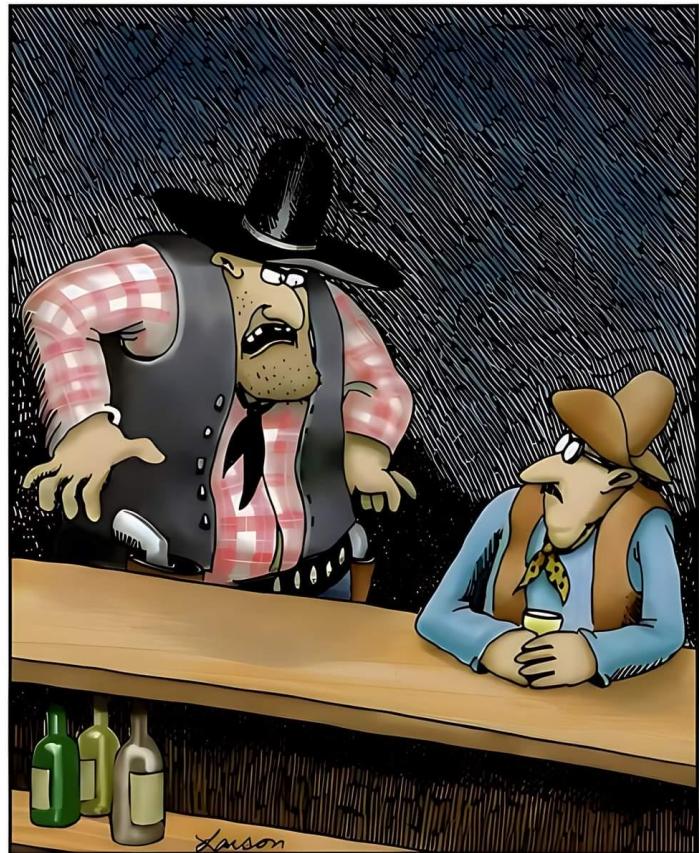


CSE 311: Foundations of Computing

Topic 3: Number Theory



"I asked you a question, buddy. ... What's the square root of 5,248?"

Number Theory

- **Direct relevance to computing**
 - everything in a computer is a number
colors on the screen are encoded as numbers
- **Many significant applications**
 - Cryptography & Security
 - Data Structures
 - Distributed Systems

I'm ALIVE!

```
public class Test {  
    final static int SEC_IN_YEAR = 365*24*60*60;  
    public static void main(String args[]) {  
        System.out.println(  
            "I will be alive for at least " +  
            SEC_IN_YEAR * 101 + " seconds."  
    );  
}  
}
```

I'm ALIVE!

```
public class Test {  
    final static int SEC_IN_YEAR = 365*24*60*60;  
    public static void main(String args[]) {  
        System.out.println(  
            "I will be alive for at least " +  
            SEC_IN_YEAR * 101 + " seconds."  
    );  
}  
}
```

```
-----jGRASP exec: java Test  
I will be alive for at least -186619904 seconds.  
-----jGRASP: operation complete.
```

Modular Arithmetic

Modular Arithmetic

- Arithmetic over a finite domain
- Almost all computation is over a finite domain

Recall: Elementary School Division

For a, b with $b > 0$, we can divide b into a .

If $b \nmid a$, then we end up with a *remainder* r with $0 < r < b$.

Now,

instead of $\frac{a}{b} = q$ we have $\frac{a}{b} = q + \frac{r}{b}$

Multiplying both sides by b gives us $a = qb + r$

Recall: Elementary School Division

For a, b with $b > 0$, we can divide b into a .

If $b \mid a$, then we have $a = qb$ for some q .

If $b \nmid a$, then we have $a = qb + r$ for some q, r with $0 < r < b$.

In general, we have $a = qb + r$ for some q, r with $0 \leq r < b$,
where $r = 0$ iff $b \mid a$.

Division Theorem

Division Theorem

For a, b with $b > 0$

there exist *unique* integers q, r with $0 \leq r < b$
such that $a = qb + r$.

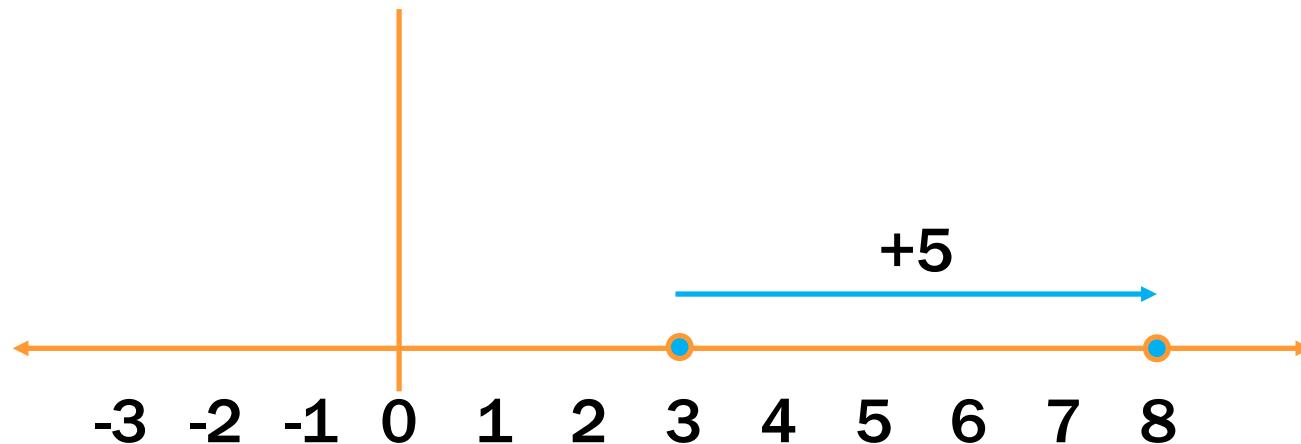
To put it another way, if we divide b into a , we get a
unique quotient $q = a \text{ div } b$
and non-negative remainder $r = a \text{ mod } b$

$$a = (a \text{ div } b) b + (a \text{ mod } b)$$

$$\forall a \forall b \left((b > 0) \rightarrow (a = (a \text{ div } b)b + (a \text{ mod } b)) \right)$$

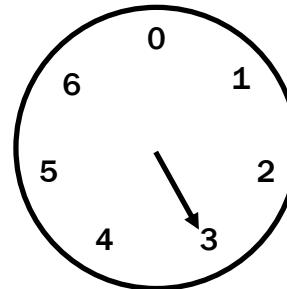
Ordinary arithmetic

$$3 + 5 = 8$$



Arithmetic on a Clock

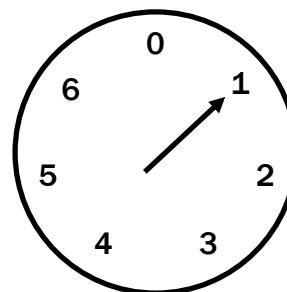
$$3 + 5 = 8$$



$$8 = 7 \cdot 1 + 1$$

$$15 = 7 \cdot 2 + 1$$

$$22 = 7 \cdot 3 + 1$$

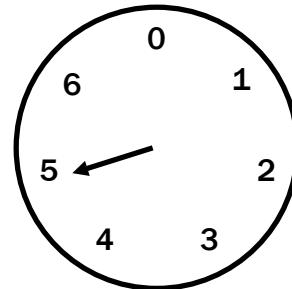


If $a = 7q + r$, then r ($= a \bmod b$) is
where you stop after taking a steps on the clock

Arithmetic, mod 7

$(a + b) \bmod 7$

$(a \times b) \bmod 7$



+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Domain of Discourse
Integers

Definition: “a is congruent to b modulo m”

For a, b, m with $m > 0$

$$a \equiv_m b \ := \ m \mid (a - b)$$

New notion of “sameness” that will help us understand modular arithmetic

Modular Arithmetic

Domain of Discourse
Integers

Definition: “a is congruent to b modulo m”

For a, b, m with $m > 0$

$$a \equiv_m b \ := \ m \mid (a - b)$$

The standard math notation is

$$a \equiv b \pmod{m}$$

A chain of equivalences is written

$$a \equiv b \equiv c \equiv d \pmod{m}$$

Many students find this confusing,
so we will use \equiv_m instead.

Modular Arithmetic

Domain of Discourse
Integers

Definition: “a is congruent to b modulo m”

For a, b, m with $m > 0$

$$a \equiv_m b \ := \ m \mid (a - b)$$

Check Your Understanding. What do each of these mean?
When are they true?

$$-1 \equiv_5 19$$

This statement is true. $19 - (-1) = 20$ which is divisible by 5

$$x \equiv_2 0$$

This statement is the same as saying “x is even”; so, any x that is even (including negative even numbers) will work.

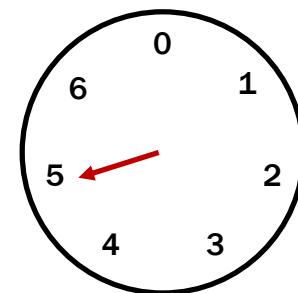
$$y \equiv_7 2$$

This statement is true for y in $\{ \dots, -12, -5, 2, 9, 16, \dots \}$. In other words, all y of the form $2+7k$ for k an integer.

The mod m function vs the \equiv_m predicate

- The mod m function maps any integer a to a remainder $a \bmod m \in \{0, 1, \dots, m - 1\}$.

Tells you where it lands on the clock.



- Imagine grouping together all integers that have the same value of the mod m function.

They must differ by a multiple of m ($q_1m + r$ vs $q_2m + r$)

- The \equiv_m predicate compares integers a, b to see if they differ by a multiple of m .

If they differ by a multiple of m , then walking from one to the other leaves you at the same spot on the clock.

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

This claim is an \leftrightarrow ("iff")

Proof Plan:

1. $(a \bmod m = b \bmod m) \rightarrow (a \equiv_m b)$??

2. $(a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$??

3. $(a \bmod m = b \bmod m) \rightarrow (a \equiv_m b) \wedge$

$(a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$ Intro \wedge : 1, 2

4. $(a \equiv_m b) \leftrightarrow (a \bmod m = b \bmod m)$ Biconditional: 3

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

$$1. (a \bmod m = b \bmod m) \rightarrow (a \equiv_m b) \quad ??$$

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

1.1. $a \bmod m = b \bmod m$

Assumption

1.? $a \equiv_m b$

??

1. $(a \bmod m = b \bmod m) \rightarrow (a \equiv_m b)$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

1.1. $a \bmod m = b \bmod m$

Assumption

1.? $m \mid a - b$

??

1.? $a \equiv_m b$

Def of \equiv

1. $(a \bmod m = b \bmod m) \rightarrow (a \equiv_m b)$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

1.1. $a \bmod m = b \bmod m$

Assumption

1.? $\exists q (a - b = qm)$

??

1.? $m \mid a - b$

Def of \mid

1.? $a \equiv_m b$

Def of \equiv

1. $(a \bmod m = b \bmod m) \rightarrow (a \equiv_m b)$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

1.1. $a \bmod m = b \bmod m$

Assumption

1.2. $a = (a \text{ div } m) m + (a \bmod m)$

Apply Division

1.3. $b = (b \text{ div } m) m + (b \bmod m)$

Apply Division

1.? $\exists q (a - b = qm)$

??

