
CSE 311: Foundations of Computing

Topic 3:  Number Theory



Number Theory

• Direct relevance to computing
– everything in a computer is a number

colors on the screen are encoded as numbers

• Many significant applications
– Cryptography & Security
– Data Structures
– Distributed Systems



I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
  System.out.println(
   “I will be alive for at least ” +
   SEC_IN_YEAR * 101 + “ seconds.”
  );
 }
}



I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
  System.out.println(
   “I will be alive for at least ” +
   SEC_IN_YEAR * 101 + “ seconds.”
  );
 }
}

Prints : “I will be alive for at least -186619904 seconds.”



Modular Arithmetic



Modular Arithmetic

• Arithmetic over a finite domain

• Almost all computation is over a finite domain



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 ∤ 𝑎, then we end up with a remainder 𝑟 with 0 < 𝑟 < 𝑏.
Now,

 instead of      we have 

Multiplying both sides by 𝑏 gives us   𝑎 = 𝑞𝑏 + 𝑟

Recall: Elementary School Division

𝑎
𝑏 = 𝑞

𝑎
𝑏 = 𝑞 +

𝑟
𝑏



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏	|	𝑎, then we have 𝑎 = 𝑞𝑏 for some 𝑞.
If 𝑏 ∤ 𝑎, then we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 with 0 < r < b.

In general, we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑏,
where 𝑟 = 0 iff 𝑏	|	𝑎.

Recall: Elementary School Division



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div b

 For 𝑎, 𝑏 with 𝑏 > 0
      there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏     

such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

r = a mod b

Integers
Domain of Discourse

a = (a div b) b + (a mod b)

∀𝑎	∀𝑏 𝑏 > 0 → 𝑎 = 𝑎	div	𝑏 𝑏 + 𝑎	mod	𝑏



Ordinary arithmetic
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3 + 5 = 8



Arithmetic on a Clock
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3 + 5 = 8

15 = 7 · 2 + 1
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If 𝑎 = 7𝑞 + 𝑟, then 𝑟	 (= 𝑎	mod	𝑏) is
where you stop after taking 𝑎 steps on the clock

22 = 7 · 3 + 1

8 = 7 · 1 + 1



Arithmetic, mod 7

(a + b) mod 7
(a ´ b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1
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Modular Arithmetic

New notion of “sameness” that will help us 
understand modular arithmetic

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ≔ 	 𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

Integers
Domain of Discourse



Modular Arithmetic

The standard math notation is

𝑎 ≡ 𝑏 mod	𝑚

A chain of equivalences is written

𝑎 ≡ 𝑏 ≡ 𝑐 ≡ 𝑑 mod	𝑚

Many students find this confusing,
so we will use ≡! instead.

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ≔ 	 𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

Integers
Domain of Discourse



Modular Arithmetic

Check Your Understanding.  What do each of these mean?
When are they true?

-1 ≡5 19

x ≡2 0

 y ≡7 2

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ≔ 	 𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

This statement is the same as saying “x is even”; so, any x that is 
even (including negative even numbers) will work.

This statement is true.  19 - (-1) = 20 which is divisible by 5

This statement is true for  y in { ..., -12, -5, 2, 9, 16, ...}.  In other 
words, all y of the form 2+7k for k an integer. 

Integers
Domain of Discourse



The mod	𝑚 function vs the	≡! predicate

– The mod	𝑚 function maps any integer 𝑎 to a 
remainder 𝑎	mod	𝑚 ∈ {0,1, . . , 𝑚 − 1}.

Tells you where it lands on the clock.
    

– Imagine grouping together all integers that 
have the same value of the mod	𝑚 function. 

They must differ by a multiple of 𝑚 (𝑞1𝑚+ 𝑟  vs 𝑞2𝑚+ 𝑟)
 

– The ≡! predicate compares integers 𝑎, 𝑏 
to see if if they differ by a multiple of 𝑚.

If they differ by a multiple of 𝑚, then walking from one to 
the other leaves you at the same spot on the clock.
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Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

This claim is an ↔ ("iff")

Proof Plan:

 1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)	 ??
 2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)  ??
 3. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) ∧
      (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	 Intro Ù: 1, 2
 4. (𝒂 ≡𝒎 𝒃) ↔ (𝒂	mod	𝒎 = 𝒃	mod	𝒎) Biconditional: 3



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  ??



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption

 1.?  𝒂 ≡𝒎 𝒃         ??
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption

 1.? 𝒎 ∣ 𝒂 − 𝒃	        ??
 1.?  𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption

 1.? ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      ??
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 1.?  𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption
 1.2. 𝒂 = 𝒂	div	𝒎 	𝒎+ (𝒂	mod	𝒎)  Apply Division
 1.3. 𝒃 = 𝒃	div	𝒎 	𝒎+ (𝒃	mod	𝒎)  Apply Division

 1.? ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      ??
 1.? 𝒎 ∣ 𝒂 − 𝒃	        Def of ∣
 1.?  𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption
 1.2. 𝒂 = 𝒂	div	𝒎 	𝒎+ (𝒂	mod	𝒎)  Apply Division
 1.3. 𝒃 = 𝒃	div	𝒎 	𝒎+ (𝒃	mod	𝒎)  Apply Division
 1.4. 𝒂 − 𝒃 = 𝒂	div	𝒎 − 𝒃	div	𝒎 	𝒎 Algebra
 1.5. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      Intro ∃
 1.6. 𝒎 ∣ 𝒂 − 𝒃	        Def of ∣
 1.7. 𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Therefore, 𝑎 ≡! 𝑏.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

   Apply Division
   Apply Division

  Algebra

   Intro ∃
   Def of ∣
   Def of ≡
Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

By the Division Theorem, we can write
𝑎 = 𝑎	div	𝑚 	𝑚 + (𝑎	mod	𝑚) and
𝑏 = 𝑏	div	𝑚 	𝑚 + (𝑏	mod	𝑚).

