Therefore,a + ¢ =,,, b + d.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, bandc =,, d,
thena+c=, b +d.

Suppose thata =,,, band c =, d.

By the definition of congruence, we know that
m|(a-b)andm | (c-d).

Therefore,a + ¢ =,,, b + d.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, bandc =,, d,
thena+c=, b +d.

Suppose thata =,,, band c =, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = kmandc-d = jm
for some integers k and J.

Therefore,a + ¢ =,,, b + d.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, bandc =,, d,
thena+c=, b +d.

Suppose thata =,,, band c =, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = kmandc-d = jm
for some integers k and J.

Therefore, we have m | (a + c¢) — (b + d), so we
can see thata + ¢ =,,, b + d by the definition of
congruence.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, bandc =,, d,
thena+c=, b +d.

Suppose thata =,,, band c =, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = kmandc-d = jm
for some integers k and J.

Therefore, by the definition of divides, we have
shownm | (a + ¢) — (b + d), and then, we have
a + ¢ =,, b + d by the definition of congruence.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, bandc =,, d,
thena+c=, b +d.

Suppose thata =,,, band c =, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = kmandc-d = jm
for some integers k and J.

Adding these, gives (a +¢c) — (b + d) =
(a—b)+(c—d)=km+jm=(k+j)m.
Therefore, by the definition of divides, we have

shownm | (a + ¢) — (b + d), and then, we have
a + ¢ =,, b + d by the definition of congruence.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, bandc =,, d,
then ac =,,, bd.

Suppose thata =,, band c =,,, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = jmandc-d = km
for some integers j and k.

Therefore, m | ac — bd by the definition of divides,
so ac =,, bd by the definition of congruence.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, bandc =,, d,
then ac =,,, bd.

Suppose thata =,, band c =,,, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = jmandc-d = km
for some integers j and k.

Equivalently, a = b + jmand ¢ = d + km.
Multiplying these gives ac = (b + jm)(d + km) =
bd + bkm + djm + jkm = bd + (bk + dj + jk)m,
so ac — bd = (bk + dj + jk)m.

Therefore, m | ac — bd by the definition of divides,
so ac =,, bd by the definition of congruence.



Modular Arithmetic: Properties

Corollary:

Corollary:

Ifa=, band b =, c,then a =, c.

fa=,bandc=,,d,thena+c=, b+d.

Ifa=,, b,thena+c=,, b+c.

Ifa=,bandc=,d,then ac =, bd.

If a =,, b, then ac =,,, bc.

These properties are sufficient to allow
us to do algebra with congruences




Another Property of “=" Used in Algebra

Can “plug in” (a.k.a. substitute)
the known value of a variable

Example: given 2y + 3x = 25and x = 7y,
follows that 2y + 21y = 25.

We can call this "Algebra”,
but it's a more primitive rule.

(See the reference sheet.)



Another Property of “=" Used in Algebra

Can “plug in” (a.k.a. substitute)
the known value of a variable

Example: given 2y + 3x = 25and x = 7y,
follows that 2y + 21y = 25.

This is also true of congruences!
(But we don't have the tools to prove it yet....)

Example: given 2y + 3x =, 25and x =, 7y,
follows that 2y + 21y =, 25.



GCD



Domain of Discourse

First GCD Fact

Non-negative Integers

For every positive integer a,
if a >0, then gcd(a, 0) = a.

Va ((a>0) - (a = gcd(a,0))

We proved this in Topic 2....

Let a be arbitrary. Suppose a > 0. Show that a satisfies the

definition of gcd(a, 0).



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof Idea:
We will show that every number dividing a and b also divides b and a mod b.

l.e., d|a and d|b iff d|b and d|(a mod b).

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof (of d|a and d|b iff d|b and d|(a mod b)):
By the Division Theorem, a = gb + (a mod b) for some integer g = a div b.

Suppose d | b and d | (a mod b).