1.? $m \mid a - b$

Def of \mid

1.? $a \equiv_m b$

Def of \equiv

1. $(a \bmod m = b \bmod m) \rightarrow (a \equiv_m b)$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

1.1. $a \bmod m = b \bmod m$

Assumption

1.2. $a = (a \text{ div } m) m + (a \bmod m)$

Apply Division

1.3. $b = (b \text{ div } m) m + (b \bmod m)$

Apply Division

1.4. $a - b = ((a \text{ div } m) - (b \text{ div } m)) m$

Algebra

1.5. $\exists q (a - b = qm)$

Intro \exists

1.6. $m \mid a - b$

Def of \mid

1.7. $a \equiv_m b$

Def of \equiv

1. $(a \bmod m = b \bmod m) \rightarrow (a \equiv_m b)$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

Suppose that $a \bmod m = b \bmod m$.

Assumption

Apply Division

Apply Division

Algebra

Intro \exists

Def of $|$

Def of \equiv

Direct Proof

Therefore, $a \equiv_m b$.

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

Suppose that $a \bmod m = b \bmod m$.

Assumption

By the Division Theorem, we can write

Apply Division

$a = (a \text{ div } m) m + (a \bmod m)$ and

Apply Division

$b = (b \text{ div } m) m + (b \bmod m)$.

Algebra

Therefore, $a \equiv_m b$.

Intro \exists

Def of $|$

Def of \equiv

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

Suppose that $a \bmod m = b \bmod m$.

Assumption

By the Division Theorem, we can write

Apply Division

$a = (a \text{ div } m) m + (a \bmod m)$ and

Apply Division

$b = (b \text{ div } m) m + (b \bmod m)$.

Subtracting these we can see that

$$\begin{aligned} a - b &= ((a \text{ div } m) - (b \text{ div } m))m + \\ &\quad ((a \bmod m) - (b \bmod m)) \\ &= ((a \text{ div } m) - (b \text{ div } m))m \end{aligned}$$

Algebra

since $(a \bmod m) - (b \bmod m) = 0$.

Intro \exists

...

Def of $|$

Therefore, $a \equiv_m b$.

Def of \equiv

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

Suppose that $a \bmod m = b \bmod m$.

Assumption

By the Division Theorem, we can write

Apply Division

$a = (a \text{ div } m) m + (a \bmod m)$ and

Apply Division

$b = (b \text{ div } m) m + (b \bmod m)$.

Subtracting these we can see that

$$\begin{aligned} a - b &= ((a \text{ div } m) - (b \text{ div } m))m + \\ &\quad ((a \bmod m) - (b \bmod m)) \\ &= ((a \text{ div } m) - (b \text{ div } m))m \end{aligned}$$

Algebra

since $(a \bmod m) - (b \bmod m) = 0$.

Intro \exists

Therefore, by definition of divides, $m \mid (a - b)$

Def of $|$

and so $a \equiv_m b$, by definition of congruent.

Def of \equiv

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

2. $(a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$??

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

2.1. $a \equiv_m b$

Assumption

2.? $a \bmod m = b \bmod m$

??

2. $(a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

2.1. $a \equiv_m b$

2.2. $m \mid a - b$

Assumption
Def of $|$

2.? $a \bmod m = b \bmod m$

??

2. $(a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

2.1. $a \equiv_m b$

Assumption

2.2. $m \mid a - b$

Def of \equiv

2.3. $\exists q (a - b = qm)$

Def of \mid

2.? $a \bmod m = b \bmod m$

??

2. $(a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

2.1. $a \equiv_m b$

Assumption

2.2. $m \mid a - b$

Def of \equiv

2.3. $\exists q (a - b = qm)$

Def of \mid

2.4. $a - b = km$

Elim \exists

2.? $a \bmod m = b \bmod m$

??

2. $(a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

$$2.1. a \equiv_m b$$

Assumption

$$2.2. m \mid a - b$$

Def of \equiv

$$2.3. \exists q (a - b = qm)$$

Def of \mid

$$2.4. a - b = km$$

Elim \exists

$$2.5. a = (a \text{ div } m) m + (a \bmod m)$$

Apply Division

$$2.? a \bmod m = b \bmod m$$

??

$$2. (a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

$$2.1. a \equiv_m b$$

Assumption

$$2.2. m \mid a - b$$

Def of \equiv

$$2.3. \exists q (a - b = qm)$$

Def of \mid

$$2.4. a - b = km$$

Elim \exists

$$2.5. a = (a \text{ div } m) m + (a \bmod m)$$

Apply Division

$$2.6. b = (a \text{ div } m - k) m + (a \bmod m)$$

Algebra

$$2.? a \bmod m = b \bmod m$$

??

$$2. (a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

2.1. $a \equiv_m b$

Assumption

2.2. $m \mid a - b$

Def of \equiv

2.3. $\exists q (a - b = qm)$

Def of \mid

2.4. $a - b = km$

Elim \exists

2.5. $a = (a \text{ div } m) m + (a \bmod m)$

Apply Division

2.6. $b = (a \text{ div } m - k) m + (a \bmod m)$

Algebra

2.7. $b \text{ div } m = (a \text{ div } m - k) \wedge$

Apply DivUnique

$b \bmod m = a \bmod m$

2.? $a \bmod m = b \bmod m$

??

2. $(a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

$$2.1. a \equiv_m b$$

$$2.2. m \mid a - b$$

$$2.3. \exists q (a - b = qm)$$

$$2.4. a - b = km$$

$$2.5. a = (a \text{ div } m) m + (a \bmod m)$$

$$2.6. b = (a \text{ div } m - k) m + (a \bmod m)$$

$$2.7. b \text{ div } m = (a \text{ div } m - k) \wedge \\ b \bmod m = a \bmod m$$

$$2.8. a \bmod m = b \bmod m$$

$$2. (a \equiv_m b) \rightarrow (a \bmod m = b \bmod m)$$

Assumption

Def of \equiv

Def of \mid

Elim \exists

Apply Division

Algebra

Apply DivUnique

Elim \wedge

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

Suppose that $a \equiv_m b$.

Assumption

Def of \equiv

Def of $|$

Elim \exists

Apply Division

Algebra

Apply DivUnique
Elim \exists

Therefore, $a \bmod m = b \bmod m$.

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

Suppose that $a \equiv_m b$.

Assumption

Then, $m \mid (a - b)$ by the definition of congruence.

So, $a - b = km$ for some integer k by the definition of divides. Equivalently, $a = b + km$.

Def of \equiv
Def of \mid
Elim \exists

Apply Division

Algebra

Therefore, $a \bmod m = b \bmod m$.

Apply DivUnique
Elim \exists

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

Suppose that $a \equiv_m b$.

Assumption

Then, $m \mid (a - b)$ by the definition of congruence.

Def of \equiv
Def of \mid
Elim \exists

So, $a - b = km$ for some integer k by the definition of divides. Equivalently, $a = b + km$.

By the Division Theorem, we have $a = (a \text{ div } m) m + (a \bmod m)$, with $0 \leq (a \bmod m) < m$.

Apply Division

Algebra

Therefore, $a \bmod m = b \bmod m$.

Apply DivUnique
Elim \exists

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

Suppose that $a \equiv_m b$.

Assumption

Then, $m \mid (a - b)$ by the definition of congruence.

Def of \equiv
Def of \mid
Elim \exists

So, $a - b = km$ for some integer k by the definition of divides. Equivalently, $a = b + km$.

By the Division Theorem, we have $a = (a \text{ div } m) m + (a \bmod m)$, with $0 \leq (a \bmod m) < m$.

Apply Division

Combining these, we have $(a \text{ div } m)m + (a \bmod m) = a = b + km$. Solving for b gives $b = (a \text{ div } m)m + (a \bmod m) - km = ((a \text{ div } m) - k)m + (a \bmod m)$.

Algebra

Therefore, $a \bmod m = b \bmod m$.

Apply DivUnique
Elim \exists

Direct Proof

Modular Arithmetic: A Property

Let a, b, m be integers with $m > 0$.

Then, $a \equiv_m b$ if and only if $a \bmod m = b \bmod m$.

Suppose that $a \equiv_m b$.

Assumption

Then, $m \mid (a - b)$ by the definition of congruence.

Def of \equiv
Def of \mid
Elim \exists

So, $a - b = km$ for some integer k by the definition of divides. Equivalently, $a = b + km$.

By the Division Theorem, we have $a = (a \text{ div } m) m + (a \bmod m)$, with $0 \leq (a \bmod m) < m$.

Apply Division

Combining these, we have $(a \text{ div } m)m + (a \bmod m) = a = b + km$. Solving for b gives $b = (a \text{ div } m)m + (a \bmod m) - km = ((a \text{ div } m) - k)m + (a \bmod m)$.

Algebra

By the uniqueness property in the Division Theorem, we must have $b \bmod m = a \bmod m$.

Apply DivUnique
Elim \exists

Direct Proof

Recall: Familiar Properties of “=”

- **If $a = b$ and $b = c$, then $a = c$.**
 - i.e., if $a = b = c$, then $a = c$
- **If $a = b$ and $c = d$, then $a + c = b + d$.**
 - since $c = c$ is true, we can “ $+ c$ ” to both sides
- **If $a = b$ and $c = d$, then $ac = bd$.**
 - since $c = c$ is true, we can “ $\times c$ ” to both sides

These facts allow us to use algebra to solve problems

The Algebra Rule

Algebra
$$\frac{x_1 = y_1 \dots x_n = y_n}{\therefore x = y}$$

- **Algebra rule applies these properties:**
 - adding equations
 - multiplying equations by a **constant**
- **But also uses knowledge of**
 - arithmetic with constants
 - commutativity of multiplication (e.g., $yx = xy$)
 - distributivity (e.g., $a(b+c) = ab + bc$)

Note: no division
(since domain is integers)

Recall: Familiar Properties of “=”

- **If $a = b$ and $b = c$, then $a = c$.**
 - i.e., if $a = b = c$, then $a = c$
- **If $a = b$ and $c = d$, then $a + c = b + d$.**
 - since $c = c$ is true, we can “ $+ c$ ” to both sides
- **If $a = b$ and $c = d$, then $ac = bd$.**
 - since $c = c$ is true, we can “ $\times c$ ” to both sides

Same facts apply to “ \leq ”
with non-negative numbers

What about “ \equiv_m ”?

Modular Arithmetic: Basic Property

Let a, b, c and m be integers with $m > 0$.
If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

$$1. (a \equiv_m b \wedge b \equiv_m c) \rightarrow (a \equiv_m c) \quad ??$$

Modular Arithmetic: Basic Property

Let a, b, c and m be integers with $m > 0$.
If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

Assumption

Therefore, $a \equiv_m c$.

??

Direct Proof

Modular Arithmetic: Basic Property

Let a, b, c and m be integers with $m > 0$.
If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

By the definition of congruence, we know that
 $m \mid (a - b)$ and $m \mid (b - c)$.

Assumption

Elim \wedge
Def of \equiv

Therefore, $a \equiv_m c$.

??

Direct Proof

Modular Arithmetic: Basic Property

Let a, b, c and m be integers with $m > 0$.
If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (b - c)$. By the definition of divides, we know that $a - b = km$ and $b - c = jm$ for some integers k and j .

