

CSE 311: Foundations of Computing

Topic 2: Proofs

Logical Inference

- So far, we've considered:
 - how to understand and *express* things using propositional and predicate logic
 - how to *compute* using Propositional logic (circuits)
 - how to show that different ways of expressing or computing them are *equivalent* to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - equivalence is a small part of this

New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

p	q	$A(p,q)$	$B(p,q)$
T	T	T	
T	F	T	
F	T	F	
F	F	F	

New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

p	q	$A(p,q)$	$B(p,q)$
T	T	T	T
T	F	T	T
F	T	F	
F	F	F	

Given that A is true, we see that B is also true.

$$A \Rightarrow B$$

New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

p	q	$A(p,q)$	$B(p,q)$
T	T	T	T
T	F	T	T
F	T	F	?
F	F	F	?

When we zoom out, what have we proven?

New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

p	q	$A(p,q)$	$B(p,q)$	$A \rightarrow B$
T	T	T	T	T
T	F	T	T	T
F	T	F	T	T
F	F	F	F	T

When we zoom out, what have we proven?

$$(A \rightarrow B) \equiv T$$

New Perspective

Equivalences

$A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

Inference

$A \Rightarrow B$ and $(A \rightarrow B) \equiv T$ are the same

Proofs

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: *Modus Ponens*

- If A and $A \rightarrow B$ are both true, then B must be true
- Write this rule as
$$\begin{array}{c} \underline{A; A \rightarrow B} \\ \therefore B \end{array}$$
- Given:
 - If it is Friday, then you have a 311 lecture today.
 - It is Friday.
- Therefore, by Modus Ponens:
 - You have a 311 lecture today.

My First Proof!

Show that **r** follows from **p**, **p → q**, and **q → r**

1. **p** Given
2. **p → q** Given
3. **q → r** Given
- 4.
- 5.

Modus Ponens A ; A → B
∴ B

My First Proof!

Show that r follows from p , $p \rightarrow q$, and $q \rightarrow r$

1. p Given
2. $p \rightarrow q$ Given
3. $q \rightarrow r$ Given
4. q MP: 1, 2
5. r MP: 4, 3

Modus Ponens $A ; A \rightarrow B$
 $\therefore B$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

1. $p \rightarrow q$ Given
2. $\neg q$ Given
3. $\neg q \rightarrow \neg p$ Contrapositive: 1
4. $\neg p$ MP: 2, 3

Modus Ponens $A ; A \rightarrow B$
 $\therefore B$

Inference Rules

If **A** is true and **B** is true

Requirements:

$$\underline{A ; B}$$

Conclusions:

$$\therefore C, D$$

Then, **C** must
be true

Then **D** must
be true

Example (Modus Ponens):

$$\underline{A ; A \rightarrow B}$$

$\therefore B$

If I have **A** and **A \rightarrow B** both true,
Then **B** must be true.

Axioms: Special inference rules

If I have nothing...

Requirements:

Conclusions:

$\therefore C, D$

Then, C must
be true

Then D must
be true

Example (Excluded Middle):

$\therefore A \vee \neg A$

$A \vee \neg A$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective,
one to **eliminate** it and one to **introduce** it

$$\text{Elim } \wedge \frac{A \wedge B}{\therefore A, B}$$

$$\text{Intro } \wedge \frac{A ; B}{\therefore A \wedge B}$$

$$\text{Elim } \vee \frac{A \vee B ; \neg A}{\therefore B}$$

$$\text{Intro } \vee \frac{A}{\therefore A \vee B, B \vee A}$$

$$\text{Modus Ponens} \frac{A ; A \rightarrow B}{\therefore B}$$

$$\text{Direct Proof} \frac{A \Rightarrow B}{\therefore A \rightarrow B}$$

Proofs

Show that r follows from $p, p \rightarrow q$, and $p \wedge q \rightarrow r$

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \rightarrow B}{\therefore B}$$

$$\frac{A \wedge B}{\therefore A, B}$$

$$\frac{A ; B}{\therefore A \wedge B}$$

Proofs

Show that r follows from p , $p \rightarrow q$, and $p \wedge q \rightarrow r$

1.	p	Given	$\frac{}{A ; A \rightarrow B}$
2.	$p \rightarrow q$	Given	$\therefore B$
3.	$p \wedge q \rightarrow r$	Given	$\frac{\frac{}{A \wedge B}}{\therefore A, B}$

$$\frac{A ; B}{\therefore A \wedge B}$$

Proofs

Show that r follows from p , $p \rightarrow q$, and $p \wedge q \rightarrow r$

1. p Given
2. $p \rightarrow q$ Given
3. $p \wedge q \rightarrow r$ Given
4. q MP: 1, 2
5. $p \wedge q$ Intro \wedge : 1, 4
6. r MP: 5, 3

Proofs

Show that r follows from $p, p \rightarrow q$, and $p \wedge q \rightarrow r$

$$\frac{\frac{p \ ; \ p \rightarrow q}{q} \text{MP}}{p \ ; \ q} \text{Intro} \wedge \frac{p \wedge q \ ; \ p \wedge q \rightarrow r}{r} \text{MP}$$

Proofs

Show that r follows from $p, p \rightarrow q$, and $p \wedge q \rightarrow r$

Two visuals of the same proof.
We will use the right one, but if
the bottom one helps you
think about it, that's great!