Then b = md and (a mod b) = nd for some integers m and n.
Therefore a = gb + (a mod b) = gmd + nd = (gm + n)d.
So d | a by the definition of divides.

Supposed |aandd | b.
Then a = kd and b = jd for some integers k and j.

Therefore (a mod b) = a-qb = kd -qjd = (k -qj)d.
So, d | (a mod b) by the definition of divides.

Since they have the same common divisors, gcd(a, b) = gcd(b,a mod b). B



Euclid’s Algorithm

gcd(a, b) = ged(b, a mod b) gcd(a, 0) = a

int gcd(int a, int b) { /* Assumes: a >= b >= 0 */
if (b == 0) {
return a,;
} else {
return gcd(b, a % b);
}
}

Note: gcd(b, a) = gcd(a, b)




Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) =



Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6



Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that
gcd(a,b) = sa + tb.

(a>0Ab>0)—-3s3t(gcd(ab) =sa + tb)

VavVb((a>0Ab>0)—3s3t(gcd(ab) =sa+ th))



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r a=q*b +r
gcd(35,27) =gcd(27,35mod 27) =gcd(27,8) |35=1*27+8




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r a=q*b +r
gcd(35,27) =gcd(27,35mod 27) = gcd(27,8) |35=1*27+8
=gcd(8,27mod 8) =gcd(8,3) 27=3*8 +3

= gcd(3, 8 mod 3) =gcd(3, 2) 8 =2*3 +2
=gcd(2,3mod2) =gcd(2,1) 3=1*2 {1
=gcd(1, 2 mod 1) =gcd(1, 0)




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-q*b
35=1*27+38 8=35-1%27
27=3*8 +3

8 =2*3 +2

3 =1*2 +1




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-qg*b
35=1%27+8 8=35-1%27
27=3*8 +3 3=27-3%8
8 =2*3 +2 2=8-27%3

3 =1*2 +D D=3 -1*2



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):

8=35-1%*27
3=27-3*8
2=8-2%*3

D=3 -1*2




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2*3)

= 3-8+2*3 Re-arrange into
3=27-3%*8 :(_1)*8+3*3 3’sand 8's
2=8 -2%3

1=3 -1%*2




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2*3)
= 3-8+2*3 Re-arrange into

3=27-3%*8 :(_1)*8+3*3 3’sand 8's
Plug in the def of 3

27—8 _2%*3 =(-1)*8+3*(27-3*8)

=(-1)*8+3*27+(-9)*8

= 3%27 +(-10)*8

1=3 -1%*2 Re-arrange into
8’s and 27’s




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2%3)
= 3-8+2*3 Re-arrange into

3=27-3%*8 :(_1)*8+3*3 3’sand 8's
Plug in the def of 3

(-1)*8+4+3*27+(-9)*8
3*27 + (-10) * 8 Re-arrange into
1=3-1%*2 ( ) 8's and 27’s
3*27 +(-10)*(35-1*27)
3*27 +(-10)*35+10*27
13*27 4+ (-10) * 35

Re-arrange into
27’s and 35’s



Multiplicative inverse mod m

Let 0 < a,b < m. Then, b is the multiplicative

inverse of a (modulo m) iff ab
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Multiplicative inverse mod m

Suppose gcd(a,m) =1

By Bézout's Theorem, there exist integers s and t
such that sa + tm = 1.

s is the multiplicative inverse of a (modulo m):
1=, sa since m|1—sa (sincel —sa=1tm)

So... we can compute multiplicative inverses with the
extended Euclidean algorithm

These inverses let us solve modular equations...



Recall: Properties of Modular Arithmetic

fa=, band b =, c,then a =, c.

Ifa=,, b,thena+c=,, b+c.