Assumption

Elim \wedge

Def of \equiv

Def of \mid

Elim \exists

??

Therefore, $a \equiv_m c$.

Direct Proof

Modular Arithmetic: Basic Property

Let a, b, c and m be integers with $m > 0$.
If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (b - c)$. By the definition of divides, we know that $a - b = km$ and $b - c = jm$ for some integers k and j .

Assumption

Elim \wedge

Def of \equiv

Def of \mid

Elim \exists

??

Def of \equiv

Therefore, we have $m \mid (a - c)$, so $a \equiv_m c$ by the Direct Proof definition of congruence.

Modular Arithmetic: Basic Property

Let a, b, c and m be integers with $m > 0$.
If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (b - c)$. By the definition of divides, we know that $a - b = km$ and $b - c = jm$ for some integers k and j .

... $\exists q (a - c = mq)$...

Therefore, by the definition of divides, we have shown that $m \mid (a - c)$, and then, $a \equiv_m c$ by the definition of congruence.

Assumption

Elim \wedge

Def of \equiv

Def of \mid

Elim \exists

??

Def of \mid

Def of \equiv

Direct Proof

Modular Arithmetic: Basic Property

Let a, b, c and m be integers with $m > 0$.
If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (b - c)$. By the definition of divides, we know that $a - b = km$ and $b - c = jm$ for some integers k and j .

Adding these, gives $a - c = km + jm = (k + j)m$.

Therefore, by the definition of divides, we have shown that $m \mid (a - c)$, and then, $a \equiv_m c$ by the definition of congruence.

Assumption

Elim \wedge
Def of \equiv
Def of \mid
Elim \exists

Algebra

Intro \exists
Def of \mid
Def of \equiv

Direct Proof

Modular Arithmetic: Addition Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

$$1. (a \equiv_m b \wedge c \equiv_m d) \rightarrow (a + c \equiv_m b + d) \quad ??$$

Modular Arithmetic: Addition Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

Assumption

Therefore, $a + c \equiv_m b + d$.

??

Direct Proof

Modular Arithmetic: Addition Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

Assumption

By the definition of congruence, we know that
 $m \mid (a - b)$ and $m \mid (c - d)$.

Elim \wedge
Def of \equiv

Therefore, $a + c \equiv_m b + d$.

??
Direct Proof

Modular Arithmetic: Addition Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of divides, we know that $a - b = km$ and $c - d = jm$ for some integers k and j .

Assumption

Elim \wedge

Def of \equiv

Def of \mid

Elim \exists

??

Therefore, $a + c \equiv_m b + d$.

Direct Proof

Modular Arithmetic: Addition Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of divides, we know that $a - b = km$ and $c - d = jm$ for some integers k and j .

Assumption

Elim \wedge

Def of \equiv

Def of \mid

Elim \exists

Therefore, we have $m \mid (a + c) - (b + d)$, so we can see that $a + c \equiv_m b + d$ by the definition of congruence.

??

Def of \equiv

Direct Proof

Modular Arithmetic: Addition Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of divides, we know that $a - b = km$ and $c - d = jm$ for some integers k and j .

Assumption

Elim \wedge

Def of \equiv

Def of \mid

Elim \exists

... $\exists q ((a+c) - (b+d) = mq) \dots$

??

Therefore, by the definition of divides, we have shown $m \mid (a + c) - (b + d)$, and then, we have $a + c \equiv_m b + d$ by the definition of congruence.

Def of \mid

Def of \equiv

Direct Proof

Modular Arithmetic: Addition Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of divides, we know that $a - b = km$ and $c - d = jm$ for some integers k and j .

Adding these, gives $(a + c) - (b + d) = (a - b) + (c - d) = km + jm = (k + j)m$.

Therefore, by the definition of divides, we have shown $m \mid (a + c) - (b + d)$, and then, we have $a + c \equiv_m b + d$ by the definition of congruence.

Assumption

Elim \wedge

Def of \equiv

Def of \mid

Elim \exists

Algebra

Intro \exists

Def of \mid

Def of \equiv

Direct Proof

Modular Arithmetic: Multiplication Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

Assumption

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of divides, we know that $a - b = jm$ and $c - d = km$ for some integers j and k .

Def of \equiv
Def of \mid
Elim \exists

Algebra

... $\exists q (ac - bd = mq)$...

Therefore, $m \mid ac - bd$ by the definition of divides, so $ac \equiv_m bd$ by the definition of congruence.

Intro \exists
Def of \mid
Def of \equiv

Direct Proof

Modular Arithmetic: Multiplication Property

Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

Assumption

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of divides, we know that $a - b = jm$ and $c - d = km$ for some integers j and k .

Def of \equiv
Def of \mid
Elim \exists

Equivalently, $a = b + jm$ and $c = d + km$.

Algebra

Multiplying these gives $ac = (b + jm)(d + km) = bd + bkm + djm + jkm = bd + (bk + dj + jk)m$, so $ac - bd = (bk + dj + jk)m$.

Intro \exists
Def of \mid

Therefore, $m \mid ac - bd$ by the definition of divides, so $ac \equiv_m bd$ by the definition of congruence.

Def of \equiv

Direct Proof

Modular Arithmetic: Properties

If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Corollary: If $a \equiv_m b$, then $a + c \equiv_m b + c$.

If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Corollary: If $a \equiv_m b$, then $ac \equiv_m bc$.

These properties are sufficient to allow us to do algebra with congruences

Another Property of “=” Used in Algebra

Can “plug in” (a.k.a. substitute)
the known value of a variable

Example: given $2y + 3x = 25$ and $x = 7y$,
follows that $2y + 21y = 25$.

We can call this "Algebra",
but it's a more primitive rule.

(See the reference sheet.)

Another Property of “=” Used in Algebra

Can “plug in” (a.k.a. substitute)
the known value of a variable

Example: given $2y + 3x = 25$ and $x = 7y$,
follows that $2y + 21y = 25$.

This is also true of *congruences*!
(But we don't have the tools to prove it yet....)

Example: given $2y + 3x \equiv_m 25$ and $x \equiv_m 7y$,
follows that $2y + 21y \equiv_m 25$.

GCD

First GCD Fact

Domain of Discourse
Non-negative Integers

For every positive integer a ,
if $a > 0$, then $\gcd(a, 0) = a$.

$$\forall a ((a > 0) \rightarrow (a = \gcd(a, 0)))$$

We proved this in Topic 2....

Let a be arbitrary. Suppose $a > 0$. Show that a satisfies the definition of $\gcd(a, 0)$.

Useful GCD Fact

Let a and b be positive integers.
We have $\gcd(a, b) = \gcd(b, a \bmod b)$

Proof Idea:

We will show that every number dividing a and b also divides b and $a \bmod b$.
I.e., $d|a$ and $d|b$ iff $d|b$ and $d|(a \bmod b)$.

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.

Useful GCD Fact

Let a and b be positive integers.

We have $\gcd(a, b) = \gcd(b, a \bmod b)$

Proof (of $d|a$ and $d|b$ iff $d|b$ and $d|(a \bmod b)$):

By the Division Theorem, $a = qb + (a \bmod b)$ for some integer $q = a \text{ div } b$.

Suppose $d | b$ and $d | (a \bmod b)$.

Then $b = md$ and $(a \bmod b) = nd$ for some integers m and n .

Therefore $a = qb + (a \bmod b) = qmd + nd = (qm + n)d$.

So $d | a$ by the definition of divides.

Suppose $d | a$ and $d | b$.

Then $a = kd$ and $b = jd$ for some integers k and j .

Therefore $(a \bmod b) = a - qb = kd - qjd = (k - qj)d$.

So, $d | (a \bmod b)$ by the definition of divides.

Since they have the same common divisors, $\gcd(a, b) = \gcd(b, a \bmod b)$. ■

Euclid's Algorithm

$$\text{gcd}(a, b) = \text{gcd}(b, a \bmod b) \quad \text{gcd}(a, 0) = a$$

```
int gcd(int a, int b) { /* Assumes: a >= b >= 0 */
    if (b == 0) {
        return a;
    } else {
        return gcd(b, a % b);
    }
}
```

Note: $\text{gcd}(b, a) = \text{gcd}(a, b)$

Euclid's Algorithm

Repeatedly use $\gcd(a, b) = \gcd(b, a \bmod b)$ to reduce numbers until you get $\gcd(g, 0) = g$.

$$\gcd(660, 126) =$$

Euclid's Algorithm

Repeatedly use $\gcd(a, b) = \gcd(b, a \bmod b)$ to reduce numbers until you get $\gcd(g, 0) = g$.

$$\begin{aligned}\gcd(660, 126) &= \gcd(126, 660 \bmod 126) = \gcd(126, 30) \\ &= \gcd(30, 126 \bmod 30) = \gcd(30, 6) \\ &= \gcd(6, 30 \bmod 6) = \gcd(6, 0) \\ &= 6\end{aligned}$$

Bézout's theorem

If a and b are positive integers, then there exist integers s and t such that

$$\gcd(a, b) = sa + tb.$$

$$(a > 0 \wedge b > 0) \rightarrow \exists s \exists t (\gcd(a, b) = sa + tb)$$

$$\forall a \forall b ((a > 0 \wedge b > 0) \rightarrow \exists s \exists t (\gcd(a, b) = sa + tb))$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$\gcd(a, b) = sa + tb$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$\gcd(a, b) = sa + tb$$

Step 1 (Compute GCD & Keep Tableau Information):

$$\begin{array}{lll} a & b & \\ \hline \end{array} \quad \begin{array}{lll} b & a \bmod b = r & \\ \hline \end{array}$$

$\gcd(35, 27) = \gcd(27, 35 \bmod 27) = \gcd(27, 8)$

$$\begin{array}{lll} a & = q * b + r \\ 35 & = 1 * 27 + 8 \end{array}$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$\gcd(a, b) = sa + tb$$

Step 1 (Compute GCD & Keep Tableau Information):

a	b	b	$a \bmod b = r$	b	r
35	27	27	$35 \bmod 27 = 8$	8	8
			$= \gcd(8, 27 \bmod 8)$	$= \gcd(8, 3)$	
			$= \gcd(8, 3 \bmod 8)$	$= \gcd(3, 2)$	
			$= \gcd(3, 2 \bmod 3)$	$= \gcd(3, 2)$	
			$= \gcd(2, 3 \bmod 2)$	$= \gcd(2, 1)$	
			$= \gcd(1, 2 \bmod 1)$	$= \gcd(1, 0)$	

$a = q * b + r$
$35 = 1 * 27 + 8$
$27 = 3 * 8 + 3$
$8 = 2 * 3 + 2$
$3 = 1 * 2 + 1$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$\gcd(a, b) = sa + tb$$

Step 2 (Solve the equations for r):

$$a = q * b + r$$

$$35 = 1 * 27 + 8$$

$$27 = 3 * 8 + 3$$

$$8 = 2 * 3 + 2$$

$$3 = 1 * 2 + 1$$

$$r = a - q * b$$

$$8 = 35 - 1 * 27$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$\gcd(a, b) = sa + tb$$

Step 2 (Solve the equations for r):

$$a = q * b + r$$

$$35 = 1 * 27 + 8$$

$$27 = 3 * 8 + 3$$

$$8 = 2 * 3 + 2$$

$$3 = 1 * 2 + 1$$

$$r = a - q * b$$

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$\gcd(a, b) = sa + tb$$

Step 3 (Backward Substitute Equations):