1. p Given
2. $p \rightarrow q$ Given
3. q MP: 1, 2
4. $p \wedge q$ Intro \wedge : 1, 3
5. $p \wedge q \rightarrow r$ Given
6. r MP: 4, 5

$$\frac{\frac{p ; p \rightarrow q}{q} \text{MP}}{p ; q} \text{Intro } \wedge$$
$$\frac{p \wedge q ; p \wedge q \rightarrow r}{r} \text{MP}$$

Proofs

Prove that $\neg r$ follows from $p \wedge s$, $q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$ Given
2. $q \rightarrow \neg r$ Given
3. $\neg s \vee q$ Given

First: Write down givens and goal

20. $\neg r$

?

Idea: Work backwards!

Proofs

Prove that $\neg r$ follows from $p \wedge s$, $q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

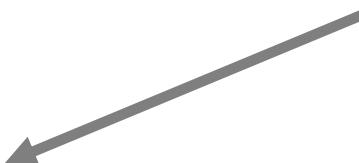
3. $\neg s \vee q$ Given

20. $\neg r$ MP: 2, ?

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like “elim \rightarrow ” which is MP.



Proofs

Prove that $\neg r$ follows from $p \wedge s$, $q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$ Given
2. $q \rightarrow \neg r$ Given
3. $\neg s \vee q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new “hole”
- We need to prove q ...
 - Notice that at this point, if we prove q , we’ve proven $\neg r$...

19. q
20. $\neg r$

MP: 2, 19

Proofs

Prove that $\neg r$ follows from $p \wedge s$, $q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \vee q$ Given

This looks like or-elimination.

19. q

20. $\neg r$ MP: 2, 19

Elim V $\frac{A \vee B ; \neg A}{\therefore B}$

Proofs

Prove that $\neg r$ follows from $p \wedge s$, $q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \vee q$ Given

18. $\neg \neg s$

$\neg \neg s$ doesn't show up in the givens but s does and we can use equivalences

19. q \vee Elim: 3, 18

20. $\neg r$ MP: 2, 19

Proofs

Prove that $\neg r$ follows from $p \wedge s$, $q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \vee q$ Given

17. s ?

18. $\neg \neg s$ Double Negation: 17

19. q Elim \vee : 3, 18

20. $\neg r$ MP: 2, 19

Proofs

Prove that $\neg r$ follows from $p \wedge s$, $q \rightarrow \neg r$, and $\neg s \vee q$.

1.	$p \wedge s$	Given	No holes left! We just need to clean up a bit.
2.	$q \rightarrow \neg r$	Given	
3.	$\neg s \vee q$	Given	
17.	s	Elim \wedge : 1	
18.	$\neg \neg s$	Double Negation: 17	
19.	q	Elim \vee : 3, 18	
20.	$\neg r$	MP: 2, 19	

Proofs

Prove that $\neg r$ follows from $p \wedge s$, $q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$ Given
2. $q \rightarrow \neg r$ Given
3. $\neg s \vee q$ Given
4. s Elim \wedge : 1
5. $\neg \neg s$ Double Negation: 4
6. q Elim \vee : 3, 5
7. $\neg r$ MP: 2, 6

Important: Applications of Inference Rules

- You can use **equivalences** to make substitutions of **any sub-formula**.

e.g. $(p \rightarrow r) \vee q \equiv (\neg p \vee r) \vee q$

- **Inference rules only** can be applied to **whole formulas** (not correct otherwise).

e.g. 1. $p \rightarrow r$ given
2. $(p \vee q) \rightarrow r$ ~~intro \vee from 1.~~

Does not follow! e.g. $p=F, q=T, r=F$

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

$$\text{Elim } \wedge \frac{A \wedge B}{\therefore A, B}$$

$$\text{Intro } \wedge \frac{A ; B}{\therefore A \wedge B}$$

$$\text{Elim } \vee \frac{A \vee B ; \neg A}{\therefore B}$$

$$\text{Intro } \vee \frac{A}{\therefore A \vee B, B \vee A}$$

$$\text{Modus Ponens} \frac{A ; A \rightarrow B}{\therefore B}$$

$$\text{Direct Proof} \frac{A \rightarrow B}{\therefore A \rightarrow B}$$

Not like other rules

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule
- The “pre-requisite” $A \Rightarrow B$ for the direct proof rule is a proof that “Assuming A , we can prove B .”
- **The direct proof rule:**

$$\frac{A \Rightarrow B}{\therefore A \rightarrow B}$$

If you have such a proof, then you can conclude that $A \rightarrow B$ is true

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \wedge q) \rightarrow r$

1. q Given

2. $(p \wedge q) \rightarrow r$ Given

This is a proof of $p \rightarrow r$

3.1.	p	Assumption	If we know p is true...
3.2.			Then, we've shown
3.3.	r	??	r is true