Therefore, 𝑎 ≡! 𝑏.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

   Apply Division
   Apply Division

  Algebra

   Intro ∃
   Def of ∣
   Def of ≡
Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

By the Division Theorem, we can write
𝑎 = 𝑎	div	𝑚 	𝑚 + (𝑎	mod	𝑚) and
𝑏 = 𝑏	div	𝑚 	𝑚 + (𝑏	mod	𝑚).
Subtracting these we can see that

𝑎 − 𝑏 = 𝑎	div	𝑚 − 𝑏	div	𝑚 𝑚 +
      ( 𝑎	mod	𝑚 − (𝑏	mod	𝑚))
       = 𝑎	div	𝑚 − 𝑏	div	𝑚 	𝑚
since 𝑎	mod	𝑚 − 𝑏	mod	𝑚 = 0.
…
Therefore, 𝑎 ≡! 𝑏.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

   Apply Division
   Apply Division

  Algebra

   Intro ∃
   Def of ∣
   Def of ≡
Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

By the Division Theorem, we can write
𝑎 = 𝑎	div	𝑚 	𝑚 + (𝑎	mod	𝑚) and
𝑏 = 𝑏	div	𝑚 	𝑚 + (𝑏	mod	𝑚).
Subtrac=ng these we can see that

𝑎 − 𝑏 = 𝑎	div	𝑚 − 𝑏	div	𝑚 𝑚 +
      ( 𝑎	mod	𝑚 − (𝑏	mod	𝑚))
       = 𝑎	div	𝑚 − 𝑏	div	𝑚 	𝑚
since 𝑎	mod	𝑚 − 𝑏	mod	𝑚 = 0.

Therefore, by defini=on of divides, 𝑚	|	(𝑎 − 𝑏)	
and so 𝑎 ≡! 𝑏, by defini=on of congruent.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

   Apply Division
   Apply Division

  Algebra

   Intro ∃
   Def of ∣
   Def of ≡
Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)  ??



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

2.1. 𝒂 ≡𝒎 𝒃         Assumption

 2.? 𝒂	mod	𝒎 = 𝒃	mod	𝒎     ??
2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	 Direct Proof
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2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	 Direct Proof
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Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.
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 2.? 𝒂	mod	𝒎 = 𝒃	mod	𝒎     ??
2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	 Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

2.1. 𝒂 ≡𝒎 𝒃         Assumption
 2.2. 𝒎 ∣ 𝒂 − 𝒃	        Def of ≡
 2.3. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      Def of ∣
 2.4. 𝒂 − 𝒃 = 𝒌𝒎	        Elim ∃
 2.5. 𝒂 = 𝒂	div	𝒎 	𝒎+ (𝒂	mod	𝒎)  Apply Division
 2.6. 𝒃 = 𝒂	div	𝒎	 − 𝒌 	𝒎+ (𝒂	mod	𝒎)	 Algebra
 2.7. 𝒃	div	𝒎 = 𝒂	div	𝒎	 − 𝒌 ∧    Apply DivUnique
   𝒃	mod	𝒎 = 𝒂	mod	𝒎     
 2.8. 𝒂	mod	𝒎 = 𝒃	mod	𝒎     Elim Ù
2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	  Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎 ≡! 𝑏.

Therefore, 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

 Def of ≡
 Def of ∣
 Elim ∃

   Apply Division

 Algebra

 Apply DivUnique
 Elim ∃

Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚	|	(𝑎	– 𝑏) by the definition of congruence.
So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by the definition of 
divides. Equivalently, 𝑎 = 𝑏 + 𝑘𝑚.

Therefore, 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

 Def of ≡
 Def of ∣
 Elim ∃

   Apply Division

 Algebra

 Apply DivUnique
 Elim ∃

Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚	|	(𝑎	– 𝑏) by the definition of congruence.
So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by the definition of 
divides. Equivalently, 𝑎 = 𝑏 + 𝑘𝑚.

By the Division Theorem, we have 𝑎 = 𝑎	div	𝑚 	𝑚 +
𝑎	mod	𝑚 , with 0 ≤ (𝑎	mod	𝑚) < 𝑚.

Therefore, 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

 Def of ≡
 Def of ∣
 Elim ∃

   Apply Division

 Algebra

 Apply DivUnique
 Elim ∃

Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚	|	(𝑎	– 𝑏) by the definition of congruence.
So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by the definition of 
divides. Equivalently, 𝑎 = 𝑏 + 𝑘𝑚.

By the Division Theorem, we have 𝑎 = 𝑎	div	𝑚 	𝑚 +
𝑎	mod	𝑚 , with 0 ≤ (𝑎	mod	𝑚) < 𝑚.

Combining these, we have 𝑎	div	𝑚 𝑚 + 𝑎	mod	𝑚 =
𝑎 = 𝑏 + 𝑘𝑚. Solving for b gives b = 𝑎	div	𝑚 	𝑚 +
𝑎	mod	𝑚 − 𝑘𝑚 = 𝑎	div	𝑚 − 𝑘 𝑚 + 𝑎	mod	𝑚 .

Therefore, 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

 Def of ≡
 Def of ∣
 Elim ∃

   Apply Division

 Algebra

 Apply DivUnique
 Elim ∃

Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚	|	(𝑎	– 𝑏) by the definition of congruence.
So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by the definition of 
divides. Equivalently, 𝑎 = 𝑏 + 𝑘𝑚.

By the Division Theorem, we have 𝑎 = 𝑎	div	𝑚 	𝑚 +
𝑎	mod	𝑚 , with 0 ≤ (𝑎	mod	𝑚) < 𝑚.

Combining these, we have 𝑎	div	𝑚 𝑚 + 𝑎	mod	𝑚 =
𝑎 = 𝑏 + 𝑘𝑚. Solving for b gives b = 𝑎	div	𝑚 	𝑚 +
𝑎	mod	𝑚 − 𝑘𝑚 = 𝑎	div	𝑚 − 𝑘 𝑚 + 𝑎	mod	𝑚 .