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$\boxed{1 = 3 - 1 * 2}$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$\gcd(a, b) = sa + tb$$

Step 3 (Backward Substitute Equations):

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

$$1 = 3 - 1 * (8 - 2 * 3)$$

$$= 3 - 8 + 2 * 3$$

$$= (-1) * 8 + 3 * 3$$

Plug in the def of 2

Re-arrange into
3's and 8's

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$\gcd(a, b) = sa + tb$$

Step 3 (Backward Substitute Equations):

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

$$1 = 3 - 1 * (8 - 2 * 3)$$

$$\begin{aligned} &= 3 - 8 + 2 * 3 \\ &= (-1) * 8 + 3 * 3 \end{aligned}$$

Plug in the def of 2

Re-arrange into
3's and 8's

Plug in the def of 3

$$\begin{aligned} &= (-1) * 8 + 3 * (27 - 3 * 8) \\ &= (-1) * 8 + 3 * 27 + (-9) * 8 \\ &= 3 * 27 + (-10) * 8 \end{aligned}$$

Re-arrange into
8's and 27's

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$\gcd(a, b) = sa + tb$$

Step 3 (Backward Substitute Equations):

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

Re-arrange into
27's and 35's

$$1 = 3 - 1 * (8 - 2 * 3)$$

$$\begin{aligned} &= 3 - 8 + 2 * 3 && \text{Re-arrange into} \\ &= (-1) * 8 + 3 * 3 && 3's \text{ and } 8's \end{aligned}$$

Plug in the def of 3

$$\begin{aligned} &= (-1) * 8 + 3 * (27 - 3 * 8) \\ &= (-1) * 8 + 3 * 27 + (-9) * 8 \\ &= 3 * 27 + (-10) * 8 && \text{Re-arrange into} \\ &&& 8's \text{ and } 27's \end{aligned}$$

$$\begin{aligned} &= 3 * 27 + (-10) * (35 - 1 * 27) \\ &= 3 * 27 + (-10) * 35 + 10 * 27 \\ &= 13 * 27 + (-10) * 35 \end{aligned}$$

Multiplicative inverse mod m

Let $0 \leq a, b < m$. Then, b is the *multiplicative inverse of a (modulo m)* iff $ab \equiv_m 1$.

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

mod 7

x	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

mod 10

Multiplicative inverse mod m

Suppose $\gcd(a, m) = 1$

By Bézout's Theorem, there exist integers s and t such that $sa + tm = 1$.

s is the multiplicative inverse of a (modulo m):

$1 \equiv_m sa$ since $m \mid 1 - sa$ (since $1 - sa = tm$)

So... we can compute multiplicative inverses with the extended Euclidean algorithm

These inverses let us solve modular equations...

Recall: Properties of Modular Arithmetic

If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

If $a \equiv_m b$, then $a + c \equiv_m b + c$.

If $a \equiv_m b$, then $ac \equiv_m bc$.

These properties are sufficient to allow us to do algebra with congruences

Multiplicative Inverses and Algebra

Adding to both sides easily reversible:

$$x \equiv_m y$$

$-c \curvearrowright$ $+c \curvearrowright$

$$x + c \equiv_m y + c$$

The same is not true of multiplication...

unless we have a multiplicative inverse $cd \equiv_m 1$

$$x \equiv_m y$$

$\times d \curvearrowright$ $\times c \curvearrowright$

$$cx \equiv_m cy$$

Recall: Multiplicative inverse mod m

Suppose $\gcd(a, m) = 1$

By Bézout's Theorem, there exist integers s and t such that $sa + tm = 1$.

s is the multiplicative inverse of a (modulo m):

$1 \equiv_m sa$ since $m \mid 1 - sa$ (since $1 - sa = tm$)

We can compute multiplicative inverses with the [Extended Euclidean algorithm](#)

These inverses let us [solve](#) modular equations...

Example: Solve a Modular Equation

Solve: $7x \equiv_{26} 3$

Suppose we can show that 15 is the multiplicative inverse of 7 modulo 26, i.e., that $15 \cdot 7 \equiv_{26} 1$

Then, we can multiply on both sides by 15 to see that

$$x \equiv_{26} 1x \equiv_{26} 15 \cdot 7x \equiv_{26} 15 \cdot 3 \equiv_{26} 45 \equiv_{26} 19$$

So, if we are given that $7x \equiv_{26} 3$, then we have shown that $x \equiv_{26} 19$.

Example: Solve a Modular Equation

Solve: $7x \equiv_{26} 3$

Find multiplicative inverse of 7 modulo 26

Example: Solve a Modular Equation

Solve: $7x \equiv_{26} 3$ Find multiplicative inverse of **7** modulo **26**

$$\gcd(26, 7) = \gcd(7, 5) = \gcd(5, 2) = \gcd(2, 1) = 1$$

$$26 = 3 * 7 + 5$$

$$7 = 1 * 5 + 2$$

$$5 = 2 * 2 + 1$$

Example: Solve a Modular Equation

Solve: $7x \equiv_{26} 3$ Find multiplicative inverse of **7** modulo **26**

$$\gcd(26, 7) = \gcd(7, 5) = \gcd(5, 2) = \gcd(2, 1) = 1$$

$$26 = 3 * 7 + 5 \quad 5 = 26 - 3 * 7$$

$$7 = 1 * 5 + 2 \quad 2 = 7 - 1 * 5$$

$$5 = 2 * 2 + 1 \quad 1 = 5 - 2 * 2$$

Example: Solve a Modular Equation

Solve: $7x \equiv_{26} 3$ Find multiplicative inverse of **7** modulo **26**

$$\gcd(26, 7) = \gcd(7, 5) = \gcd(5, 2) = \gcd(2, 1) = 1$$

$$\begin{array}{rcl} 26 & = & 3 * 7 + 5 \\ 7 & = & 1 * 5 + 2 \\ 5 & = & 2 * 2 + 1 \end{array} \quad \begin{array}{rcl} 5 & = & 26 - 3 * 7 \\ 2 & = & 7 - 1 * 5 \\ 1 & = & 5 - 2 * 2 \end{array}$$

$$\begin{aligned} 1 &= 5 - 2 * (7 - 1 * 5) \\ &= (-2) * 7 + 3 * 5 \\ &= (-2) * 7 + 3 * (26 - 3 * 7) \\ &= (-11) * 7 + 3 * 26 \end{aligned}$$

Example: Solve a Modular Equation

Solve: $7x \equiv_{26} 3$ Find multiplicative inverse of **7** modulo **26**

$$\gcd(26, 7) = \gcd(7, 5) = \gcd(5, 2) = \gcd(2, 1) = 1$$

$$26 = 3 * 7 + 5 \quad 5 = 26 - 3 * 7$$

$$7 = 1 * 5 + 2 \quad 2 = 7 - 1 * 5$$

$$5 = 2 * 2 + 1 \quad 1 = 5 - 2 * 2$$

$$1 = 5 - 2 * (7 - 1 * 5)$$

$$= (-2) * 7 + 3 * 5$$

$$= (-2) * 7 + 3 * (26 - 3 * 7)$$

$$= (-11) * 7 + 3 * 26$$

Now $(-11) \bmod 26 = 15$.

“the” multiplicative inverse

(-11 is also “a” multiplicative inverse)

Example: Solve a Modular Equation

Solve: $7x \equiv_{26} 3$

We saw before that... if we are given that $7x \equiv_{26} 3$,
then we have shown that $x \equiv_{26} 19$.

$$7x \equiv_{26} 3 \Rightarrow x \equiv_{26} 19$$

But these steps are *all* reversible...

Example: Solve a Modular Equation

$$7x \equiv_{26} 3 \Rightarrow 15 \cdot 7x \equiv_{26} 15 \cdot 3$$

multiply both sides by 15

$$\Rightarrow x \equiv_{26} 19$$

since $15 \cdot 7 \equiv_{26} 1$ and $15 \cdot 3 \equiv_{26} 19$

$$x \equiv_{26} 19 \Rightarrow 7x \equiv_{26} 7 \cdot 19$$

multiply both sides by 7

$$\Rightarrow 7x \equiv_{26} 3$$

since $7 \cdot 19 \equiv_{26} 3$

Example: Solve a Modular Equation

Solve: $7x \equiv_{26} 3$

We saw before that... if we are given that $7x \equiv_{26} 3$, then we have shown that $x \equiv_{26} 19$.

$$7x \equiv_{26} 3 \Rightarrow x \equiv_{26} 19$$

But all of these steps are **reversible**...

$$x \equiv_{26} 19 \Rightarrow 7x \equiv_{26} 7 \cdot 19$$

So $7x \equiv_{26} 3$ iff $x \equiv_{26} 19$

Hence, the solutions are all numbers of the form $19 + 26k$ for some integer

Beware the "Backward Proof"

- Many classes teach doing proofs backward:

$$\begin{array}{ll} 15x + 5 = 5(-3x - 1) & \text{start with we want to } \textit{prove} \\ (15x + 5)^2 = [5(-3x - 1)]^2 & \text{do some manipulations} \\ \dots & \\ 0 = 0 & \text{end with an obvious truth} \end{array}$$

- This is proof of nothing: " $P \rightarrow T$ " is a tautology
 - it is true regardless of whether P is true
- See notes on the Resources page

Solving Modular Equations in "Standard Form"

Solve: $7x \equiv_{26} 3$ (of the form $Ax \equiv_m B$ for some A and B)

Step 1. Find multiplicative inverse of 7 modulo 26

$$1 = \dots = (-11) * 7 + 3 * 26$$

Since $(-11) \bmod 26 = 15$, the inverse of 7 is 15 .

Step 2. Multiply both sides and simplify

Multiplying by 15 , we get $x \equiv_{26} 15 \cdot 7x \equiv_{26} 15 \cdot 3 \equiv_{26} 19$.

Step 3. State the full set of solutions

So, the solutions are $19 + 26k$ for any integer k

(must be of the form $a + mk$ with $0 \leq a < m$)

Example: Not in “Standard Form”

Solve: $7(x - 3) \equiv_{26} 8 + 2x$

What about equation not in standard form?

Example: Not in “Standard Form”

Solve: $7(x - 3) \equiv_{26} 8 + 2x$

Rewrite it in standard form:

$$7x - 21 \equiv_{26} 7(x - 3) \equiv_{26} 8 + 2x$$

move $2x$ to the other side

$$5x - 21 \equiv_{26} 8$$

move -21 to the other side

$$5x \equiv_{26} 29 \equiv_{26} 3$$

These steps are all **reversible**, so the solutions are the same.

Induction

Mathematical Induction

Method for proving claims about non-negative integers

- A new logical inference rule!
 - It only applies over the non-negative numbers
 - The idea is to **use** the special structure of these numbers to prove things more easily

Prove $\forall k ((a \equiv_m b) \rightarrow (a^k \equiv_m b^k))$

Let k be an arbitrary *non-negative* integer.

Suppose that $a \equiv_m b$.