3. $p \rightarrow r$ Direct Proof

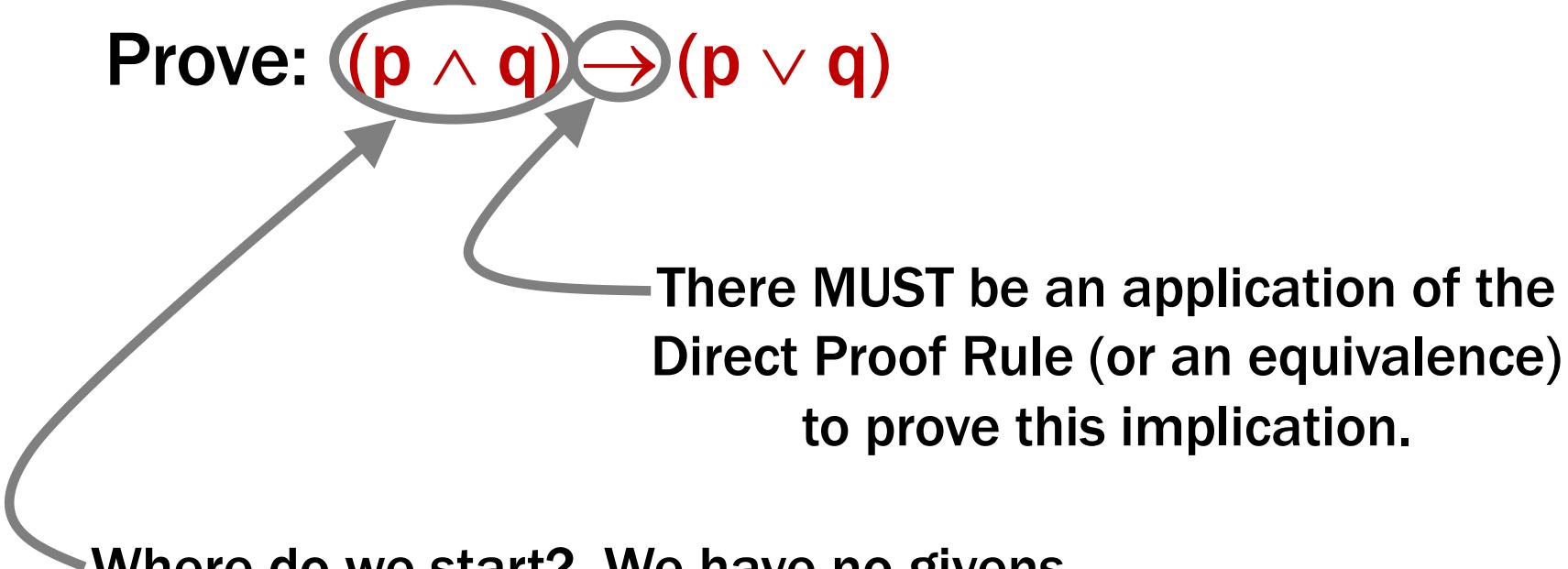
Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \wedge q) \rightarrow r$

1. q Given
2. $(p \wedge q) \rightarrow r$ Given
- 3.1. p Assumption
- 3.2. $p \wedge q$ Intro \wedge : 1, 3.1
- 3.3. r MP: 2, 3.2
3. $p \rightarrow r$ Direct Proof

Example

Prove: $(p \wedge q) \rightarrow (p \vee q)$



Example

Prove: $(p \wedge q) \rightarrow (p \vee q)$

1.1. $p \wedge q$

Assumption

1.9. $p \vee q$

??

1. $(p \wedge q) \rightarrow (p \vee q)$

Direct Proof

Example

Prove: $(p \wedge q) \rightarrow (p \vee q)$

1.1. $p \wedge q$

Assumption

1.2. p

Elim \wedge : 1.1

1.3. $p \vee q$

Intro \vee : 1.2

1. $(p \wedge q) \rightarrow (p \vee q)$

Direct Proof

Our General Proof Strategy

1. Use **introduction** rules to see how you would build **up** the formula you want to prove from pieces of what is given
2. Use **elimination** rules to break **down** the given formulas to get the pieces you need to do 1.
3. Write the proof beginning with what you figured out for 2 followed by 1.

Our General Proof Strategy

1. $p \rightarrow q$

Given

2. p

Given

...

?.

$(p \vee r) \wedge q$

?

Use **elimination** rules
to move **down**

Our General Proof Strategy

1. $p \rightarrow q$

Given

2. p

Given

3. q

MP: 2, 1

...

? $(p \vee r) \wedge q$

?

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Our General Proof Strategy

1. $p \rightarrow q$

Given

2. p

Given

3. q

MP: 2, 1

...