By the uniqueness property in the Division Theorem, we 
must have 𝑏	mod	𝑚 = 𝑎	mod	𝑚.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

 Def of ≡
 Def of ∣
 Elim ∃

   Apply Division

 Algebra

 Apply DivUnique
 Elim ∃

Direct Proof



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− since 𝑐 = 𝑐 is true, we can “+	𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− since 𝑐 = 𝑐 is true, we can “×	𝑐” to both sides

Recall: Familiar Properties of “=”

These facts allow us to use
algebra to solve problems



The Algebra Rule

• Algebra rule applies these properties:
– adding equations
– multiplying equations by a constant

• But also uses knowledge of
– arithmetic with constants
– commutativity of multiplication (e.g., yx	=	xy)
– distributivity (e.g., a(b+c)	=	ab	+	bc)

  x1 = y1 …  xn = yn
∴ x = y

Algebra

Note: no division
(since domain is integers)



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− since 𝑐 = 𝑐 is true, we can “+	𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− since 𝑐 = 𝑐 is true, we can “×	𝑐” to both sides

Recall: Familiar Properties of “=”

Same facts apply to “≤”
with non-negative numbers What about “≡𝒎”?



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	   ??



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

Assumption

 
 
 
 

 

 
 
 ??
Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐.

Therefore, 𝑎 ≡! 𝑐. 



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

Assumption

 Elim Ù
 Def of ≡
 
 

 

 
 
 ??
Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐.

By the defini=on of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). 

Therefore, 𝑎 ≡! 𝑐. 



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 

 
 
 ??
Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑏	– 𝑐 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.

Therefore, 𝑎 ≡! 𝑐. 



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 

 
 ??
 Def of ≡
Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐.

By the defini=on of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). By the defini=on of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑏	– 𝑐 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.

Therefore, we have 𝑚	|	(𝑎	– 𝑐), so 𝑎 ≡! 𝑐 by the 
defini=on of congruence.



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 

 ??
 Def of ∣
 Def of ≡
Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑏	– 𝑐 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.

 … ∃q (a – c = mq) …
Therefore, by the definition of divides, we have 
shown that 𝑚	|	(𝑎	– 𝑐), and then, 𝑎 ≡! 𝑐 by the 
definition of congruence.



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡
Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐.

By the defini=on of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). By the defini=on of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑏	– 𝑐 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.
Adding these, gives 𝑎	– 𝑐 = 𝑘𝑚 + 𝑗𝑚 = 𝑘 + 𝑗 𝑚.

Therefore, by the defini=on of divides, we have 
shown that 𝑚	|	(𝑎	– 𝑐), and then, 𝑎 ≡! 𝑐 by the 
defini=on of congruence.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 ??



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 
 
 
 

 

 
 
 ??

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

Therefore, 𝑎 + 𝑐 ≡! 𝑏 + 𝑑.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 
 

 

 
 
 ??

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). 

Therefore, 𝑎 + 𝑐 ≡! 𝑏 + 𝑑.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 

 
 
 ??

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.

Therefore, 𝑎 + 𝑐 ≡! 𝑏 + 𝑑.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 

 
 ??
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.

Therefore, we have 𝑚	| 𝑎 + 𝑐 − (𝑏 + 𝑑), so we 
can see that 𝑎 + 𝑐 ≡! 𝑏 + 𝑑 by the definition of 
congruence.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 

 ??
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.

  … ∃q ((a+c) – (b+d) = mq) …
Therefore, by the definition of divides, we have 
shown 𝑚	| 𝑎 + 𝑐 − (𝑏 + 𝑑), and then, we have 
𝑎 + 𝑐 ≡! 𝑏 + 𝑑 by the definition of congruence.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.
Adding these, gives 𝑎 + 𝑐 − 𝑏 + 𝑑 =
𝑎 − 𝑏 + 𝑐 − 𝑑 = 𝑘𝑚 + 𝑗𝑚 = 𝑘 + 𝑗 𝑚.

Therefore, by the definition of divides, we have 
shown 𝑚	| 𝑎 + 𝑐 − (𝑏 + 𝑑), and then, we have 
𝑎 + 𝑐 ≡! 𝑏 + 𝑑 by the definition of congruence.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.

Assumption

 
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑗𝑚 and 𝑐	– 𝑑 = 𝑘𝑚 
for some integers 𝑗 and 𝑘.

  … ∃q (ac – bd = mq) …
Therefore, 𝑚	|	𝑎𝑐 − 𝑏𝑑 by the definition of divides,
so 𝑎𝑐 ≡! 𝑏𝑑 by the definition of congruence.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.

Assumption

 
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑗𝑚 and 𝑐	– 𝑑 = 𝑘𝑚 
for some integers 𝑗 and 𝑘.
Equivalently, 𝑎 = 𝑏 + 𝑗𝑚 and 𝑐 = 𝑑 + 𝑘𝑚. 
Multiplying these gives 𝑎𝑐 = 𝑏 + 𝑗𝑚 𝑑 + 𝑘𝑚 =
𝑏𝑑 + 𝑏𝑘𝑚 + 𝑑𝑗𝑚 + 𝑗𝑘𝑚 = 𝑏𝑑 + 𝑏𝑘 + 𝑑𝑗 + 𝑗𝑘 𝑚, 
so 𝑎𝑐 − 𝑏𝑑 = 𝑏𝑘 + 𝑑𝑗 + 𝑗𝑘 𝑚.
Therefore, 𝑚	|	𝑎𝑐 − 𝑏𝑑 by the definition of divides,
so 𝑎𝑐 ≡! 𝑏𝑑 by the definition of congruence.



Modular Arithmetic: Properties

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

These properties are sufficient to allow 
us to do algebra with congruences



Another Property of “=” Used in Algebra

Example: given 2𝑦 + 3𝑥 = 25 and 𝑥 = 7𝑦,
    follows that 2𝑦 + 21𝑦 = 25.