Ifa =, b, then ac =, bc. <=

These properties are sufficient to allow
us to do algebra with congruences



Multiplicative Inverses and Algebra

Adding to both sides easily reversible:

X=nYy

xt+c=,y+cC

The same is not true of multiplication...
unless we have a multiplicative inverse cd =,,, 1

X=nYy

X =,, CY



Recall: Multiplicative inverse mod m

Suppose gcd(a,m) =1

By Bézout's Theorem, there exist integers s and t
such that sa + tm = 1.

s is the multiplicative inverse of a (modulo m):
1=, sa since m|1—sa (sincel —sa=1tm)

We can compute multiplicative inverses with the
Extended Euclidean algorithm

These inverses let us solve modular equations...



Example: Solve a Modular Equation

Solve: 7x =, 3

Suppose we can show that 15 is the
multiplicative inverse of 7 modulo 26,
l.e.,that15-7=,, 1

Then, we can multiply on both sides
by 15 to see that

X =56 1x =5 15:7x =, 15:3 =,¢ 45 =,4 19

So, if we are given that 7x =, 3,
then we have shown that x =, 19.



Example: Solve a Modular Equation

SOlve: 7X EZ6 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

SOlve: 7X EZ6 3 Find multiplicative inverse of 7 modulo 26

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26 =

7
5

3x7 + 5
1x5 + 2
22 + 1



Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3%7
7 =1x5 + 2 2=7-1%5
5 =2%x2+1 1=5- 2%2



Example: Solve a Modular Equation

SOlve: 7X EZ6 3 Find multiplicative inverse of 7 modulo 26

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26 =37 4+ 5 5=26 -3%7

7 =15+ 2 2=7-1%5

5 =22+ 1 1=5- 2%2
1 = 5 - 2x%(7-1x%5)

= (-2)*7 + 3%*5
(-2)*x7 4+ 3%x(26-3%7)
= (—11)*x7 + 3%26



Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3%7
7 =1x5 + 2 2=7-1%5
5 =2%x2+1 1=5- 2%2

1 = 5 - 2%(7-1%5)
(-2)*7 + 3%5

(-2)x7 4+ 3%x(26-3%7)
(—=11)*7 + 3 %26

“the” multiplicative inverse
Now (—11) mod 26 = 15. (—11 is also “a” multiplicative inverse)



Example: Solve a Modular Equation

Solve: 7x =, 3

We saw before that... if we are given that 7x =, 3,
then we have shown that x =, 19.

But these steps are all reversible...



Example: Solve a Modular Equation

7 =963 = 15:-7x=,,15-3
multiply both sides by 15
= X =, 19
since15:-7=,, 1land 15-3 =,, 19

multiply both sides by 7
= 7X =563

since 7-19 =,, 3



Example: Solve a Modular Equation

Solve: 7x =, 3

We saw before that... if we are given that 7x =, 3,
then we have shown that x =, 19.

But all of these steps are reversible...

So 7x =, 3iffx =, 19

Hence, the solutions are all numbers of the form
19 + 26k for some integer



Beware the "Backward Proof"

 Many classes teach doing proofs backward:

15x+5=5(-3x—1) start with we want to prove
(15x + 5)2 = [5(—3x — 1)]? do some manipulations

0=20 end with an obvious truth

* This is proof of nothing: "P — T"is a tautology
— it is true regardless of whether P is true

* See notes on the Resources page



Solving Modular Equations in "Standard Form"

Solve: 7x =56 3 (of the form Ax =,,, B for some A and B)

Step 1. Find multiplicative inverse of 7 modulo 26
1 =..= (=11)%7 + 3%26
Since (—11) mod 26 = 15, the inverse of 7 is 15.
Step 2. Multiply both sides and simplify
Multiplying by 15, we get x =, 15-7x =,, 153 =, 19.

Step 3. State the full set of solutions
So, the solutions are 19 + 26k for any integer k

(must be of the form a + mk with 0 < a < m)



Example: Not in “Standard Form”

Solve: 7(x —3) =, 8 + 2x

What about equation not in standard form?