? . $p \vee r$

? . q

? . $(p \vee r) \wedge q$

Intro \wedge

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Our General Proof Strategy

1. $p \rightarrow q$ Given

2. p Given

...

? . $p \vee r$ Intro \vee ??

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Exception: Intro \vee
(must wait until you know
which one is true)

Our General Proof Strategy

1. $p \rightarrow q$ Given

2. p Given

...

? . r

?

? . $p \vee r$

Intro \vee

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Exception: Intro \vee
(must wait until you know
which one is true)

Example

Prove: $((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Example

Prove: $((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1. $(p \rightarrow q) \wedge (q \rightarrow r)$ Assumption

1.? $p \rightarrow r$

1. $((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Example

Prove: $((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1. $(p \rightarrow q) \wedge (q \rightarrow r)$ Assumption

1.2. $p \rightarrow q$ Elim \wedge : 1.1

1.3. $q \rightarrow r$ Elim \wedge : 1.1

1.? $p \rightarrow r$

1. $((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Example

Prove: $((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1. $(p \rightarrow q) \wedge (q \rightarrow r)$ Assumption

1.2. $p \rightarrow q$ Elim \wedge : 1.1

1.3. $q \rightarrow r$ Elim \wedge : 1.1

1.4.1. p Assumption

1.4.? r

1.4. $p \rightarrow r$ Direct Proof

1. $((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Example

Prove: $((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1. $(p \rightarrow q) \wedge (q \rightarrow r)$ Assumption

1.2. $p \rightarrow q$ Elim \wedge : 1.1

1.3. $q \rightarrow r$ Elim \wedge : 1.1

1.4.1. p Assumption

1.4.2. q MP: 1.2, 1.4.1

1.4.3. r MP: 1.3, 1.4.2

1.4. $p \rightarrow r$ Direct Proof

1. $((p \rightarrow q) \wedge (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Applications of Logical Inference

- **Software Engineering**
 - Express desired properties of program as set of logical constraints
 - Use inference rules to show that program implies that those constraints are satisfied
- **Artificial Intelligence**
 - Automated reasoning
- **Algorithm design and analysis**
 - e.g., Correctness, Loop invariants.
- **Logic Programming, e.g. Prolog**
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

Minimal Rules for Propositional Logic

Can get away with just these:

$$\text{Elim } \wedge \frac{A \wedge B}{\therefore A, B}$$

$$\text{Intro } \wedge \frac{A ; B}{\therefore A \wedge B}$$

$$\text{Elim } \vee \frac{A \vee B ; \neg A}{\therefore B}$$

$$\text{Intro } \vee \frac{A}{\therefore A \vee B, B \vee A}$$

$$\text{Modus Ponens} \frac{A ; A \rightarrow B}{\therefore B}$$

$$\text{Direct Proof} \frac{A \Rightarrow B}{\therefore A \rightarrow B}$$

$$\text{Excluded Middle} \frac{}{\therefore A \vee \neg A}$$

Note: only this tautology

Rules for Propositional Logic *with Tautology*

More rules makes proofs easier

$$\text{Elim } \wedge \frac{A \wedge B}{\therefore A, B}$$

$$\text{Intro } \wedge \frac{A ; B}{\therefore A \wedge B}$$

$$\text{Elim } \vee \frac{A \vee B ; \neg A}{\therefore B}$$

$$\text{Intro } \vee \frac{A}{\therefore A \vee B, B \vee A}$$

$$\text{Modus Ponens} \frac{A ; A \rightarrow B}{\therefore B}$$

$$\text{Direct Proof} \frac{A \Rightarrow B}{\therefore A \rightarrow B}$$

$$\text{Tautology} \frac{A \equiv T}{\therefore A}$$

$$\text{Equivalent} \frac{A \equiv B ; B}{\therefore A}$$

any known

Proof by Cases

Some rules can be written in different ways

- e.g., two different elimination rules for “ \vee ”

$$\text{Elim } \vee \frac{A \vee B ; \neg A}{\therefore B}$$

$$\text{Cases} \frac{A \vee B ; A \rightarrow C ; B \rightarrow C}{\therefore C}$$

second rule is more useful

Example: Absorption via Cases

Show that P follows from $P \vee (P \wedge Q)$...

1. $P \vee (P \wedge Q)$

Given

4. P

?

$$\frac{\text{Cases} \quad A \vee B ; A \rightarrow C ; B \rightarrow C}{\therefore C}$$

Example: Absorption via Cases

Show that P follows from $P \vee (P \wedge Q)$...

1. $P \vee (P \wedge Q)$

Given

2. $P \rightarrow P$

?

3. $(P \wedge Q) \rightarrow P$

?

4. P

Cases: 1, 2, 3

Example: Absorption via Cases

Show that P follows from $P \vee (P \wedge Q)$...

1. $P \vee (P \wedge Q)$

Given

2. $P \rightarrow P$

Direct Proof

3.1. $P \wedge Q$

Assumption

3.?. P

?