Can “plug in” (a.k.a. substitute)
the known value of a variable

We can call this "Algebra",
but it's a more primi=ve rule.

(See the reference sheet.)



Another Property of “=” Used in Algebra

Example: given 2𝑦 + 3𝑥 = 25 and 𝑥 = 7𝑦,
    follows that 2𝑦 + 21𝑦 = 25.

Can “plug in” (a.k.a. substitute)
the known value of a variable

This is also true of congruences!

Example: given 2𝑦 + 3𝑥 ≡; 25 and 𝑥 ≡; 7𝑦,
    follows that 2𝑦 + 21𝑦 ≡; 25.

(But we don't have the tools to prove it yet….)



GCD



First GCD Fact

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

We proved this in Topic 2….

Let a be arbitrary. Suppose a > 0. Show that a satisfies the 
definition of gcd(a, 0).

For every positive integer a,
if a > 0, then gcd(a, 0) = a.

∀𝑎	((a > 0) → (𝑎 = gcd(𝑎, 0))



Useful GCD Fact

Let a and b be posi<ve integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof Idea:
 We will show that every number dividing 𝑎 and 𝑏 also divides 𝑏 and 𝑎	mod	𝑏.
 I.e., 𝑑|𝑎 and 𝑑|𝑏 iff 𝑑|𝑏 and 𝑑|(𝑎	mod	𝑏).

 Hence, their set of common divisors are the same,
 which means that their greatest common divisor is the same.



Useful GCD Fact

Proof (of 𝑑|𝑎 and 𝑑|𝑏 iff 𝑑|𝑏 and 𝑑| 𝑎	mod	𝑏 ):
 By the Division Theorem, 𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏)  for some integer 𝑞 = 𝑎	div	𝑏.  

 Suppose 𝑑	|	𝑏 and 𝑑	|	(𝑎	mod	𝑏).
 Then 𝑏 = 𝑚𝑑 and (𝑎	mod	𝑏) = 𝑛𝑑 for some integers 𝑚 and 𝑛.    
 Therefore  𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏) 	= 𝑞𝑚𝑑 + 	𝑛𝑑 = 𝑞𝑚 + 𝑛 𝑑.
 So 𝑑	|	𝑎 by the definition of divides.

 Suppose 𝑑	|	𝑎 and 𝑑	|	𝑏.
 Then 𝑎 = 𝑘𝑑 and 𝑏 = 𝑗𝑑 for some integers 𝑘 and 𝑗.
        Therefore (𝑎	mod	𝑏) = 𝑎	– 𝑞𝑏 = 𝑘𝑑	– 𝑞𝑗𝑑 = (𝑘	– 𝑞𝑗)𝑑. 
 So, 𝑑	|	(𝑎	mod	𝑏) by the definition of divides.

 Since they have the same common divisors, gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎	mod	𝑏).

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b)    gcd(a, 0) = a

int gcd(int a, int b) {  /* Assumes: a >= b >= 0 */
 if (b == 0) {
  return a;
 } else {
  return gcd(b, a % b);
 }
}

Note: gcd(b, a) = gcd(a, b)



Euclid’s Algorithm

gcd(660,126) =

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏  to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.

gcd(660,126) 



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
        = gcd(30, 126 mod 30)     = gcd(30, 6)
        = gcd(6, 30 mod 6)      = gcd(6, 0)
        = 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏  to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.



Bézout’s theorem

If a and b are positive integers, then there exist 
integers s and t such that 

gcd(a,b) = sa + tb.

∀a	∀b	((a	>	0	∧	b	>	0)	→	∃s	∃t	(gcd(a,b)	=	sa	+	tb))

(a	>	0	∧	b	>	0)	→	∃s	∃t	(gcd(a,b)	=	sa	+	tb)



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                         gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                         gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8	
a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                        gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8
=	gcd(8,	27	mod	8)						=	gcd(8,	3)									27	=	3	*	8			+	3
=	gcd(3,	8	mod	3)								=	gcd(3,	2)										8		=	2	*	3			+	2
=	gcd(2,	3	mod	2)									=	gcd(2,	1)										3		=	1	*	2			+	1
=	gcd(1,	2	mod	1)	 =	gcd(1,	0)

a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r  =  a  --  q * b
8	=	35	– 1	*	27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r  =  a  --  q * b
8	=	35	– 1	*	27
3	=	27	– 3	*	8
2	=		8		– 2	*	3
1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

Plug in the def of 2

Re-arrange into
3’s and 8’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

				=	(–1)	*	8	+	3	*	(27	–	3	*	8)
				=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
				=			3	*	27		+	(–10)	*	8

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

				=	(–1)	*	8	+	3	*	(27	–	3	*	8)
				=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
				=			3	*	27		+	(–10)	*	8

				=			3	*	27		+	(–10)	*	(35	–	1	*	27)
				=			3	*	27			+	(–10)	*	35	+	10	*	27
				=			13	*	27	+	(–10)	*	35

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s



Let 0 ≤ 𝑎, 𝑏 < 𝑚. Then, 𝑏 is the multiplicative 
inverse of 𝑎 (modulo 𝑚)  iff  𝑎𝑏 ≡! 1.   

Multiplicative inverse mod	𝑚

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

mod 7

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10



Multiplicative inverse mod	𝑚

Suppose gcd 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 is the multiplicative inverse of 𝑎 (modulo 𝑚):
 1 ≡C 𝑠𝑎  since  𝑚	|	1 − 𝑠𝑎  (since 1 − 𝑠𝑎 = 𝑡𝑚)

So… we can compute multiplicative inverses with the 
extended Euclidean algorithm

These inverses let us solve modular equations…



Recall: Properties of Modular Arithmetic

These properties are sufficient to allow 
us to do algebra with congruences

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.