We know $((a \equiv_m b) \wedge (a \equiv_m b)) \rightarrow (a^2 \equiv_m b^2)$ by multiplying congruences. So, applying this repeatedly, we have:

$$\begin{aligned} & ((a \equiv_m b) \wedge (a \equiv_m b)) \rightarrow (a^2 \equiv_m b^2) \\ & ((a^2 \equiv_m b^2) \wedge (a \equiv_m b)) \rightarrow (a^3 \equiv_m b^3) \end{aligned}$$

...

$$((a^{k-1} \equiv_m b^{k-1}) \wedge (a \equiv_m b)) \rightarrow (a^k \equiv_m b^k)$$

The “...”s is a problem! We don’t have a proof rule that allows us to say “do this over and over”.

But there is such a rule for non-negative numbers!

Domain: Non-Negative Numbers

Induction

$$\frac{P(0) \quad \forall k (P(k) \rightarrow P(k + 1))}{\therefore \forall n P(n)}$$

Induction Is A Rule of Inference

Domain: Non-Negative Numbers

$$\frac{P(0) \quad \forall k (P(k) \rightarrow P(k + 1))}{\therefore \forall n P(n)}$$

Induction

How do the givens prove $P(3)$?

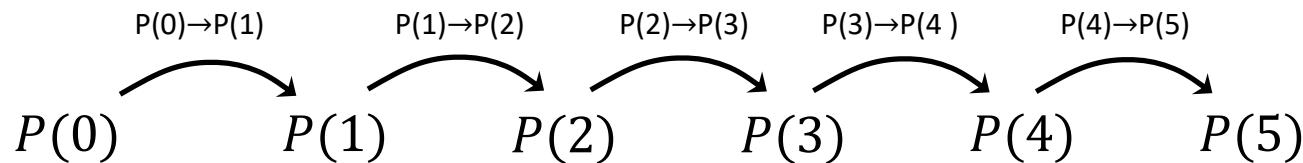
Induction Is A Rule of Inference

Domain: Non-Negative Numbers

Induction

$$\frac{P(0) \quad \forall k (P(k) \rightarrow P(k + 1))}{\therefore \forall n P(n)}$$

How do the givens prove $P(5)$?



First, we have $P(0)$.

Since $P(n) \rightarrow P(n+1)$ for all n , we have $P(0) \rightarrow P(1)$.

Since $P(0)$ is true and $P(0) \rightarrow P(1)$, by Modus Ponens, $P(1)$ is true.

Since $P(n) \rightarrow P(n+1)$ for all n , we have $P(1) \rightarrow P(2)$.

Since $P(1)$ is true and $P(1) \rightarrow P(2)$, by Modus Ponens, $P(2)$ is true.

Using The Induction Rule In A Formal Proof

Induction

$$\frac{P(0) \quad \forall k (P(k) \rightarrow P(k + 1))}{\therefore \forall n \ P(n)}$$

Using The Induction Rule In A Formal Proof

$$\frac{P(0) \quad \forall k (P(k) \rightarrow P(k + 1))}{\therefore \forall n P(n)}$$

Induction

$$1. P(0)$$

$$\begin{array}{l} 2. \forall k (P(k) \rightarrow P(k + 1)) \\ 3. \forall n P(n) \end{array}$$

??
Induction: 1, 2

Using The Induction Rule In A Formal Proof

Induction

$$\frac{P(0) \quad \forall k (P(k) \rightarrow P(k + 1))}{\therefore \forall n P(n)}$$

1. $P(0)$

Let k be an arbitrary integer ≥ 0

2.1 $P(k) \rightarrow P(k + 1)$

??

2. $\forall k (P(k) \rightarrow P(k + 1))$

Intro \forall

3. $\forall n P(n)$

Induction: 1, 2

Using The Induction Rule In A Formal Proof

$$\frac{P(0) \quad \forall k (P(k) \rightarrow P(k + 1))}{\therefore \forall n P(n)}$$

Induction

1. $P(0)$

Let k be an arbitrary integer ≥ 0

2.1.1. $P(k)$

Assumption

2.1.2. \dots

2.1.3. $P(k+1)$

2.1 $P(k) \rightarrow P(k+1)$

Direct Proof

2. $\forall k (P(k) \rightarrow P(k+1))$

Intro \forall

3. $\forall n P(n)$

Induction: 1, 2

Translating to an English Proof

$$\frac{P(0) \quad \forall k (P(k) \rightarrow P(k + 1))}{\therefore \forall n P(n)}$$

Induction

1. Prove $P(0)$

Base Case

Let k be an arbitrary integer ≥ 0

2.1.1. Suppose that $P(k)$ is true

2.1.2. ...

2.1.3. Prove $P(k+1)$ is true

Inductive Hypothesis

Inductive Step

2.1 $P(k) \rightarrow P(k+1)$

Direct Proof

2. $\forall k (P(k) \rightarrow P(k+1))$

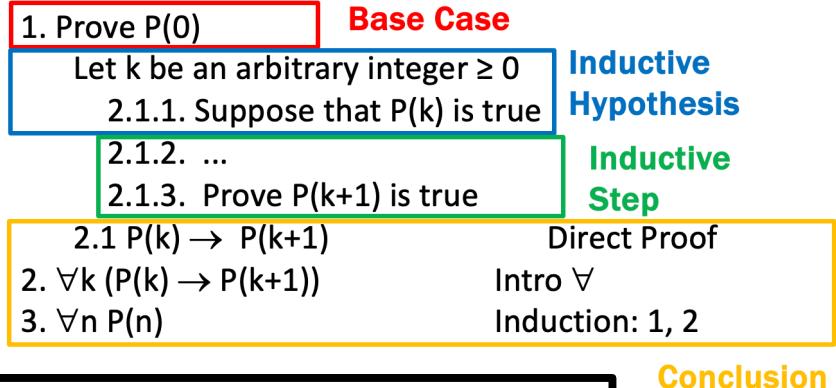
Intro \forall

3. $\forall n P(n)$

Induction: 1, 2

Conclusion

Translating to an English Proof



Induction English Proof Template

[...Define $P(n)$...]

We will show that $P(n)$ is true for every $n \geq 0$ by induction.

Base Case: [...proof of $P(0)$ here...]

Induction Hypothesis:

Suppose that $P(k)$ is true for an arbitrary $k \geq 0$.

Induction Step:

[...proof of $P(k + 1)$ here...]

The proof of $P(k + 1)$ **must** invoke the IH somewhere.

So, the claim is true by induction.

Inductive Proofs In 5 Easy Steps

Basic induction template

Proof:

1. “Let $P(n)$ be... . We will show that $P(n)$ is true for every $n \geq 0$ by Induction.”

2. “Base Case:” Prove $P(0)$

3. “Inductive Hypothesis:

Suppose $P(k)$ is true for an arbitrary integer $k \geq 0$ ”

4. “Inductive Step:” Prove that $P(k + 1)$ is true.

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don’t assume $P(k + 1)$!!)

5. “Conclusion: Result follows by induction”

What is $1 + 2 + 4 + \dots + 2^n$?

- $1 = 1$
- $1 + 2 = 3$
- $1 + 2 + 4 = 7$
- $1 + 2 + 4 + 8 = 15$
- $1 + 2 + 4 + 8 + 16 = 31$

It sure looks like this sum is $2^{n+1} - 1$

How can we prove it?

We could prove it for $n = 1, n = 2, n = 3, \dots$ but that would literally take forever.

Good that we have induction!

Prove $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

Prove $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

1. Let $P(n)$ be " $2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1$ ". We will show $P(n)$ is true for all non-negative numbers by induction.

Prove $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

1. Let $P(n)$ be " $2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$ so $P(0)$ is true.

Prove $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

1. Let $P(n)$ be " $2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^0 + 2^1 + \dots + 2^k = 2^{k+1} - 1$.

Prove $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

1. Let $P(n)$ be " $2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^0 + 2^1 + \dots + 2^k = 2^{k+1} - 1$.
4. Induction Step:

Goal: Show $P(k+1)$, i.e. show $2^0 + 2^1 + \dots + 2^k + 2^{k+1} = 2^{k+2} - 1$

Prove $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

1. Let $P(n)$ be " $2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^0 + 2^1 + \dots + 2^k = 2^{k+1} - 1$.
4. Induction Step:

$$2^0 + 2^1 + \dots + 2^k = 2^{k+1} - 1 \text{ by IH}$$

Adding 2^{k+1} to both sides, we get:

$$2^0 + 2^1 + \dots + 2^k + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $2^0 + 2^1 + \dots + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly $P(k+1)$.

Calculation Block

We can do the same with equality:

$$\begin{aligned} & 2^0 + 2^1 + \dots + 2^k + 2^{k+1} \\ &= (2^0 + 2^1 + \dots + 2^k) + 2^{k+1} \\ &= (2^{k+1} - 1) + 2^{k+1} && \text{since } 2^0 + 2^1 + \dots + 2^k = 2^{k+1} - 1 \\ &= 2(2^{k+1}) - 1 && \text{(better: "by the IH")} \\ &= 2^{k+2} - 1 \end{aligned}$$

Explanations appear on in right column

- "since" means we substituted LHS for RHS
- ordinary algebra (on integers) does not need explanation
- "def of" will be used to apply the definition of a function
 - e.g., replacing $f(x)$ by y when we have f defined as $f(x) := y$

Calculation Block

We can do the same with equality:

$$\begin{aligned} & 2^0 + 2^1 + \dots + 2^k + 2^{k+1} \\ &= (2^0 + 2^1 + \dots + 2^k) + 2^{k+1} \\ &= (2^{k+1} - 1) + 2^{k+1} \quad \text{by the IH} \\ &= 2(2^{k+1}) - 1 \\ &= 2^{k+2} - 1 \end{aligned}$$

Entire block shows $2^0 + 2^1 + \dots + 2^k + 2^{k+1} = 2^{k+2} - 1$

– this is the transitivity property of " $=$ "

Can also do calculation with " $<$ " and " \leq "

– don't mix directions: " $>$ " and " $<$ " in one block is $><$

Prove $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

1. Let $P(n)$ be " $2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^0 + 2^1 + \dots + 2^k = 2^{k+1} - 1$.
4. Induction Step:

We can calculate

$$\text{Show } 2^0 + 2^1 + \dots + 2^k + 2^{k+1} = 2^{k+2} - 1$$

$$\begin{aligned}2^0 + 2^1 + \dots + 2^k + 2^{k+1} &= (2^0 + 2^1 + \dots + 2^k) + 2^{k+1} \\&= (2^{k+1} - 1) + 2^{k+1} \quad \text{by the IH} \\&= 2(2^{k+1}) - 1 \\&= 2^{k+2} - 1,\end{aligned}$$

which is exactly $P(k+1)$.

The entire inductive step is one calculation!

We will rely heavily on calculation going forward...

Prove $1 + 2 + 4 + \dots + 2^n = 2^{n+1} - 1$

1. Let $P(n)$ be " $2^0 + 2^1 + \dots + 2^n = 2^{n+1} - 1$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $2^0 = 1 = 2 - 1 = 2^{0+1} - 1$ so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$, i.e., that $2^0 + 2^1 + \dots + 2^k = 2^{k+1} - 1$.
4. Induction Step:

We can calculate

$$\begin{aligned}2^0 + 2^1 + \dots + 2^k + 2^{k+1} &= (2^0 + 2^1 + \dots + 2^k) + 2^{k+1} \\&= (2^{k+1} - 1) + 2^{k+1} \quad \text{by the IH} \\&= 2(2^{k+1}) - 1 \\&= 2^{k+2} - 1,\end{aligned}$$

which is exactly $P(k+1)$.