Example: Not in “Standard Form”

Solve: 7(x — 3) =, 8 + 2x

Rewrite it in standard form:
7x — 21 =5, 7(x —3) =, 8+ 2x
move 2x to the other side
5x —21 =,, 8
move —21 to the other side
5x =56 29 =,¢ 3

These steps are all reversible, so the solutions are the same.



Induction



Mathematical Induction

Method for proving claims about non-negative integers

— A new logical inference rule!
* It only applies over the non-negative numbers

 The idea is to use the special structure of these
numbers to prove things more easily



Prove vk ((a =,, b) - (a* =, b¥))

Let k be an arbitrary non-negative integer.
Suppose that a =,,, b.

We know ((a =,,, b) A (a =, b)) — (a*=,,, b?) by multiplying
congruences. So, applying this repeatedly, we have:

((@a=m b)A(a=p b)) - (a m b?)
((a =m bz) Aa=p b)) a =m b*)

(@ =p 1) A (a =, b)) - m D)

The “...”s is a problem! We don’t have a proof rule that
allows us to say “do this over and over”.



But there is such a rule for non-negative numbers!

Domain: Non-Negative Numbers

P(0) Vk (P(k) — P(k + 1))

Induction
~Vn P(n)



Induction Is A Rule of Inference

Domain: Non-Negative Numbers P(0)
—Vk (P(k) — P(k + 1))
Induction
~Vn P(n)

How do the givens prove P(3)?



Induction Is A Rule of Inference

Domain: Non-Negative Numbers P(0)
—Vk (P(k) — P(k + 1))
Induction
~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PM#)  P(®5)

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Using The Induction Rule In A Formal Proof

P(0) Vk (P(k) — P(k + 1))

Induction
. Vn P(n)



Using The Induction Rule In A Formal Proof

P(0) Vk (P(k) — P(k + 1))

Induction
. Vn P(n)
1. P(0)
2. vk (P(k) = P(k+1)) ??

3. VnP(n) Induction: 1, 2



Using The Induction Rule In A Formal Proof

P(0) Vk (P(k) — P(k + 1))

Induction
. Vn P(n)

1. P(0)
Let k be an arbitrary integer >0

2.1 P(k) > P(k+1) 27
2. Vk(P(k) > P(k+1)) Intro V
3. VnP(n) Induction: 1, 2



Using The Induction Rule In A Formal Proof

P(0) Vk (P(k) — P(k + 1))

Induction
. Vn P(n)
1. P(0)
Let k be an arbitrary integer >0
2.1.1. P(k) Assumption
2.1.2. ..
2.1.3. P(k+1)
2.1 P(k) > P(k+1) Direct Proof
2. Vk(P(k) > P(k+1)) Intro V

3. VnP(n) Induction: 1, 2



Translating to an English Proof

P(0) Vk (P(k) — P(k + 1))

Induction
. Vn P(n)

1. Prove P(0) Base Case

Let k be an arbitrary integer >0 | Inductive
2.1.1. Suppose that P(k) is true | Hypothesis

2.1.2. ... Inductive
2.1.3. Prove P(k+1) is true Step
2.1 P(k) > P(k+1) Direct Proof
2. Vk (P(k) > P(k+1)) Intro V

3. Vn P(n) Induction: 1, 2



Translating to an English Proof

1. Prove P(0) Base Case
Let k be an arbitrary integer >0 | Inductive
2.1.1. Suppose that P(k) is true | Hypothesis

2.1.2. ... Inductive
2.1.3. Prove P(k+1) is true Step
2.1 P(k) > P(k+1) Direct Proof
. . 2. Vk (P(k) > P(k+1)) Intro V
Induction English Proof Template 3. vnrin) Induction: 1, 2

[...Define P(n)...]
We will show that P(n) is true for every n > 0 by induction.
Base Case: [...proof of P(0) here...]

Induction Hypothesis:
Suppose that P(k) is true for an arbitrary k > 0.

Induction Step:
[...proof of P(k + 1) here...]
The proof of P(k + 1) must invoke the IH somewhere.

So, the claim is true by induction.