3. $(P \wedge Q) \rightarrow P$

Direct Proof

Example: Absorption via Cases

Show that P follows from $P \vee (P \wedge Q)$...

1. $P \vee (P \wedge Q)$

Given

2. $P \rightarrow P$

Direct Proof

3.1. $P \wedge Q$

Assumption

3.2. P

Elim \wedge : 3.1

3. $(P \wedge Q) \rightarrow P$

Direct Proof

4. P

Cases: 1, 2, 3

Example: Absorption via Cases

Show that P follows from $P \vee (P \wedge Q)$...

1. $P \vee (P \wedge Q)$

Given

2.1. P

Assumption

2.?. P

?

2. $P \rightarrow P$

Direct Proof

3.1. $P \wedge Q$

Assumption

3.2. P

Elim \wedge : 3.1

3. $(P \wedge Q) \rightarrow P$

Direct Proof

Example: Absorption via Cases

Show that P follows from $P \vee (P \wedge Q)$...

1. $P \vee (P \wedge Q)$	Given
2.1. P	Assumption
2. $P \rightarrow P$	Direct Proof
3.1. $P \wedge Q$	Assumption
3.2. P	Elim \wedge : 3.1
3. $(P \wedge Q) \rightarrow P$	Direct Proof
4. P	Cases: 1, 2, 3

More Rules for Propositional Logic

More rules makes proofs easier

$$\text{Principium Contradictionis} \quad \frac{\neg A ; A}{\therefore F}$$

$$\text{Reductio Ad Absurdum} \quad \frac{B \Rightarrow F}{\therefore \neg B}$$

$$\text{Ex Falso Quodlibet} \quad \frac{F}{\therefore A}$$

$$\text{Ad Litteram Verum} \quad \frac{}{\therefore T}$$

useful for proving things
(and necessary without the Tautology rule)

Rules for Propositional Logic w/o Tautology

	Elimination	Introduction
\wedge	Elim \wedge	Intro \wedge
\vee	Cases	Intro \vee
\rightarrow	Modus Ponens	Direct Proof
\neg	Principium Contradictionis	Reductio Ad Absursum
F / T	Ex Falso Quodlibet	Ad Litteram Verum

Recall: Important Equivalences

- **Identity**
 - $p \wedge T \equiv p$
 - $p \vee F \equiv p$
- **Domination**
 - $p \vee T \equiv T$
 - $p \wedge F \equiv F$
- **Idempotent**
 - $p \vee p \equiv p$
 - $p \wedge p \equiv p$
- **Commutative**
 - $p \vee q \equiv q \vee p$
 - $p \wedge q \equiv q \wedge p$
- **Associative**
 - $(p \vee q) \vee r \equiv p \vee (q \vee r)$
 - $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
- **Distributive**
 - $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
 - $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
- **Absorption**
 - $p \vee (p \wedge q) \equiv p$
 - $p \wedge (p \vee q) \equiv p$
- **Negation**
 - $p \vee \neg p \equiv T$ Does not follow from Latin rules
 - $p \wedge \neg p \equiv F$

Example: Distributivity via Latin Rules

Show $(P \wedge Q) \vee (P \wedge R)$ follows from $P \wedge (Q \vee R)$...

1. $P \wedge (Q \vee R)$ Given

6. $(P \wedge Q) \vee (P \wedge R)$?

Example: Distributivity via Latin Rules

Show $(P \wedge Q) \vee (P \wedge R)$ follows from $P \wedge (Q \vee R)$...

1. $P \wedge (Q \vee R)$
2. P
3. $Q \vee R$

Given
Elim \wedge : 1
Elim \wedge : 1

hint: proof by cases

6. $(P \wedge Q) \vee (P \wedge R)$?

Example: Distributivity via Latin Rules

Show $(P \wedge Q) \vee (P \wedge R)$ follows from $P \wedge (Q \vee R)$...

1. $P \wedge (Q \vee R)$

Given

2. P

Elim \wedge : 1

3. $Q \vee R$

Elim \wedge : 1

4. $Q \rightarrow (P \wedge Q) \vee (P \wedge R)$

?

5. $R \rightarrow (P \wedge Q) \vee (P \wedge R)$

?

6. $(P \wedge Q) \vee (P \wedge R)$

Cases: 3, 4, 5

Example: Distributivity via Latin Rules

Show $(P \wedge Q) \vee (P \wedge R)$ follows from $P \wedge (Q \vee R)$...

1. $P \wedge (Q \vee R)$

Given

2. P

Elim \wedge : 1

3. $Q \vee R$

Elim \wedge : 1

4.1. Q

Assumption

4.?. $(P \wedge Q) \vee (P \wedge R)$

?

4. $Q \rightarrow (P \wedge Q) \vee (P \wedge R)$

Direct Proof

5. $R \rightarrow (P \wedge Q) \vee (P \wedge R)$

?

6. $(P \wedge Q) \vee (P \wedge R)$

Cases: 3, 4, 5

Example: Distributivity via Latin Rules

Show $(P \wedge Q) \vee (P \wedge R)$ follows from $P \wedge (Q \vee R)$...