5. Thus $P(n)$ is true for all $n \geq 0$, by induction.

Recall: Inductive Proofs In 5 Easy Steps

Basic induction template

Proof:

1. “Let $P(n)$ be... . We will show that $P(n)$ is true for every $n \geq 0$ by Induction.”

2. “Base Case:” Prove $P(0)$

3. “Inductive Hypothesis:

Suppose $P(k)$ is true for an arbitrary integer $k \geq 0$ ”

4. “Inductive Step:” Prove that $P(k + 1)$ is true.

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don’t assume $P(k + 1)$!!)

5. “Conclusion: Result follows by induction”

Prove $1 + 2 + 3 + \dots + n = n(n + 1)/2$

Prove that $\sum_{i=0}^n i = n(n + 1)/2$

Summation Notation

$$\sum_{i=0}^n i = 0 + 1 + 2 + 3 + \dots + n$$

Prove $\sum_{i=0}^n i = n(n + 1)/2$

1. Let $P(n)$ be " $\sum_{i=0}^n i = n(n + 1)/2$ ". We will show $P(n)$ is true for all non-negative numbers by induction.

Prove $\sum_{i=0}^n i = n(n + 1)/2$

1. Let $P(n)$ be " $\sum_{i=0}^n i = n(n + 1)/2$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $\sum_{i=0}^0 i = 0 = 0(0 + 1)/2$, so $P(0)$ is true.

Prove $\sum_{i=0}^n i = n(n + 1)/2$

1. Let $P(n)$ be " $\sum_{i=0}^n i = n(n + 1)/2$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $\sum_{i=0}^0 i = 0 = 0(0 + 1)/2$, so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $\sum_{i=0}^k i = k(k + 1)/2$

“some” or “an”
not any!

Prove $\sum_{i=0}^n i = n(n + 1)/2$

1. Let $P(n)$ be " $\sum_{i=0}^n i = n(n + 1)/2$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $\sum_{i=0}^0 i = 0 = 0(0 + 1)/2$, so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $\sum_{i=0}^k i = k(k + 1)/2$
4. Induction Step:

Goal: Show $P(k+1)$, i.e., $\sum_{i=0}^{k+1} i = (k + 1)(k + 2)/2$

Prove $\sum_{i=0}^n i = n(n + 1)/2$

1. Let $P(n)$ be " $\sum_{i=0}^n i = n(n + 1)/2$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $\sum_{i=0}^0 i = 0 = 0(0 + 1)/2$, so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $\sum_{i=0}^k i = k(k + 1)/2$
4. Induction Step: We can see that

$$\begin{aligned}\sum_{i=0}^{k+1} i &= (\sum_{i=0}^k i) + (k + 1) \\&= k(k + 1)/2 + (k + 1) \quad \text{by the IH} \\&= (k + 1)(k/2 + 1) \\&= (k + 1)(k + 2)/2\end{aligned}$$

which is exactly $P(k+1)$.

Prove $\sum_{i=0}^n i = n(n + 1)/2$

1. Let $P(n)$ be " $\sum_{i=0}^n i = n(n + 1)/2$ ". We will show $P(n)$ is true for all non-negative numbers by induction.
2. Base Case ($n=0$): $\sum_{i=0}^0 i = 0 = 0(0 + 1)/2$, so $P(0)$ is true.
3. Induction Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 0$. I.e., suppose $\sum_{i=0}^k i = k(k + 1)/2$
4. Induction Step: We can see that

$$\begin{aligned}\sum_{i=0}^{k+1} i &= (\sum_{i=0}^k i) + (k + 1) \\&= k(k + 1)/2 + (k + 1) \quad \text{by the IH} \\&= (k + 1)(k/2 + 1) \\&= (k + 1)(k + 2)/2\end{aligned}$$

which is exactly $P(k+1)$.

5. Thus $P(n)$ is true for all $n \geq 0$, by induction.

Induction: Changing the **starting** point

- What if we want to prove that $P(n)$ is true for all integers $n \geq b$ for some integer b ?
- Define predicate $Q(k) = P(k + b)$ for all k .
 - Then $\forall n Q(n) \equiv \forall n \geq b P(n)$
- Ordinary induction for Q :
 - Prove $Q(0) \equiv P(b)$
 - Prove
$$\forall k (Q(k) \rightarrow Q(k + 1)) \equiv \forall k \geq b (P(k) \rightarrow P(k + 1))$$

Inductive Proofs In 5 Easy Steps

Template for induction from a different base case

1. “Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by induction.”
2. “Base Case:” Prove $P(b)$
3. “Inductive Hypothesis:
Assume $P(k)$ is true for an arbitrary integer $k \geq b$ ”
4. “Inductive Step:” Prove that $P(k + 1)$ is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don’t assume $P(k + 1)$!!)
5. “Conclusion: $P(n)$ is true for all integers $n \geq b$ ”

Prove $3^n \geq n^2 + 3$ for all $n \geq 2$

Prove $3^n \geq n^2 + 3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^n \geq n^2+3$ ". We will show $P(n)$ is true for all integers $n \geq 2$ by induction.

Prove $3^n \geq n^2 + 3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^n \geq n^2+3$ ". We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case ($n=2$): $3^2 = 9 \geq 7 = 4+3 = 2^2+3$ so $P(2)$ is true.

Prove $3^n \geq n^2 + 3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^n \geq n^2+3$ ". We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case ($n=2$): $3^2 = 9 \geq 7 = 4+3 = 2^2+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^k \geq k^2+3$.

Prove $3^n \geq n^2 + 3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^n \geq n^2+3$ ". We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case ($n=2$): $3^2 = 9 \geq 7 = 4+3 = 2^2+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^k \geq k^2+3$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $3^{k+1} \geq (k+1)^2+3 = k^2+2k+4$

Prove $3^n \geq n^2 + 3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^n \geq n^2+3$ ". We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case ($n=2$): $3^2 = 9 \geq 7 = 4+3 = 2^2+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^k \geq k^2+3$.
4. Inductive Step: We can see that

$$\begin{aligned} 3^{k+1} &= 3(3^k) \\ &\geq 3(k^2+3) && \text{by the IH} \\ &= k^2+2k^2+9 \\ &\geq k^2+2k+9 && \text{since } k^2 \geq k \\ &\geq k^2+2k+4 && \text{since } 9 \geq 4 \\ &= (k+1)^2+3 \end{aligned}$$

Therefore $P(k+1)$ is true.

Prove $3^n \geq n^2 + 3$ for all $n \geq 2$

1. Let $P(n)$ be " $3^n \geq n^2+3$ ". We will show $P(n)$ is true for all integers $n \geq 2$ by induction.
2. Base Case ($n=2$): $3^2 = 9 \geq 7 = 4+3 = 2^2+3$ so $P(2)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 2$. I.e., suppose $3^k \geq k^2+3$.
4. Inductive Step: We can see that

$$\begin{aligned} 3^{k+1} &= 3(3^k) \geq 3(k^2+3) && \text{by the IH} \\ &= k^2+2k^2+9 \\ &\geq k^2+2k+9 && \text{since } k^2 \geq k \\ &\geq k^2+2k+4 && \text{since } 9 \geq 4 \\ &= (k+1)^2+3 \end{aligned}$$

Therefore $P(k+1)$ is true.

5. Thus $P(n)$ is true for all integers $n \geq 2$, by induction.

Induction: Adding Base Cases

- What if we want to prove that $P(n)$ is true for all integers $n \geq b$ for some integer b but the inductive step only works for $n \geq c$?
- Add proofs of $P(b), P(b + 1), \dots, P(c - 1)$
 - will call these extra "base cases"
- Formally, we are using the fact that

$$\begin{aligned} P(b) \wedge \dots \wedge P(c - 1) \wedge \forall n ((c \leq n) \rightarrow P(n)) \\ \equiv \forall n ((b \leq n) \rightarrow P(n)) \end{aligned}$$

Inductive Proofs In 5 Easy Steps

Template for induction with multiple base cases

1. “Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq \mathbf{b}$ by induction.”
2. “Base Case:” Prove $P(\mathbf{b})$, ..., $P(\mathbf{c})$
3. “Inductive Hypothesis:
Assume $P(k)$ is true for an arbitrary integer $k \geq \mathbf{c}$ ”
4. “Inductive Step:” Prove that $P(k + 1)$ is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don’t assume $P(k + 1)$!!)
5. “Conclusion: $P(n)$ is true for all integers $n \geq \mathbf{b}$ ”

Recursive Definitions of Functions

Familiar Recursive Definitions

Suppose that $h : \mathbb{N} \rightarrow \mathbb{R}$.

Then we have familiar summation notation:

$$\sum_{i=0}^0 h(i) := h(0)$$

$$\sum_{i=0}^{n+1} h(i) := (\sum_{i=0}^n h(i)) + h(n + 1) \text{ for } n \geq 0$$

There is also product notation:

$$\prod_{i=0}^0 h(i) := h(0)$$

$$\prod_{i=0}^{n+1} h(i) := (\prod_{i=0}^n h(i)) \cdot h(n + 1) \text{ for } n \geq 0$$

Recursive definitions of functions

- $0! := 1; (n + 1)! := (n + 1) \cdot n!$ **for all** $n \geq 0$.
- $F(0) := 0; F(n + 1) := F(n) + 1$ **for all** $n \geq 0$.
- $G(0) := 1; G(n + 1) := 2 \cdot G(n)$ **for all** $n \geq 0$.
- $H(0) := 1; H(n + 1) := 2^{H(n)}$ **for all** $n \geq 0$.

Prove $n! \leq n^n$ for all $n \geq 1$

1. Let $P(n)$ be " $n! \leq n^n$ ". We will show that $P(n)$ is true for all integers $n \geq 1$ by induction.

Prove $n! \leq n^n$ for all $n \geq 1$

1. Let $P(n)$ be " $n! \leq n^n$ ". We will show that $P(n)$ is true for all integers $n \geq 1$ by induction.
2. Base Case ($n=1$): $1!=1 \cdot 0!=1 \cdot 1=1=1^1$ so $P(1)$ is true.

Prove $n! \leq n^n$ for all $n \geq 1$

1. Let $P(n)$ be " $n! \leq n^n$ ". We will show that $P(n)$ is true for all integers $n \geq 1$ by induction.
2. Base Case ($n=1$): $1!=1 \cdot 0!=1 \cdot 1=1=1^1$ so $P(1)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 1$. I.e., suppose $k! \leq k^k$.

Prove $n! \leq n^n$ for all $n \geq 1$

1. Let $P(n)$ be " $n! \leq n^n$ ". We will show that $P(n)$ is true for all integers $n \geq 1$ by induction.
2. Base Case ($n=1$): $1!=1 \cdot 0!=1 \cdot 1=1=1^1$ so $P(1)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 1$. I.e., suppose $k! \leq k^k$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $(k+1)! \leq (k+1)^{k+1}$

Prove $n! \leq n^n$ for all $n \geq 1$

1. Let $P(n)$ be " $n! \leq n^n$ ". We will show that $P(n)$ is true for all integers $n \geq 1$ by induction.
2. Base Case ($n=1$): $1!=1 \cdot 0!=1 \cdot 1=1=1^1$ so $P(1)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 1$. I.e., suppose $k! \leq k^k$.
4. Inductive Step:

We can calculate:

$$\begin{aligned}(k+1)! &= (k+1) \cdot k! && \text{by definition of !} \\ &\leq (k+1) \cdot k^k && \text{by the IH} \\ &\leq (k+1) \cdot (k+1)^k && \text{since } k \geq 0 \\ &= (k+1)^{k+1}\end{aligned}$$

Therefore $P(k+1)$ is true.