Adding to both sides easily reversible:

𝑥 ≡C 𝑦

𝑥 + 𝑐 ≡C 𝑦 + 𝑐

The same is not true of multiplication…
unless we have a multiplicative inverse 𝑐𝑑 ≡C 1

𝑥 ≡C 𝑦

𝑐𝑥 ≡C 𝑐𝑦

Multiplicative Inverses and Algebra

+𝑐−𝑐

×𝑐×𝑑



Recall: Multiplicative inverse mod	𝑚

Suppose gcd 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 is the multiplicative inverse of 𝑎 (modulo 𝑚):
 1 ≡C 𝑠𝑎  since  𝑚	|	1 − 𝑠𝑎  (since 1 − 𝑠𝑎 = 𝑡𝑚)

We can compute multiplicative inverses with the 
Extended Euclidean algorithm

These inverses let us solve modular equations…



Example: Solve a Modular Equation

Solve:  7𝑥 ≡"# 3

Suppose we can show that 15 is the 
multiplicative inverse of 7 modulo 26,
i.e., that 15 F 7 ≡"# 1

Then, we can multiply on both sides 
by 15 to see that

15 g 7𝑥 ≡#$ 15 g 31𝑥 ≡#$𝑥 ≡#$ ≡#$ 45 ≡#$ 19

So, if we are given that 7𝑥 ≡"# 3,
then we have shown that 𝑥 ≡"# 19.



Example: Solve a Modular Equation

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26	 = 3 ∗ 7	 + 	5			 		 5 = 	26		– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2			 		2 = 	7		– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1			 		1 = 	5		– 	 2 ∗ 2	

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26	 = 3 ∗ 7	 + 	5			 		 5 = 	26		– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2			 		2 = 	7		– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1			 		1 = 	5		– 	 2 ∗ 2	

1		 = 	 	 5	 	 – 	 	2 ∗ (7	– 1 ∗ 5)
 =	(– 2) ∗ 7		 + 	3 ∗ 5
 = –2 ∗ 7		 + 	3 ∗ (26	– 3 ∗ 7)
 =	 −11 ∗ 7	 + 	3 ∗ 26

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

1	 = 	 	 5	 	 – 	 	2 ∗ (7	– 1 ∗ 5)
 =	(– 2) ∗ 7	 + 	3 ∗ 5
 = –2 ∗ 7		 + 	3 ∗ (26	– 3 ∗ 7)
 =	 −11 ∗ 7	 + 	3 ∗ 26

Now (−11)	mod	26	 = 15.   
“the” multiplicative inverse

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26

(−11 is also “a” multiplicative inverse)



Example: Solve a Modular Equation

Solve:  7𝑥 ≡"# 3

We saw before that… if we are given that 7𝑥 ≡"# 3,
then we have shown that 𝑥 ≡"# 19.

But these steps are all reversible…

7𝑥 ≡HI 3	 ⇒ 	 x ≡HI 19



Example: Solve a Modular Equation

7𝑥 ≡HI 3	 ⇒ 	 15 < 7x ≡HI 15 < 3
multiply both sides by 15

x ≡HI 19	 ⇒ 	 7x ≡HI 7 < 19
multiply both sides by 7

⇒ 	 x ≡HI 19
since 15 F 7 ≡"# 1 and 15 F 3 ≡"# 19

⇒ 	 7x ≡HI 3
since 7 F 19 ≡"# 3



Example: Solve a Modular Equation

Solve:  7𝑥 ≡"# 3

We saw before that… if we are given that 7𝑥 ≡"# 3,
then we have shown that 𝑥 ≡"# 19.

But all of these steps are reversible…

So 7𝑥 ≡"# 3 iff 𝑥 ≡"# 19

x ≡HI 19	 ⇒ 	 7x ≡HI 7 < 19

Hence, the solutions are all numbers of the form 
19 + 26𝑘 for some integer 

7𝑥 ≡HI 3	 ⇒ 	 x ≡HI 19



Beware the "Backward Proof"

• Many classes teach doing proofs backward:

     15𝑥 + 5 = 5(−3𝑥 − 1)  start with we want to prove
15𝑥 + 5 2 = 5 −3𝑥 − 1 2	  do some manipulaFons

           …        …
    0 = 0	     end with an obvious truth

• This is proof of nothing: "𝑃 → T"is a tautology
– it is true regardless of whether 𝑃 is true

• See notes on the Resources page



Solving Modular Equations in "Standard Form"

1	 = 	… 	= 	 −11 ∗ 7	 + 	3 ∗ 26

Since (−11)	mod	26	 = 15, the inverse of 7 is 15.

Solve:  7𝑥 ≡"# 3     

Step 1. Find multiplicative inverse of 7 modulo 26

(must be of the form 𝑎 +𝑚𝑘 with 0 ≤ 𝑎 < 𝑚)

Multiplying by 15, we get 𝑥 ≡#$ 15 g 7𝑥 ≡#$ 15 g 3 ≡#$ 19.

Step 2. Multiply both sides and simplify

Step 3. State the full set of solutions
So, the solutions are 19 + 26𝑘	for any integer 𝑘

(of the form 𝐴𝑥 ≡$ 𝐵 for some 𝐴 and 𝐵)



Example: Not in “Standard Form”

What about equation not in standard form?

Solve:  7(𝑥 − 3) ≡"# 8 + 2𝑥



Example: Not in “Standard Form”

Rewrite it in standard form:

Solve:  7 𝑥 − 3 ≡"# 8 + 2𝑥

7 𝑥 − 3 ≡#$ 8 + 2x7𝑥 − 21 ≡#$

move 2x to the other side

5𝑥 − 21 ≡#$ 8

move −21 to the other side

5𝑥 ≡#$ 29 ≡#$ 3

These steps are all reversible, so the solutions are the same.



Induction



Mathematical Induction

Method for proving claims about non-negative integers

– A new logical inference rule!
• It only applies over the non-negative numbers
• The idea is to use the special structure of these 

numbers to prove things more easily



Prove ∀𝑘	((𝑎 ≡! 𝑏) → (𝑎% ≡! 𝑏%))

Let 𝑘 be an arbitrary non-negative integer.
Suppose that 𝑎 ≡C 𝑏.