Inductive Proofs In 5 Easy Steps

Basic induction template
Proof:

1. “Let P(n) be... . We will show that P(n) is true for every
n = 0 by Induction.”

2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:
Suppose P (k) is true for an arbitrary integer k > 0”
4. “Inductive Step:” Prove that P(k + 1) is true.
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !))
5. “Conclusion: Result follows by induction”



Whatis1 + 2 + 4 + ... + 2™?

.« 1 = 1
¢ 1+ 2 = 3
1 +2+4 = 7
c14+24+4+48 = 15

*1+2+ 4+ 38+ 16 31

It sure looks like this sum is 21 — 1
How can we prove it?

We could prove itforn =1,n=2,n =3, ... but
that would literally take forever.

Good that we have induction!



Provel + 2 + 4 + ... + 2n =2n+l_1




Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all non-negative numbers by induction.



Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+21+ .. +2"=2"1-1" We will show P(n) is
true for all non-negative numbers by induction.

2. Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.



Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+21+ .. +2"=2"1-1" We will show P(n) is
true for all non-negative numbers by induction.
2. Base Case (n=0): 2°=1=2-1=2%1-1s0 P(0)is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that|2° + 21 + ... + 2k = 2k+1 — 1,




Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all non-negative numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
Goal: Show P(k+1), i.e. show 20 + 21 + ... + 2k 4 2k+1 = Jk+2 _ 1




Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all non-negative numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
204214+ | +2k=2k1_-1 pylH
Adding 21 to both sides, we get:
20+ 21+ + 2k 4 2k+l = Dkt 4 D+l _q
Note that 2k+1 + 2k+1 = 2(2k+1) = Qk+2,
So, we have 20 + 21 + . + 2k + 2k+1 = Jk+2 _ 1 which is
exactly P(k+1).



Calculation Block

We can do the same with equality:

20+ 21 + . 4 2k 4 2k

= (204214 ... + 2K) + 2k+1

= (2k1 - 1) + 2k+1 since 20421+ ., + 2k=2k1_1
=2(2%1) -1 (better: "by the IH")
— 2k+2 -1

Explanations appear on in right column
— "since" means we substituted LHS for RHS
— ordinary algebra (on integers) does not need explanation

— "def of" will be used to apply the definition of a function
e.g., replacing f(x) by y when we have f defined as f(x) :=y



Calculation Block

We can do the same with equality:

20+ 21 + . 4 2k 4 2k
= (29421+ ... + 2K) + 2k+1
= (21— 1) + 21 by the IH
=2(2%1) -1
= ok#2 _q

Entire block shows 20 + 21 + ... + 2k 4 2kl = 2k+2 — ]
— this is the transitivity property of "="

Can also do calculation with "<" and "<"
— don't mix directions: ">" and "<" in one block is ><



Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all non-negative numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20420 4 42K+ 2K+ = (204214 | 4 2K) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
=2(2x1) -1
— 2k+2 - 1’

Show 20 + 21 + .. 4+ 2k 4 2k#l = Jk+2 _ 1

which is exactly P(k+1).
The entire inductive step is one calculation!

We will rely heavily on calculation going forward...



Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all non-negative numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’
which is exactly P(k+1).

5. Thus P(n) is true for all n 2 O, by induction.



Recall: Inductive Proofs In 5 Easy Steps

Basic induction template
Proof:

1. “Let P(n) be... . We will show that P(n) is true for every
n = 0 by Induction.”

2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:
Suppose P (k) is true for an arbitrary integer k > 0”
4. “Inductive Step:” Prove that P(k + 1) is true.
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !))
5. “Conclusion: Result follows by induction”



Prove 1 +2 +3 4+ ..+ n=nn+1)/2

Prove that ), i = n(n+1)/2

Summation Notation
toli=0+1+2+3+ ...+ n




Prove ).\ i = n(n+1)/2

1. LetP(n)be “Y,i =n(n+1)/2”. We will show P(n) is
true for all non-negative numbers by induction.



Prove ).\ i = n(n+1)/2

1. LetP(n)be “Y,i =n(n+1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

2. Base Case (n=0): Y;_,i =0 =0(0 + 1)/2, so P(0) is true.



Prove ).\ i = n(n+1)/2

1.