Prove $n! \leq n^n$ for all $n \geq 1$

1. Let $P(n)$ be " $n! \leq n^n$ ". We will show that $P(n)$ is true for all integers $n \geq 1$ by induction.
2. Base Case ($n=1$): $1!=1 \cdot 0!=1 \cdot 1=1=1^1$ so $P(1)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 1$. I.e., suppose $k! \leq k^k$.
4. Inductive Step:

We can calculate:

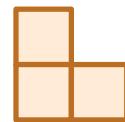
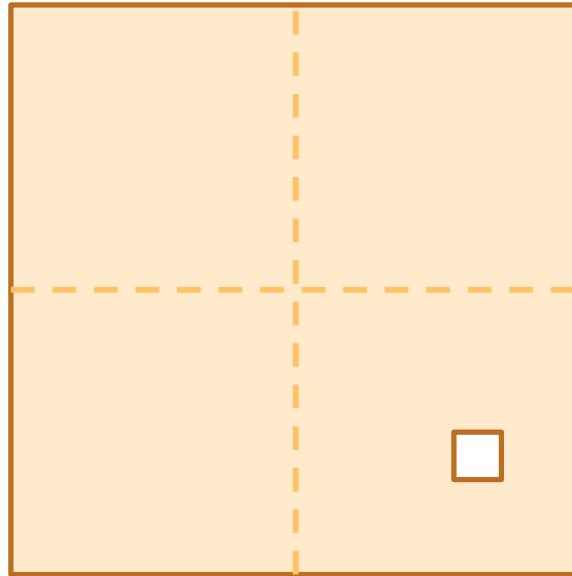
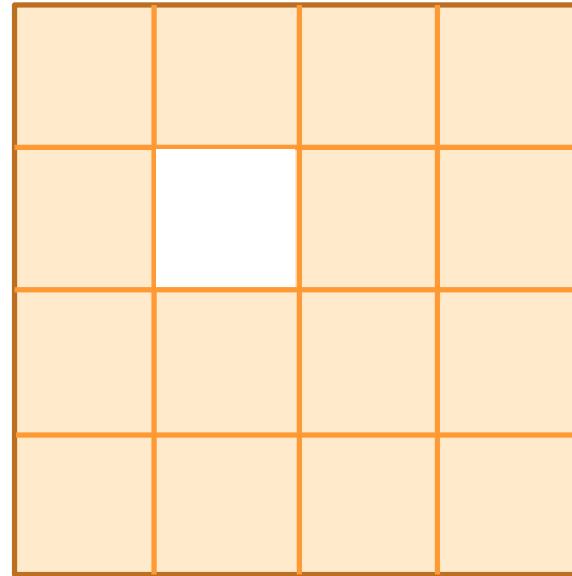
$$\begin{aligned}(k+1)! &= (k+1) \cdot k! && \text{by definition of !} \\ &\leq (k+1) \cdot k^k && \text{by the IH} \\ &\leq (k+1) \cdot (k+1)^k && \text{since } k \geq 0 \\ &= (k+1)^{k+1}\end{aligned}$$

Therefore $P(k+1)$ is true.

5. Thus $P(n)$ is true for all $n \geq 1$, by induction.

Checkerboard Tiling

- Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:



Checkerboard Tiling

1. Let $P(n)$ be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with .
We prove $P(n)$ for all $n \geq 1$ by induction on n .

Checkerboard Tiling

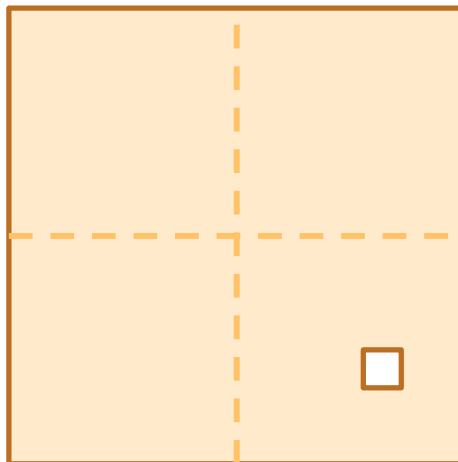
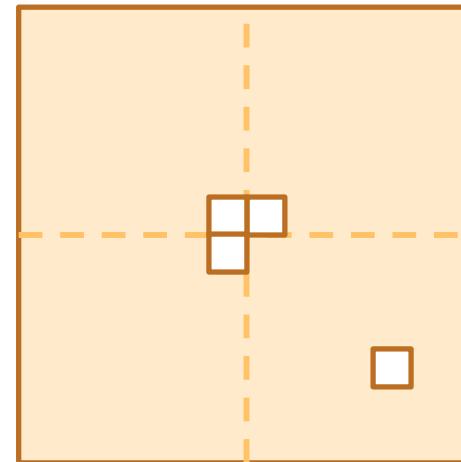
1. Let $P(n)$ be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with .
We prove $P(n)$ for all $n \geq 1$ by induction on n .
2. Base Case: $n=1$

Checkerboard Tiling

1. Let $P(n)$ be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with .
We prove $P(n)$ for all $n \geq 1$ by induction on n .
2. Base Case: $n=1$
3. Inductive Hypothesis: Assume $P(k)$ for some arbitrary integer $k \geq 1$

Checkerboard Tiling

1. Let $P(n)$ be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with . We prove $P(n)$ for all $n \geq 1$ by induction on n .
2. Base Case: $n=1$
3. Inductive Hypothesis: Assume $P(k)$ for some arbitrary integer $k \geq 1$
4. Inductive Step: Prove $P(k+1)$



Apply IH to each quadrant then fill with extra tile.

Induction Is A Rule of Inference

Domain: Non-Negative Numbers

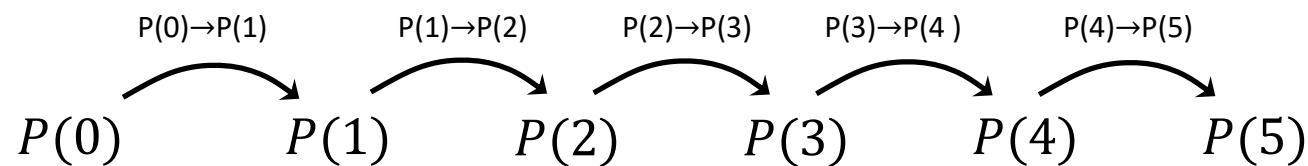
Induction

$P(0)$

$\forall k (P(k) \rightarrow P(k + 1))$

$\therefore \forall n P(n)$

How do the givens prove $P(5)$?



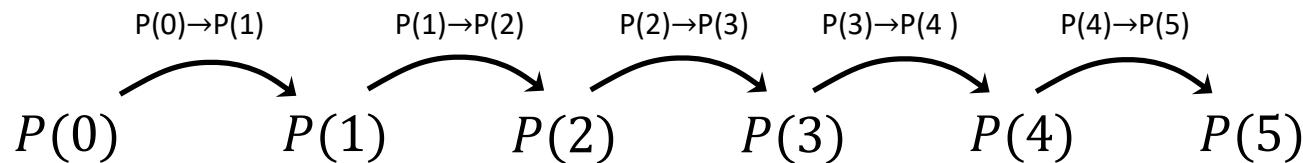
Induction Is A Rule of Inference

Domain: Non-Negative Numbers

Induction

$$\frac{P(0) \quad \forall k (P(k) \rightarrow P(k + 1))}{\therefore \forall n P(n)}$$

How do the givens prove $P(5)$?



First, we have $P(0)$.

Since $P(n) \rightarrow P(n+1)$ for all n , we have $P(0) \rightarrow P(1)$.

Since $P(0)$ is true and $P(0) \rightarrow P(1)$, by Modus Ponens, $P(1)$ is true.

Since $P(n) \rightarrow P(n+1)$ for all n , we have $P(1) \rightarrow P(2)$.

Since $P(1)$ is true and $P(1) \rightarrow P(2)$, by Modus Ponens, $P(2)$ is true.

Strong Induction

$$P(0) \quad \forall k (\textcolor{blue}{P(k)} \rightarrow P(k + 1))$$

Induction

$$\therefore \forall n P(n)$$

$$P(0) \quad \forall k \left(\forall j ((0 \leq j \leq k) \rightarrow P(j)) \rightarrow P(k + 1) \right)$$

Strong
Induction

$$\therefore \forall n P(n)$$

Strong Induction

$$\frac{P(0) \quad \forall k \left(\forall j (0 \leq j \leq k \rightarrow P(j)) \rightarrow P(k + 1) \right)}{\therefore \forall n P(n)}$$

Strong induction for P follows from ordinary induction for Q where

$$Q(k) ::= \forall j (0 \leq j \leq k \rightarrow P(j))$$

Note that $Q(0) = P(0)$ and $Q(k + 1) \equiv Q(k) \wedge P(k + 1)$ and $\forall n Q(n) \equiv \forall n P(n)$

Strong Inductive Proofs In 5 Easy Steps

1. “Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by ***strong*** induction.”
2. “Base Case:” Prove $P(b)$
3. “Inductive Hypothesis:
Assume that for some arbitrary integer $k \geq b$,
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that $P(k + 1)$ is true:
Use the goal to figure out what you need.
Make sure you are using I.H. (that $P(b), \dots, P(k)$ are true)
and point out where you are using it.
(Don't assume $P(k + 1)$!!)
5. “Conclusion: $P(n)$ is true for all integers $n \geq b$ ”

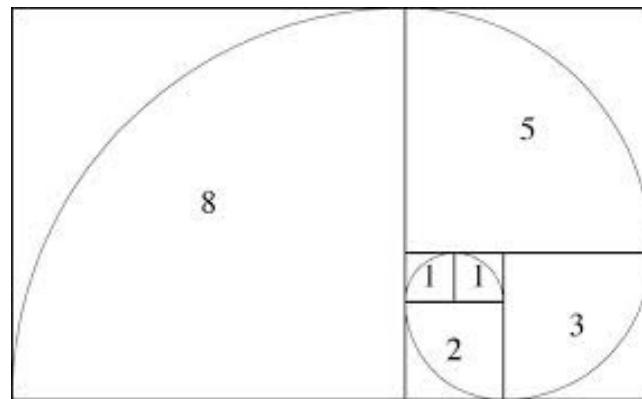
Fibonacci Numbers

$$f_0 := 0$$

$$f_1 := 1$$

$$f_{n+2} := f_{n+1} + f_n$$

Will need facts about f_{n-2} to reason about f_n



Bounding Fibonacci: $f_n < 2^n$ for all $n \geq 0$

1. Let $P(n)$ be " $f_n < 2^n$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by **strong** induction.

$$\boxed{\begin{aligned}f_0 &= 0 & f_1 &= 1 \\f_{n+2} &= f_{n+1} + f_n\end{aligned}}$$

Bounding Fibonacci: $f_n < 2^n$ for all $n \geq 0$

1. Let $P(n)$ be " $f_n < 2^n$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by **strong** induction.
2. Base Case: $f_0 = 0 < 1 = 2^0$ so $P(0)$ is true.