1. $P \wedge (Q \vee R)$	Given
2. P	Elim \wedge : 1
3. $Q \vee R$	Elim \wedge : 1
4.1. Q	Assumption
4.2. $P \wedge Q$	Intro \wedge : 2, 4.1
4.3. $(P \wedge Q) \vee (P \wedge R)$	Intro \vee : 4.2
4. $Q \rightarrow (P \wedge Q) \vee (P \wedge R)$	Direct Proof
5. $R \rightarrow (P \wedge Q) \vee (P \wedge R)$?
6. $(P \wedge Q) \vee (P \wedge R)$	Cases: 3, 4, 5

Example: Distributivity via Latin Rules

Show $(P \wedge Q) \vee (P \wedge R)$ follows from $P \wedge (Q \vee R)$...

1. $P \wedge (Q \vee R)$	Given
2. P	Elim \wedge : 1
3. $Q \vee R$	Elim \wedge : 1
4.1. Q	Assumption
4.2. $P \wedge Q$	Intro \wedge : 2, 4.1
4.3. $(P \wedge Q) \vee (P \wedge R)$	Intro \vee : 4.2
4. $Q \rightarrow (P \wedge Q) \vee (P \wedge R)$	Direct Proof
5.1. R	Assumption
5.3. $(P \wedge Q) \vee (P \wedge R)$?
5. $R \rightarrow (P \wedge Q) \vee (P \wedge R)$	Direct Proof
6. $(P \wedge Q) \vee (P \wedge R)$	Cases: 3, 4, 5

Example: Distributivity via Latin Rules

Show $(P \wedge Q) \vee (P \wedge R)$ follows from $P \wedge (Q \vee R)$...

1. $P \wedge (Q \vee R)$	Given
2. P	Elim \wedge : 1
3. $Q \vee R$	Elim \wedge : 1
4.1. Q	Assumption
4.2. $P \wedge Q$	Intro \wedge : 2, 4.1
4.3. $(P \wedge Q) \vee (P \wedge R)$	Intro \vee : 4.2
4. $Q \rightarrow (P \wedge Q) \vee (P \wedge R)$	Direct Proof
5.1. R	Assumption
5.2. $P \wedge R$	Intro \wedge : 2, 5.1
5.3. $(P \wedge Q) \vee (P \wedge R)$	Intro \vee : 5.2
5. $R \rightarrow (P \wedge Q) \vee (P \wedge R)$	Direct Proof
6. $(P \wedge Q) \vee (P \wedge R)$	Cases: 3, 4, 5

Example: De Morgan's Law via Latin Rules

Show that $\neg(A \vee B)$ follows from $\neg A \wedge \neg B$...

1. $\neg A \wedge \neg B$

Given

$$4. \neg(A \vee B)$$

?

Example: De Morgan's Law via Latin Rules

Show that $\neg(A \vee B)$ follows from $\neg A \wedge \neg B \dots$

1. $\neg A \wedge \neg B$ Given
2. $\neg A$ Elim \wedge : 1
3. $\neg B$ Elim \wedge : 1

hint: proof by contradiction

4. $\neg(A \vee B)$?

Example: De Morgan's Law via Latin Rules

Show that $\neg(A \vee B)$ follows from $\neg A \wedge \neg B \dots$

1. $\neg A \wedge \neg B$

Given

2. $\neg A$

Elim \wedge : 1

3. $\neg B$

Elim \wedge : 1

4. $\neg(A \vee B)$

Absurdum

$$\frac{\text{Reductio Ad Absurdum}}{A \Rightarrow F} \quad \therefore \neg A$$

Example: De Morgan's Law via Latin Rules

Show that $\neg(A \vee B)$ follows from $\neg A \wedge \neg B \dots$

1. $\neg A \wedge \neg B$

Given

2. $\neg A$

Elim \wedge : 1

3. $\neg B$

Elim \wedge : 1

4.1. $A \vee B$

Assumption

can we work forward?

4.4. F

?

4. $\neg(A \vee B)$

Absurdum

Example: De Morgan's Law via Latin Rules

Show that $\neg(A \vee B)$ follows from $\neg A \wedge \neg B \dots$

1. $\neg A \wedge \neg B$

Given

2. $\neg A$

Elim \wedge : 1

3. $\neg B$

Elim \wedge : 1

4.1. $A \vee B$

Assumption

4.2. $A \rightarrow F$

?

4.3. $B \rightarrow F$

?

4.4. F

Cases: 4.1, 4.2, 4.3

4. $\neg(A \vee B)$

Absurdum

Example: De Morgan's Law via Latin Rules

Show that $\neg(A \vee B)$ follows from $\neg A \wedge \neg B \dots$

1. $\neg A \wedge \neg B$

Given

2. $\neg A$

Elim \wedge : 1

3. $\neg B$

Elim \wedge : 1

4.1. $A \vee B$

Assumption

4.2.1. A

Assumption

4.2.2. F

?