Let P(n) be “YiL,i = n(n+ 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

Base Case (n=0): Y.?_,i = 0 = 0(0 + 1)/2, so P(0) is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose Y*_, i = k(k + 1)/2

’

“some” or “an’
not any!



Prove ).\ i = n(n+1)/2

1.

Let P(n) be “YiL,i = n(n+ 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

Base Case (n=0): Y.?_,i = 0 = 0(0 + 1)/2, so P(0) is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose Y*_,i = k(k + 1) /2
Induction Step:

Goal: Show P(k+1), i.e., Yitti = (k + 1)(k + 2)/2




Prove ).\ i = n(n+1)/2

1.

Let P(n) be “YiL,i = n(n+ 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.
Base Case (n=0): Y.?_,i = 0 = 0(0 + 1)/2, so P(0) is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose Y*_,i = k(k + 1) /2
Induction Step: We can see that
i = (CheD + (k+ 1)
=k(k+1)/2+ (k+ 1) by the IH
=(k+1D)(k/2+1)
=(k+1)(k+2)/2
which is exactly P(k+1).



Prove ).\ i = n(n+1)/2

1.

Let P(n) be “YiL,i = n(n+ 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.
Base Case (n=0): Y.?_,i = 0 = 0(0 + 1)/2, so P(0) is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose Y*_,i = k(k + 1) /2
Induction Step: We can see that
i = (CheD + (k+ 1)
=k(k+1)/2+ (k+ 1) by the IH
=(k+1D)(k/2+1)
=(k+1)(k+2)/2
which is exactly P(k+1).

5. Thus P(n) is true for all n > 0, by induction.



Induction: Changing the starting point

* What if we want to prove that P(n) is true
for all integers n = b for some integer H?

 Define predicate Q(k) = P(k + b) for all k.
—Then VnQ(n) =vn=b P(n)

* Ordinary induction for Q:
— Prove Q(0) = P(b)

— Prove
vk (Q(k) — Q(k+ 1)) =Vk > b(P(k) — P(k + 1))



Inductive Proofs In 5 Easy Steps

Template for induction from a different base case

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer k > b”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))
5. “Conclusion: P(n) is true for all integers n > b”




Prove 3" > n? + 3 foralln > 2




Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+3=2%+3s0 P(2)is true.



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+3=2%+3s0 P(2)is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3k> k2+3.



Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:

Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step: We can see that

3k+1 — 3(3k)
> 3(k2+3) by the IH
= k2+2k?+9
> k2+2k+9 since k? > k
> k2+2k+4 since 9 >4
= (k+1)%+3

Therefore P(k+1) is true.



Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step: We can see that

3kl = 3(3k) > 3(k2+3) by the IH
= k2+2k?+9
> k2+2k+9 since k? > k
> k2+2k+4 since 9 >4
= (k+1)%+3

Therefore P(k+1) is true.

5. Thus P(n) is true for all integers n > 2, by induction.



Induction: Adding Base Cases

* What if we want to prove that P(n) is true
for all integers n = b for some integer b
but the inductive step only works for n = ¢?

* Add proofs of P(b), P(b+ 1), ..., P(c — 1)
— will call these extra "base cases"

* Formally, we are using the fact that

P(b) A - AN P(c—1) AVn((c <£n) - P(n))
=vn((b <n)- P(n))



Inductive Proofs In 5 Easy Steps

Template for induction with multiple base cases

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Case:” Prove P(b), ..., P(c)
3. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer k > c¢”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))
5. “Conclusion: P(n) is true for all integers n > b”




Recursive Definitions
of Functions



Familiar Recursive Definitions

Suppose that h : N — R.