We know (𝑎 ≡! 𝑏) ∧ (𝑎 ≡! 𝑏) → (𝑎"≡! 𝑏") by multiplying 
congruences.  So, applying this repeatedly, we have:

(𝑎 ≡! 𝑏) ∧ (𝑎 ≡! 𝑏) → (𝑎" ≡! 𝑏")
(𝑎"≡! 𝑏") ∧ (𝑎 ≡! 𝑏) → (𝑎% ≡! 𝑏%	)

…
(𝑎&'( ≡! 𝑏&'(	) ∧ (𝑎 ≡! 𝑏) → (𝑎& ≡! 𝑏&)

The “…”s is a problem!  We don’t have a proof rule that 
allows us to say “do this over and over”.



But there is such a rule for non-negative numbers!

Domain: Non-Negative Numbers

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Induction Is A Rule of Inference
Domain: Non-Negative Numbers

How do the givens prove P(3)?

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)
Induc=on



Induction Is A Rule of Inference

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0) → P(1).  
 Since P(0) is true and P(0) → P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1) → P(2).
 Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

Domain: Non-Negative Numbers 𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)
Induction



Using The Induction Rule In A Formal Proof

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Using The Induction Rule In A Formal Proof

1. P(0)

       
       
       

2. "k (P(k) ® P(k+1))                 ??
3. "n P(n)                                    Induction: 1, 2

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Using The Induction Rule In A Formal Proof

1. P(0)
Let k be an arbitrary integer ≥ 0

        
        
         

2.1 P(k) ®  P(k+1)                         ??
2. "k (P(k) ® P(k+1))                 Intro "
3. "n P(n)                                    Induction: 1, 2

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Using The Induction Rule In A Formal Proof

1. P(0)
Let k be an arbitrary integer ≥ 0

        2.1.1. P(k)      Assumption
        2.1.2. ...
         2.1.3. P(k+1)

2.1 P(k) ®  P(k+1)                         Direct Proof
2. "k (P(k) ® P(k+1))                 Intro "
3. "n P(n)                                    Induction: 1, 2

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Translating to an English Proof

1. Prove P(0)
 Let k be an arbitrary integer ≥ 0
           2.1.1. Suppose that P(k) is true
           2.1.2.  ...
           2.1.3.  Prove P(k+1) is true

2.1 P(k) ®  P(k+1)                         Direct Proof
2. "k (P(k) ® P(k+1))                Intro "
3. "n P(n)                                   Induction: 1, 2

Base Case
Inductive 
Hypothesis

Inductive 
Step

Conclusion

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Translating to an English Proof

[…Define P(n)…]

We will show that 𝑃(𝑛) is true for every 𝑛 ≥ 0 by induction.
Base Case: […proof of 𝑃(0) here…]

Induction Hypothesis: 
 Suppose that 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 0.

Induction Step:
 […proof of 𝑃(𝑘 + 1) here…]
 The proof of 𝑃(𝑘 + 1) must invoke the IH somewhere.

So, the claim is true by induction.

Induction English Proof Template



Inductive Proofs In 5 Easy Steps

Proof: 
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every 
        𝑛 ≥ 0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:
 Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: Result follows by induction”

Basic induction template



What is 1	 + 	2	 + 	4	 +	…	+ 	2𝑛 ?

• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 1
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 3
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 7
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 15
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 31

   

It sure looks like this sum is 2QRS − 1
How can we prove it?
 We could prove it for 𝑛 = 1, 𝑛 = 2, 𝑛 = 3,… but 

that would literally take forever.
     Good that we have induction!



Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JKL– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JKL– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JKL– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
         Goal:  Show P(k+1I.e.,), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 
1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JKL– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exa
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JKL– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
   20 + 21 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
   20 + 21 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
 5. Thus P(k) is true for all k ∈ℕ, by induction.  

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JKL– 	1



We can do the same with equality:

        20 + 21 + … + 2k + 2k+1 
  = (20+21+ … + 2k) + 2k+1 
         = (2k+1 – 1) + 2k+1    since 20+21+ … + 2k = 2k+1 – 1
  = 2(2k+1) – 1
  = 2k+2 – 1

Explanations appear on in right column
– "since" means we substituted LHS for RHS
– ordinary algebra (on integers) does not need explanation
– "def of" will be used to apply the definition of a function

e.g., replacing f(x) by y when we have f defined as f(x) := y

Calculation Block

(better: "by the IH")



We can do the same with equality:

        20 + 21 + … + 2k + 2k+1 
  = (20+21+ … + 2k) + 2k+1 
         = (2k+1 – 1) + 2k+1    by the IH
  = 2(2k+1) – 1
  = 2k+2 – 1

Entire block shows 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
– this is the transitivity property of "="

Can also do calculation with "<" and "≤"
– don't mix directions: ">" and "<" in one block is ><

Calculation Block



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
       We can calculate
         20 + 21 + … + 2k + 2k+1  = (20+21+ … + 2k) + 2k+1 
                                                         = (2k+1 – 1) + 2k+1   by the IH
                 = 2(2k+1) – 1
                 = 2k+2 – 1,
       which is exactly P(k+1).

 5. Thus P(k) is true for all k ∈ℕ, by induction.  

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JKL– 	1

The entire inductive step is one calculation!
We will rely heavily on calculation going forward…

Show 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
       We can calculate
         20 + 21 + … + 2k + 2k+1  = (20+21+ … + 2k) + 2k+1 
                                                         = (2k+1 – 1) + 2k+1   by the IH
                 = 2(2k+1) – 1
                 = 2k+2 – 1,
       which is exactly P(k+1).
  5. Thus P(n) is true for all n ≥ 0, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2JKL– 	1



Recall: Inductive Proofs In 5 Easy Steps

Proof: 
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every 
        𝑛 ≥ 0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:
 Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: Result follows by induction”

Basic induction template



Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2

Summation Notation
 ∑MNOJ 𝑖 = 0 + 1	 + 	2	 + 	3	 +	…	+ 	𝑛

Prove that  ∑MNOJ 𝑖 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “∑&'() 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

Prove  ∑MNOJ 𝑖 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “∑&'() 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑&'(( 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.  