Principium
Contradictionis

$\frac{\neg A ; A}{\therefore F}$

4.2. $A \rightarrow F$

Direct Proof

4.3. $B \rightarrow F$

?

4.4. F

Cases: 4.1, 4.2, 4.3

4. $\neg(A \vee B)$

Absurdum

Example: De Morgan's Law via Latin Rules

Show that $\neg(A \vee B)$ follows from $\neg A \wedge \neg B \dots$

1. $\neg A \wedge \neg B$	Given
2. $\neg A$	Elim \wedge : 1
3. $\neg B$	Elim \wedge : 1
4.1. $A \vee B$	Assumption
4.2.1. A	Assumption
4.2.2. F	Contradiction: 4.2.1, 2
4.2. $A \rightarrow F$	Direct Proof
4.3. $B \rightarrow F$?
4.4. F	Cases: 4.1, 4.2, 4.3
4. $\neg(A \vee B)$	Absurdum

Example: De Morgan's Law via Latin Rules

Show that $\neg(A \vee B)$ follows from $\neg A \wedge \neg B \dots$

1. $\neg A \wedge \neg B$	Given
2. $\neg A$	Elim \wedge : 1
3. $\neg B$	Elim \wedge : 1
4.1. $A \vee B$	Assumption
4.2.1. A	Assumption
4.2.2. F	Contradiction: 4.2.1, 2
4.2. $A \rightarrow F$	Direct Proof
4.3.1. B	Assumption
4.3.2. F	?
4.3. $B \rightarrow F$	Direct Proof
4.4. F	Cases: 4.1, 4.2, 4.3
4. $\neg(A \vee B)$	Absurdum

Example: De Morgan's Law via Latin Rules

Show that $\neg(A \vee B)$ follows from $\neg A \wedge \neg B \dots$

1. $\neg A \wedge \neg B$ Given
2. $\neg A$ Elim \wedge : 1
3. $\neg B$ Elim \wedge : 1
- 4.1. $A \vee B$ Assumption
- 4.2.1. A Assumption
- 4.2.2. F Contradiction: 4.2.1, 2
- 4.2. $A \rightarrow F$ Direct Proof
- 4.3.1. B Assumption
- 4.3.2. F Contradiction: 4.3.1, 3
- 4.3. $B \rightarrow F$ Direct Proof
- 4.4. F Cases: 4.1, 4.2, 4.3
4. $\neg(A \vee B)$ Absurdum

Rules for Propositional Logic

	Elimination	Introduction
\wedge	Elim \wedge	Intro \wedge
\vee	Cases	Intro \vee
\rightarrow	Modus Ponens	Direct Proof
\neg	Principium Contradictionis	Reductio Ad Absursum
F / T	Ex Falso Quodlibet	Ad Litteram Verum
	Tautology	Equivalent

Inference Rules for Quantifiers: First look

$$\frac{\text{Intro } \exists \quad P(c) \text{ for some } c}{\therefore \exists x P(x)}$$

$$\frac{\text{Elim } \forall \quad \forall x P(x)}{\therefore P(a) \text{ (for any } a)}$$

Elim \exists

Intro \forall

My First Predicate Logic Proof

Domain of Discourse
Integers

Prove $(\forall x P(x)) \rightarrow (\exists x P(x))$

$$\frac{\text{Intro } \exists \quad P(c) \text{ for some } c}{\therefore \exists x P(x)}$$

$$\frac{\text{Elim } \forall \quad \forall x P(x)}{\therefore P(a) \text{ for any } a}$$

5. $\forall x P(x) \rightarrow \exists x P(x)$

The main connective is implication
so Direct Proof seems good

My First Predicate Logic Proof

Domain of Discourse
Integers

Prove $(\forall x P(x)) \rightarrow (\exists x P(x))$

Intro \exists $P(c) \text{ for some } c$
 $\therefore \exists x P(x)$

Elim \forall $\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$

1.1. $\forall x P(x)$ Assumption

We need an \exists we don't have
so “intro \exists ” rule makes sense

1.5. $\exists x P(x)$?

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

My First Predicate Logic Proof

Domain of Discourse
Integers

Prove $(\forall x P(x)) \rightarrow (\exists x P(x))$

Intro \exists $P(c) \text{ for some } c$
 $\therefore \exists x P(x)$

Elim \forall $\frac{\forall x P(x)}{\therefore P(a) \text{ for any } a}$

1.1. $\forall x P(x)$ Assumption

We need an \exists we don't have
so “intro \exists ” rule makes sense

1.5. $\exists x P(x)$ Intro \exists : ?

That requires $P(c)$
for some c .