Then we have familiar summation notation:
_o h(i) == h(0)
Znﬂ h(i) == Qigh(i)) +h(n+1) forn =0

There is also product notation:
_o h(i) == h(0)

H"“ h(i) == ([TXoh(i)) - h(n+ 1) forn >0



Recursive definitions of functions

Ol:==1, (n+1!:=m+1)-n! foralln = 0.

F(0)=0;, Fn+1)==Fn)+ 1foralln = 0.

G(0)=1, G(n+1):=2-G(n)foralln = 0.

H):=1; Hn+1) := 25" foralln > 0.



Proven! <n"foralln>1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.



Proven! <n"foralln>1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.

2. Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.



Proven! <n"foralln>1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.

2. Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.



Proven! <n"foralln>1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.

Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.

Inductive Step:

Goal: Show P(k+1), i.e. show (k+1)! < (k+1)*




Proven! <n"foralln>1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.

Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.

Inductive Step:
We can calculate:
(k+1)! = (k+1)-k! by definition of !
< (k+1)- kX by the IH
< (k+1)- (k+1)k since k>0
= (k+1)k+
Therefore P(k+1) is true.



Proven! <n"foralln>1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.

Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.

Inductive Step:
We can calculate:
(k+1)! = (k+1)-k! by definition of !
< (k+1)- kX by the IH
< (k+1)- (k+1)k since k>0
= (k+1)k+
Therefore P(k+1) is true.

5. Thus P(n) is true for all n > 1, by induction.



Checkerboard Tiling

* Prove that a 2" x 2" checkerboard with one square
removed can be tiled with:




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with [
We prove P(n) for all n > 1 by mductlon oh n.

2. Base Case: n=1




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

2. Base Case: n=1

3. Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1




Checkerboard Tiling

1.

Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

Base Case: n=1

Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1

Inductive Step: Prove P(k+1)

Apply IH to
each quadrant
| then fill with
extra tile.




Induction Is A Rule of Inference

Domain: Non-Negative Numbers P(0)
—Vk (P(k) — P(k + 1))
Induction
~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PMA)  P(5)



Induction Is A Rule of Inference

Domain: Non-Negative Numbers P(0)
—Vk (P(k) — P(k + 1))
Induction
~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PM#)  P(®5)

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Strong Induction

P(0)  Vk(P(k) — P(k + 1))

Induction s~ Vn P(n)

P(0) vk (Vi ((0<)<k) =P()) - Plk+1))

Strong s~ Vn P(n)
Induction



Strong Induction

P(0) vk (Vi (0<j<k-P()) - Plk+1))

~VnP(n)

Strong induction for P follows from ordinary induction for
where

Q(k) == vj(0<j<k-P())

Note that Q(0) = P(0)and Q(k+1) =Q(k) AP(k+ 1)
and vn Q(n) = vn P(n)



Strong Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using LH. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) 1)

5. “Conclusion: P(n) is true for all integers n = b”



Fibonacci Numbers

fo=10
fr=1
fn+2 = fn+1 +fn

Will need facts about
f. - to reason about f,




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all

integers n > 0 by strong induction.

fo=0 fi1=1
fniz = fas1 + [a




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0< 1=2° so P(0) is true.



Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0< 1=2° so P(0) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2 for every integer j from 0 to k.

fo=0 fi1=1
fniz = fas1 + [a




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0< 1=2° so P(0) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f, < 2 for every integer j from O to k.

4. Inductive Step:

fk+1 = fk + fk—l def Of f

Oops! Thisisonly trueif k+1 > 2!

. fo=0 fi1=1
. . k+1
Goal: Show P(k+1); that is, f,1 <2 Frio = Fost+Fn




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all

integers n > 0 by strong induction.

2. Base Cases: f,=0<1=2° so P(0) is true and

f,=1<2=2's0P(1) is true.

fo=0 fi1=1
fniz = fas1 + [a




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.
2. Base Cases: f,=0<1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 1, we have f; < 2 for every integer j from 0 to k.

fo=0 fi1=1
fniz = fas1 + [a




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all

2.

integers n > 0 by strong induction.