Prove  ∑MNOJ 𝑖 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “∑&'() 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑&'(( 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose ∑&'(% 𝑖 = 𝑘(𝑘 + 1)/2

Prove  ∑MNOJ 𝑖 = 	𝑛(𝑛 + 1)/2

“some” or “an”
not any!



1. Let P(n) be “∑&'() 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑&'(( 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose ∑&'(% 𝑖 = 𝑘(𝑘 + 1)/2
4. Induction Step:

Prove  ∑MNOJ 𝑖 = 	𝑛(𝑛 + 1)/2

Goal: Show P(k+1), i.e., ∑$%&'() 𝑖 = (𝑘 + 1)(𝑘 + 2)/2



1. Let P(n) be “∑&'() 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑&'(( 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose ∑&'(% 𝑖 = 𝑘(𝑘 + 1)/2
4. Induction Step:  We can see that
     ∑&'(%*+ 𝑖 = (∑&'(% 𝑖) + (𝑘 + 1)
       = k(k + 1)/2 + (𝑘 + 1)  by the IH
       = (k + 1)(k/2 + 1)
       = (k + 1)(k + 2)/2
  which is exactly P(k+1).

Prove  ∑MNOJ 𝑖 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “∑&'() 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑&'(( 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0. I.e., suppose ∑&'(% 𝑖 = 𝑘(𝑘 + 1)/2
4. Induction Step:  We can see that
     ∑&'(%*+ 𝑖 = (∑&'(% 𝑖) + (𝑘 + 1)
       = k(k + 1)/2 + (𝑘 + 1)  by the IH
       = (k + 1)(k/2 + 1)
       = (k + 1)(k + 2)/2
  which is exactly P(k+1).
  5. Thus P(n) is true for all n ≥ 0, by induction.

Prove  ∑MNOJ 𝑖 = 	𝑛(𝑛 + 1)/2



Induction: Changing the starting point 

• What if we want to prove that 𝑃(𝑛) is true 
for all integers 𝑛 ≥ 𝑏 for some integer 𝑏?

• Define predicate 𝑄 𝑘 = 𝑃(𝑘 + 𝑏) for all 𝑘.
– Then ∀𝑛	𝑄 𝑛 ≡ ∀𝑛 ≥ 𝑏	 𝑃(𝑛)

 

• Ordinary induction for 𝑄:  
– Prove	𝑄 0 ≡ 𝑃 𝑏
– Prove                                                        

∀𝑘 𝑄 𝑘 ⟶ 𝑄 𝑘 + 1 ≡ ∀𝑘 ≥ 𝑏 𝑃 𝑘 ⟶ 𝑃 𝑘 + 1



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
      integers 𝑛 ≥ 𝒃 by induction.”
2. “Base Case:” Prove 𝑃(𝒃)
3. “Inductive Hypothesis:
 Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝒃”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝒃”

Template for induction from a different base case



Prove 3𝑛 ≥ 𝑛P + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):  32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Hypothesis:  Suppose that P(k) is true for some                                          

arbitrary integer k ≥ 2.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛P + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 2.
4. Inductive Step:  
          Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛P + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

 arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
          =k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛P + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  

          
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4

Prove 3𝑛 ≥ 𝑛P + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  We can see that 
         3k+1 = 3(3k)
                             ≥ 3(k2+3)   by the IH
     = k2+2k2+9
         ≥ k2+2k+9   since k2 ≥ k
         ≥ k2+2k+4   since 9 ≥ 4
     = (k+1)2+3 
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all integers n ≥ 2, by induction.

Prove 3𝑛 ≥ 𝑛P + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  We can see that
     3k+1  = 3(3k) ≥ 3(k2+3)   by the IH
     = k2+2k2+9
         ≥ k2+2k+9   since k2 ≥ k
         ≥ k2+2k+4   since 9 ≥ 4
     = (k+1)2+3
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all integers n ≥ 2, by induction.

Prove 3𝑛 ≥ 𝑛P + 3 for all 𝑛 ≥ 2



Induction: Adding Base Cases

• What if we want to prove that 𝑃(𝑛) is true 
for all integers 𝑛 ≥ 𝑏 for some integer 𝑏
but the inductive step only works for 𝑛 ≥ 𝑐?

• Add proofs of 𝑃(𝑏), 𝑃(𝑏 + 1), …, 𝑃(𝑐 − 1)
– will call these extra "base cases"

• Formally, we are using the fact that
𝑃 𝑏 	∧	 ggg	 ∧ 	𝑃 𝑐 − 1 	∧	∀𝑛	((𝑐 ≤ 𝑛) → 𝑃(𝑛))
 ≡ ∀𝑛	((𝑏 ≤ 𝑛) → 𝑃(𝑛))



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
      integers 𝑛 ≥ 𝒃 by induction.”
2. “Base Case:” Prove 𝑃(𝒃), …, 𝑃(𝒄)
3. “Inductive Hypothesis:
 Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝒄”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝒃”

Template for induction with multiple base cases



Recursive Definitions
of Functions



Familiar Recursive Definitions

Suppose that ℎ ∶ ℕ → ℝ.  

Then we have familiar summation notation: 
∑,-.. ℎ 𝑖 ≔ ℎ(0)
∑,-./01ℎ 𝑖 ≔ ∑,-./ ℎ 𝑖 + ℎ(𝑛 + 1) for 𝑛 ≥ 0

There is also product notation:  
∏,-.
. ℎ 𝑖 ≔ ℎ(0)

∏,-.
/01ℎ 𝑖 ≔ ∏,-.

/ ℎ 𝑖 H ℎ(𝑛 + 1)	 for 𝑛 ≥ 0



Recursive definitions of functions 

• 0! ≔ 1;	 (𝑛 + 1)! ≔ (𝑛 + 1) < 𝑛!  for all 𝑛 ≥ 	0.