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

My First Predicate Logic Proof

Domain of Discourse
Integers

Prove $(\forall x P(x)) \rightarrow (\exists x P(x))$

$$\frac{\text{Intro } \exists \quad P(c) \text{ for some } c}{\therefore \exists x P(x)}$$

$$\frac{\text{Elim } \forall \quad \forall x P(x)}{\therefore P(a) \text{ for any } a}$$

1.1. $\forall x P(x)$

Assumption

1.4. $P(5)$

1.5. $\exists x P(x)$

Intro \exists : 1.4

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

My First Predicate Logic Proof

Domain of Discourse
Integers

Prove $(\forall x P(x)) \rightarrow (\exists x P(x))$

$$\frac{\text{Intro } \exists \quad P(c) \text{ for some } c}{\therefore \exists x P(x)}$$

$$\frac{\text{Elim } \forall \quad \forall x P(x)}{\therefore P(a) \text{ for any } a}$$

1.1. $\forall x P(x)$

Assumption

1.4. $P(5)$

Elim \forall : 1.1

1.5. $\exists x P(x)$

Intro \exists : 1.4

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

My First Predicate Logic Proof

Domain of Discourse
Integers

Prove $(\forall x P(x)) \rightarrow (\exists x P(x))$

$$\frac{\text{Intro } \exists \quad P(c) \text{ for some } c}{\therefore \exists x P(x)}$$
$$\frac{\text{Elim } \forall \quad \forall x P(x)}{\therefore P(a) \text{ for any } a}$$

1.1. $\forall x P(x)$

Assumption

1.2. $P(5)$

Elim \forall : 1.1

1.3. $\exists x P(x)$

Intro \exists : 1.2

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

This follows our usual strategy — eliminate forward, introduce backward — but it is weird...

How did we know to use 5? We didn't! We just guessed it.

Randomly guessing numbers is not good proof strategy!

Our General Proof Strategy

1. $\forall x ((x > 9) \rightarrow P(x))$ Given

...

?.

?

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Our General Proof Strategy

1. $\forall x ((x > 9) \rightarrow P(x))$ Given

...

? $P(5)$

? $\exists x P(x)$

?

Intro \exists

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Our General Proof Strategy

1. $\forall x ((x > 9) \rightarrow P(x))$ Given

...

? . $\exists x P(x)$

?

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Exception: Intro \vee / \exists
(must wait until you know
which one is true)

Our General Proof Strategy

1. $\forall x P(x)$

Given

2. $P(100) \rightarrow Q(100)$

Given

...

?.

$\exists x Q(x)$

?

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Our General Proof Strategy

1. $\forall x P(x)$

Given

2. $P(100) \rightarrow Q(100)$

Given

3. $P(1)$

Elim \forall : 1

...

?.

4. $\exists x Q(x)$

?

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Our General Proof Strategy

1. $\forall x P(x)$

Given

2. $P(100) \rightarrow Q(100)$

Given

3. $P(1)$

Elim \forall : 1

4. $P(2)$

Elim \forall : 1

...

?.

5. $\exists x Q(x)$

?

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Our General Proof Strategy

$$1. \forall x P(x)$$

$$2. P(100) \rightarrow Q(100)$$

$$3. P(1)$$

$$4. P(2)$$

$$5. P(3)$$

...

$$?. \exists x Q(x)$$

Given

Given

Elim \forall : 1

Elim \forall : 1

Elim \forall : 1

?

Exception: Elim \forall
(must wait until you know
which one *you need*)

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Our General Proof Strategy

1. $\forall x P(x)$

Given

...

? . $\exists x P(x)$

Exception: Elim \forall
(must wait until you know
which one you *need*)

Use **elimination** rules
to move **down**

Use **introduction** rules
to move **up**

Exception: Intro \vee / \exists
(must wait until you know
which one is true)

Domain Knowledge

- Intro \exists and Elim \forall are *creative* steps
 - need to know the right object to use
make the wrong choice and the proof won't work
 - the other rules are *mechanical*
you can apply them blindly without thinking too hard
- Requires your **understanding** (and intuition) of the objects in question
 - i.e., your "domain knowledge"

Predicate Logic Proofs with more content

- Want to be able to use domain knowledge so that proofs are about things we **understand**
- Example:

Domain of Discourse
Integers
- Given the basic properties of arithmetic on integers, define:

Predicate Definitions
Even(x) := $\exists y (x = 2 \cdot y)$
Odd(x) := $\exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse

Integers

Predicate Definitions

$\text{Even}(x) := \exists y (x = 2 \cdot y)$

$\text{Odd}(x) := \exists y (x = 2 \cdot y + 1)$

Prove “There is an even number”

Formally: prove $\exists x \text{ Even}(x)$

A Not so Odd Example

Domain of Discourse

Integers

Predicate Definitions

$\text{Even}(x) := \exists y (x = 2 \cdot y)$

$\text{Odd}(x) := \exists y (x = 2 \cdot y + 1)$

Prove “There is an even number”

Formally: prove $\exists x \text{ Even}(x)$

1. $6 = 2 \cdot 3$

Algebra

2. $\exists y (6 = 2 \cdot y)$

Intro \exists : 1

3. $\text{Even}(6)$

Definition of Even

4. $\exists x \text{ Even}(x)$

Intro \exists : 3