Base Cases: f, =0 < 1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.

Inductive Hypothesis: Assume that for some arbitrary

integer k > 1, we have f; < 2! for every integer j from 0 to k.

4. Inductive Step:

: fo=0 fi1=1
] . k+1
Goal: Show P(k+1); that is, f,,; < 2 frsz = Fusi + Fn




Bounding Fibonacci: f,, < 2" foralln =0

1.

2.

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Cases: f, =0 < 1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.

Inductive Hypothesis: Assume that for some arbitrary

integer k > 1, we have f; < 2! for every integer j from 0 to k.

Inductive Step: We can calculate that
for =T + fiq def of f (since k+1 > 2)
< 2k 4kl by IH (since k-1 > 0)
< 2k4 2k

= 2.2k
= Jk+1

so P(k+1) is true. fo=0 f,=1
fn+2 =fn+1 +fn




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Cases: f,=0<1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 1, we have f; < 2! for every integer j from 0 to k.

4. Inductive Step: We can calculate that
for = + fiq def of f (since k+1 > 2)
< 2k 4kl by IH (since k-1 > 0)
< 2k 4k
= Jk+1
so P(k+1) is true.
5. Therefore, by strong induction, f, < 2" for all integers n > 0.



Strong Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using LH. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) 1)

5. “Conclusion: P(n) is true for all integers n = b”



Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all

integers n > 2 by strong induction.

fo=0 fi1=1
fniz = fas1 + [a




Bounding Fibonacci ll: f, > 2"/2-1foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f;+f;=1>1=20=2%2-1g0 P(2) holds

fo=0 fi1=1
fniz = fas1 + [a




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1.

2.
3.

Let P(n) be “f, >2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f;+f,=12>1=2%=2%2-1g0 P(2) holds
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

fo=0 fi1=1
fniz = fas1 + [a




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f;+f,=1>1=20=2%2-1g0 P(2) holds

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:

Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1 fo=0 fi1=1

fniz = fas1 + [a




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f;+f,=1>1=20=2%2-1g0 P(2) holds

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:

for =T + fiq def of f (since k+1 > 2)
> 2214 f, by the IH
> 2k/2-1 4 D(k-1)/2-1 by the IH

Oops! Thisis only trueif k —1 > 2!

Goal: Show P(k+1); that is, f,,; > 2{k1)/2-1 fo=0 fi1=1

fniz = fas1 + [a




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f, >2"2-1"_ We prove that P(n) is true for all

integers n > 2 by strong induction.

2. Base Cases: f,=f;+f,=12>1=20=22%2-1g0 P(2) holds
fy=f,+f, =2>212=2321 g0 P(3) holds
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:

Goal: Show P(k+1); that is, f,, > 2(kt1)/2-1

fo=0 fi1=1
fniz = fas1 + [a




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.
2. Base Cases: f,=f;+f,=12>1=20=22%2-1g0 P(2) holds
fy=f,+f, =2>212=2321 g0 P(3) holds
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step: We can calculate

for =T + fiq def of f (since k+1 > 4)
> K214 f by the IH
> 2k/2-1 4 (k1)/2-1 by the IH (since k-1 > 2)
> ) 2(k—1)/2—1
— 2(k+1)/2—1

so P(k+1) is true.



Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.
2. Base Cases: f,=f;+f,=12>1=20=22%2-1g0 P(2) holds
fy=f,+f, =2>212=2321 g0 P(3) holds
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step: We can calculate

for =T + fiq def of f (since k+1 > 4)
> K214 f by the IH
> 2k/2-1 4 (k1)/2-1 by the IH (since k-1 > 2)

> 2+ 2(k1)/2-1 = 9(k+1)/2-1
so P(k+1) is true.
5. Therefore by strong induction, f, > 2"/2-1 for all integers n > 2.