• 𝐹(0) ≔ 0; 	 𝐹(𝑛 + 1) ≔ 𝐹(𝑛) + 1 for all 𝑛 ≥ 	0. 

• 𝐺(0) ≔ 1; 	 𝐺(𝑛 + 1) ≔ 2 < 𝐺(𝑛) for all 𝑛 ≥ 	0. 

• 𝐻(0) ≔ 1; 	 𝐻(𝑛 + 1) ≔ 2Y Q  for all 𝑛 ≥ 	0.



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:  
          

Goal:  Show P(k+1), i.e. show (k+1)! ≤ (k+1)k+1

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:  
         We can calculate:
         (k+1)! = (k+1)·k!            by definition of !
                                 ≤ (k+1)· kk           by the IH
                             ≤ (k+1)· (k+1)k    since k ≥ 0
                      = (k+1)k+1

   Therefore P(k+1) is true.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:  
         We can calculate:
         (k+1)! = (k+1)·k!            by definition of !
                                 ≤ (k+1)· kk           by the IH
                             ≤ (k+1)· (k+1)k    since k ≥ 0
                      = (k+1)k+1

   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ≥ 1, by induction.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



Checkerboard Tiling

• Prove that a 2𝑛	´	2𝑛	checkerboard with one square 
removed can be tiled with:



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some    

              arbitrary integer k≥1



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some    

              arbitrary integer k≥1
4. Inductive Step: Prove P(k+1)

Apply IH to 
each quadrant 
then fill with 
extra tile.



Induction Is A Rule of Inference

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

Domain: Non-Negative Numbers 𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)
Induction



Induction Is A Rule of Inference

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0) → P(1).  
 Since P(0) is true and P(0) → P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1) → P(2).
 Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

Domain: Non-Negative Numbers 𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)
Induction



Strong Induction

𝑃 0 	 ∀𝑘 ∀𝑗 (0 ≤ 𝑗 ≤ 𝑘) → 𝑃 𝑗 → 𝑃 𝑘 + 1

∴ ∀𝑛	𝑃(𝑛)Strong
Induction

𝑃 0 	 ∀𝑘	(	𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

Induction ∴ ∀𝑛	𝑃(𝑛)



Strong Induction

Strong induction for 𝑃 follows from ordinary induction for 𝑄 
where

𝑄 𝑘 	∷=	∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗

Note that 𝑄 0 = 𝑃(0) and 𝑄(𝑘 + 1) ≡ 𝑄(𝑘) 	∧ 𝑃 𝑘 + 1  
and  ∀𝑛	𝑄 𝑛 ≡ ∀𝑛	𝑃(𝑛) 

𝑃 0 	 ∀𝑘 ∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗 → 𝑃 𝑘 + 1

∴ ∀𝑛	𝑃(𝑛)



Strong Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
       integers 𝑛 ≥ 𝑏 by strong induction.”
2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:
 Assume that for some arbitrary integer 𝑘 ≥ 𝑏,	
  	 𝑃(𝑗) is true for every integer 𝑗	from 𝑏	to 𝑘”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true) 

and point out where you are using it.                           
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Fibonacci Numbers

𝑓. ≔ 0 
𝑓1 ≔ 1 
𝑓/0" ≔ 𝑓/01 + 𝑓/  

Will need facts about
fn-2 to reason about fn



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0 = 0 < 1= 20  so P(0) is true.



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0 = 0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0 = 0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:

    fk+1 = fk + fk-1            def of f

Oops! This is only true if 𝑘 + 1 ≥ 2 !

Goal: Show P(k+1); that is, fk+1 < 2k+1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:

Goal: Show P(k+1); that is, fk+1 < 2k+1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step: We can calculate that
            fk+1 = fk   +  fk-1  def of f (since k+1 ≥ 2)
    < 2k + 2k-1  by IH (since k-1 ≥ 0)
    < 2k + 2k 
    = 2·2k  

    = 2k+1 
  so P(k+1) is true. 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 

𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step: We can calculate that
   fk+1 = fk   +  fk-1  def of f (since k+1 ≥ 2)
    < 2k + 2k-1  by IH (since k-1 ≥ 0)
    < 2k + 2k 
    = 2k+1 
  so P(k+1) is true.
5. Therefore, by strong induction, fn < 2n for all integers n ≥ 0.



Strong Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
       integers 𝑛 ≥ 𝑏 by strong induction.”
2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:
 Assume that for some arbitrary integer 𝑘 ≥ 𝑏,	
  	 𝑃(𝑗) is true for every integer 𝑗	from 𝑏	to 𝑘”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true) 

and point out where you are using it.                           
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case:  f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case:  f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case:  f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:

Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case:  f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:

   fk+1 = fk   +  fk-1    def of f (since k+1 ≥ 2)
    ≥ 2k/2-1 + fk-1

    by the IH
     ≥ 2k/2-1 + 2(k-1)/2-1  by the IH

Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Oops! This is only true if 𝑘 − 1 ≥ 2 !

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
    f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1  so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:

Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏(𝟐 = 𝒇𝒏(𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
    f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1  so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step: We can calculate
   fk+1 = fk   +  fk-1    def of f (since k+1 ≥ 4)
    ≥ 2k/2-1 + fk-1

    by the IH
    ≥ 2k/2-1 + 2(k-1)/2-1  by the IH (since k-1 ≥ 2)
    ≥ 2･2(k-1)/2-1 

    = 2(k+1)/2-1 
    so P(k+1) is true.



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
    f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1  so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step: We can calculate
   fk+1 = fk   +  fk-1    def of f (since k+1 ≥ 4)
    ≥ 2k/2-1 + fk-1

    by the IH
    ≥ 2k/2-1 + 2(k-1)/2-1  by the IH (since k-1 ≥ 2)
    ≥ 2･2(k-1)/2-1 = 2(k+1)/2 -1 
    so P(k+1) is true.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 2.