Bounding Fibonacci: $f_n < 2^n$ for all $n \geq 0$

1. Let $P(n)$ be " $f_n < 2^n$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Case: $f_0 = 0 < 1 = 2^0$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for **some** arbitrary integer $k \geq 0$, we have $f_j < 2^j$ for **every** integer j from 0 to k .

$$\boxed{\begin{aligned}f_0 &= 0 & f_1 &= 1 \\f_{n+2} &= f_{n+1} + f_n\end{aligned}}$$

Bounding Fibonacci: $f_n < 2^n$ for all $n \geq 0$

1. Let $P(n)$ be " $f_n < 2^n$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Case: $f_0 = 0 < 1 = 2^0$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for **some** arbitrary integer $k \geq 0$, we have $f_j < 2^j$ for **every** integer j from 0 to k .
4. Inductive Step:

$$f_{k+1} = f_k + f_{k-1} \quad \text{def of } f$$

Oops! This is only true if $k + 1 \geq 2$!

Goal: Show $P(k+1)$; that is, $f_{k+1} < 2^{k+1}$

$$\begin{aligned} f_0 &= 0 & f_1 &= 1 \\ f_{n+2} &= f_{n+1} + f_n \end{aligned}$$

Bounding Fibonacci: $f_n < 2^n$ for all $n \geq 0$

1. Let $P(n)$ be " $f_n < 2^n$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by **strong** induction.
2. Base Cases: $f_0 = 0 < 1 = 2^0$ so $P(0)$ is true and $f_1 = 1 < 2 = 2^1$ so $P(1)$ is true.

$$\boxed{\begin{aligned}f_0 &= 0 & f_1 &= 1 \\f_{n+2} &= f_{n+1} + f_n\end{aligned}}$$

Bounding Fibonacci: $f_n < 2^n$ for all $n \geq 0$

1. Let $P(n)$ be " $f_n < 2^n$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Cases: $f_0 = 0 < 1 = 2^0$ so $P(0)$ is true and $f_1 = 1 < 2 = 2^1$ so $P(1)$ is true.
3. Inductive Hypothesis: Assume that for **some** arbitrary integer $k \geq 1$, we have $f_j < 2^j$ for **every** integer j from 0 to k .

$$\boxed{\begin{aligned}f_0 &= 0 & f_1 &= 1 \\f_{n+2} &= f_{n+1} + f_n\end{aligned}}$$

Bounding Fibonacci: $f_n < 2^n$ for all $n \geq 0$

1. Let $P(n)$ be " $f_n < 2^n$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Cases: $f_0 = 0 < 1 = 2^0$ so $P(0)$ is true and $f_1 = 1 < 2 = 2^1$ so $P(1)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 1$, we have $f_j < 2^j$ for every integer j from 0 to k .
4. Inductive Step:

Goal: Show $P(k+1)$; that is, $f_{k+1} < 2^{k+1}$

$$\begin{aligned}f_0 &= 0 & f_1 &= 1 \\f_{n+2} &= f_{n+1} + f_n\end{aligned}$$

Bounding Fibonacci: $f_n < 2^n$ for all $n \geq 0$

1. Let $P(n)$ be " $f_n < 2^n$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Cases: $f_0 = 0 < 1 = 2^0$ so $P(0)$ is true and $f_1 = 1 < 2 = 2^1$ so $P(1)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 1$, we have $f_j < 2^j$ for every integer j from 0 to k .
4. Inductive Step: We can calculate that

$$\begin{aligned} f_{k+1} &= f_k + f_{k-1} && \text{def of } f \text{ (since } k+1 \geq 2) \\ &< 2^k + 2^{k-1} && \text{by IH (since } k-1 \geq 0) \\ &< 2^k + 2^k \\ &= 2 \cdot 2^k \\ &= 2^{k+1} \end{aligned}$$

so $P(k+1)$ is true.

$$\boxed{\begin{aligned} f_0 &= 0 & f_1 &= 1 \\ f_{n+2} &= f_{n+1} + f_n \end{aligned}}$$

Bounding Fibonacci: $f_n < 2^n$ for all $n \geq 0$

1. Let $P(n)$ be " $f_n < 2^n$ ". We prove that $P(n)$ is true for all integers $n \geq 0$ by strong induction.
2. Base Cases: $f_0 = 0 < 1 = 2^0$ so $P(0)$ is true and $f_1 = 1 < 2 = 2^1$ so $P(1)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 1$, we have $f_j < 2^j$ for every integer j from 0 to k .
4. Inductive Step: We can calculate that

$$\begin{aligned} f_{k+1} &= f_k + f_{k-1} && \text{def of } f \text{ (since } k+1 \geq 2) \\ &< 2^k + 2^{k-1} && \text{by IH (since } k-1 \geq 0) \\ &< 2^k + 2^k \\ &= 2^{k+1} \end{aligned}$$

so $P(k+1)$ is true.

5. Therefore, by strong induction, $f_n < 2^n$ for all integers $n \geq 0$.

Strong Inductive Proofs In 5 Easy Steps

1. “Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by ***strong*** induction.”
2. “Base Case:” Prove $P(b)$
3. “Inductive Hypothesis:
Assume that for some arbitrary integer $k \geq b$,
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that $P(k + 1)$ is true:
Use the goal to figure out what you need.
Make sure you are using I.H. (that $P(b), \dots, P(k)$ are true)
and point out where you are using it.
(Don't assume $P(k + 1)$!!)
5. “Conclusion: $P(n)$ is true for all integers $n \geq b$ ”

Bounding Fibonacci II: $f_n \geq 2^{n/2 - 1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_n \geq 2^{n/2 - 1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by **strong** induction.

$$\boxed{\begin{aligned}f_0 &= 0 & f_1 &= 1 \\f_{n+2} &= f_{n+1} + f_n\end{aligned}}$$

Bounding Fibonacci II: $f_n \geq 2^{n/2 - 1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_n \geq 2^{n/2 - 1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Case: $f_2 = f_1 + f_0 = 1 \geq 1 = 2^0 = 2^{2/2 - 1}$ so $P(2)$ holds

$$\boxed{\begin{aligned}f_0 &= 0 & f_1 &= 1 \\f_{n+2} &= f_{n+1} + f_n\end{aligned}}$$

Bounding Fibonacci II: $f_n \geq 2^{n/2 - 1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_n \geq 2^{n/2 - 1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. **Base Case:** $f_2 = f_1 + f_0 = 1 \geq 1 = 2^0 = 2^{2/2 - 1}$ so $P(2)$ holds
3. **Inductive Hypothesis:** Assume that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j from 2 to k .

$$\boxed{\begin{aligned}f_0 &= 0 & f_1 &= 1 \\f_{n+2} &= f_{n+1} + f_n\end{aligned}}$$

Bounding Fibonacci II: $f_n \geq 2^{n/2 - 1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_n \geq 2^{n/2 - 1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. **Base Case:** $f_2 = f_1 + f_0 = 1 \geq 1 = 2^0 = 2^{2/2 - 1}$ so $P(2)$ holds
3. **Inductive Hypothesis:** Assume that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j from 2 to k .
4. **Inductive Step:**

Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1)/2 - 1}$

$$\begin{aligned}f_0 &= 0 & f_1 &= 1 \\f_{n+2} &= f_{n+1} + f_n\end{aligned}$$

Bounding Fibonacci II: $f_n \geq 2^{n/2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_n \geq 2^{n/2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. **Base Case:** $f_2 = f_1 + f_0 = 1 \geq 1 = 2^0 = 2^{2/2-1}$ so $P(2)$ holds
3. **Inductive Hypothesis:** Assume that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer j from 2 to k .
4. **Inductive Step:**

$$\begin{aligned} f_{k+1} &= f_k + f_{k-1} && \text{def of } f \text{ (since } k+1 \geq 2) \\ &\geq 2^{k/2-1} + f_{k-1} && \text{by the IH} \\ &\geq 2^{k/2-1} + 2^{(k-1)/2-1} && \text{by the IH} \end{aligned}$$

Oops! This is only true if $k - 1 \geq 2$!

Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1)/2-1}$

$$\begin{aligned} f_0 &= 0 & f_1 &= 1 \\ f_{n+2} &= f_{n+1} + f_n \end{aligned}$$

Bounding Fibonacci II: $f_n \geq 2^{n/2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_n \geq 2^{n/2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Cases: $f_2 = f_1 + f_0 = 1 \geq 1 = 2^0 = 2^{2/2-1}$ so $P(2)$ holds
 $f_3 = f_2 + f_1 = 2 \geq 2^{1/2} = 2^{3/2-1}$ so $P(3)$ holds
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 3$, $P(j)$ is true for every integer j from 2 to k .
4. Inductive Step:

Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1)/2-1}$

$$\begin{aligned}f_0 &= 0 & f_1 &= 1 \\f_{n+2} &= f_{n+1} + f_n\end{aligned}$$

Bounding Fibonacci II: $f_n \geq 2^{n/2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_n \geq 2^{n/2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Cases: $f_2 = f_1 + f_0 = 1 \geq 1 = 2^0 = 2^{2/2-1}$ so $P(2)$ holds
 $f_3 = f_2 + f_1 = 2 \geq 2^{1/2} = 2^{3/2-1}$ so $P(3)$ holds
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 3$, $P(j)$ is true for every integer j from 2 to k .
4. Inductive Step: We can calculate

$$\begin{aligned} f_{k+1} &= f_k + f_{k-1} && \text{def of } f \text{ (since } k+1 \geq 4\text{)} \\ &\geq 2^{k/2-1} + f_{k-1} && \text{by the IH} \\ &\geq 2^{k/2-1} + 2^{(k-1)/2-1} && \text{by the IH (since } k-1 \geq 2\text{)} \\ &\geq 2 \cdot 2^{(k-1)/2-1} \\ &= 2^{(k+1)/2-1} \end{aligned}$$

so $P(k+1)$ is true.

Bounding Fibonacci II: $f_n \geq 2^{n/2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_n \geq 2^{n/2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Cases: $f_2 = f_1 + f_0 = 1 \geq 1 = 2^0 = 2^{2/2-1}$ so $P(2)$ holds
 $f_3 = f_2 + f_1 = 2 \geq 2^{1/2} = 2^{3/2-1}$ so $P(3)$ holds
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 3$, $P(j)$ is true for every integer j from 2 to k .
4. Inductive Step: We can calculate

$$\begin{aligned} f_{k+1} &= f_k + f_{k-1} && \text{def of } f \text{ (since } k+1 \geq 4\text{)} \\ &\geq 2^{k/2-1} + f_{k-1} && \text{by the IH} \\ &\geq 2^{k/2-1} + 2^{(k-1)/2-1} && \text{by the IH (since } k-1 \geq 2\text{)} \\ &\geq 2 \cdot 2^{(k-1)/2-1} = 2^{(k+1)/2-1} \end{aligned}$$

so $P(k+1)$ is true.

5. Therefore by strong induction, $f_n \geq 2^{n/2-1}$ for all integers $n \geq 2$.