CSE 311: Foundations of Computing |

Topic 1: Formal Logic

HONK |FF YOu LVE]
FORMAL LOGIC

390z

e 1 credit workshop meeting Tuesdays at 3:30pm
— credit / no credit

* Available to anyone who wants more practice
— we will move very quickly in 311

 Moreinfoat tinyurl.com/CSE390Z2-WI26

http://tinyurl.com/CSE390Z-WI26
http://tinyurl.com/CSE390Z-WI26
http://tinyurl.com/CSE390Z-WI26

What is logic and why do we need it?

Logic is a language, like English or Java, with its own

* words and rules for combining words into sentences
(syntax)

* ways to assign meaning to words and sentences
(semantics)

Compared to English, Logic is more
e concise (useful)

* precise (critical!)

Importantly, Logic comes with its own toolkit

Why not use English?

— Turn right here...

Does “right” mean the direction or now?

— We saw her duck

Does “duck” mean the animal or crouch down?

— Buffalo buffalo Buffalo buffalo buffalo
buffalo Buffalo buffalo

This means “Bison from Buffalo, that bison from Buffalo bully, themselves
bully bison from Buffalo.

Natural languages can be unclear / imprecise

Propositions: building blocks of logic

A proposition is a statement that
— is “well-formed” (syntactically valid)
— is either true or false

Propositions: building blocks of logic

A proposition is a statement that
— is “well-formed”
— is either true or false

Garfield is a mammal and Garfield is a cat
true

Odie is a mammal and Odie is a cat
false

Are These Propositions?

2+2=05

This is a proposition. It's okay for propositions to be false.

X + 2 = 5389, where x is my PIN number
This is a proposition. We don’t need to know what x is.

Akjsdf!
Not a proposition because it’s gibberish.

Who are you?
This is a question which means it doesn’t have a truth value.

Every positive even integer can be written as the sum of

two primes.
This is a proposition. We don’t know if it’s true or false, but we know it’'s one of them!

Propositions

We need a way of talking about arbitrary ideas...

Propositional Variables: p, g, 1, s, ...

Constant truth values:
— T for true
— F for false

Familiar from Java

Java boolean represents a truth value
— constants true and false
— variables hold unknown values

Operators calculate new values from given ones
— uhary: not (!)
— binary: and (&&), or (| |)

Logical Connectives

con

dis-

Negation (hot) =P
Conjunction (and) p A g
Disjunction (or) pV q

with p with ¢ (i.e., both)

apart from not necessarily both

Logical Connectives

Negation (hot) —p

Conjunction (and) p A g
Disjunction (or) pV q
Exclusive Or p D qg

p V q atleast one of p orq

p @ q exactly one of p or g

Logic forces us to distinguish v from &©

Logical Connectives

Negation (hot) =P

Conjunction (and) p A g
Disjunction (or) pV q
Exclusive Or p D q
Implication p—T
Biconditional p < (q

Syntax of Logical Connectives

Precedence

Negation (not) —p highest
Conjunction (and) p Aq
Disjunction (or) pV(q

Exclusive Or p D q
Implication p—T
Biconditional peoq lowest

pVgqANr—t means (pV(qAT)) —t

Syntax of Logical Connectives

Associativity

Conjunction (and) p Agq left-to-right
Disjunction (or) pVq left-to-right
Exclusive Or p D q

Implication p—r right-to-left
Biconditional p<—q

pVgVrVvt means ((pVg)Vr)Vvt

p—qg—71 means p — (q —71)

Some Truth Tables

pPAq

pv(q

q

Some Truth Tables

pPAq

pVvq

q

Another Truth Table

p —>r

M4 4|

L e I e T e B

With implication (—), p is called the "premise"
and r is called the "conclusion".

The implication is true when p and r are true.

The implication is true ("vacuously") when p is false.

Another Truth Table

M4 4|

I e I e T R I
—l—l'n—l\L

With implication (—), p is called the "premise"
and r is called the "conclusion".

The implication is true when p and r are true.

The implication is true ("vacuously") when p is false.

Implication

“If it was raining, then | had my umbrella”

It’s useful to think of implications as
promises. That is “Was | wrong?”

It’s raining It’s not raining

| have my
umbrella

| do not have
my umbrella

MmM(mM|(—<H |- |T

M= |||

=M=

Implication

“If it was raining, then | had my umbrella”

It’s useful to think of implications as
promises. That is “Was | wrong?”

MmM(mM|(—<H |- |T

M= |||

=M=

It’s raining It’s not raining
| have m
y No No
umbrella
| do not have
Yes No
my umbrella

I am only wrong when:

(a) It’s raining AND
(b) I don’t have my umbrella

Implication

“If the Seahawks won,
then | was at the game.”

In what scenario was | wrong?

MmM(mM|(—<H |- |T

M= |||

=M=

| was at the game

| wasn’t at the game

Seahawks won

Seahawks lost

Implication

“If the Seahawks won,
then | was at the game.”

In what scenario was | wrong?

MmM(mM|(—<H |- |T

M= |||

=M=

| was at the game

| wasn’t at the game

Seahawks won

Ok

Doh!

Seahawks lost

Ok

Ok

Implication

“If it’s raining, then | have my umbrella” p | r |pr
T T T
T|F F

Are these true? El T T
FIF | T

2+2=4 — earthis a planet

The fact that these are unrelated doesn’t make the statement false! “2 +2 =
4" is true; “earth is a planet” is true. T—>T is true. So, the statement is true.

2+2=5—> 26is prime

Again, these statements may or may not be related. “2 + 2 =5" is false; so,
the implication is true. (Whether 26 is prime or not is irrelevant).

Implication is not a causal relationship!

p—r

(1) “I have collected all 151 Pokémon if | am a Pokémon master”
(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

In English, the “if” can be written at the end of the sentence

“ ”

rather than at the beginning of the sentence (followed by a “,”).

p—r

(1) “I have collected all 151 Pokémon if | am a Pokémon master”
(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

The implications are:
(1) If | am a Pokémon master, then | have collected all 151 Pokémon.
(2) If | have collected all 151 Pokémon, then | am a Pokémon master.

p—r

Implication:
— p implies r
— whenever p is true, r must be true
—if p, thenr
—rifp
—ponlyifr
— p is sufficient for r
— r is necessary for p

nim|H|4|o

M= |m|-]=

— | = |m|—|{

Biconditional: p & q

 pifandonlyifq
° p “iff” q
— p and q have the same value truth value

mm -
M| =M H|Q

—|-n-n—|¢

A Compound Proposition (Practical Example)

“Show the notification to the user if its their
second login or they’ve used it for two weeks and
haven’t tried the feature X unless they did use

the feature Y.”

Not at all clear what exactly this means!

Can use logic to understand exactly when to show it

A Compound Proposition (Silly Example)

“Garfield has black stripes if he is an orange cat
and likes lasagna, and he is an orange cat or
does not like lasagna”

We'd like to understand what this proposition means.

A Compound Proposition

“Garfield has black stripes if he is an orange cat
and likes Iasagn@nd he is an orange cat or
does not like lasagna”

We'd like to understand what this proposition means.

First find the simplest (atomic) propositions:
q “Garfield has black stripes”
r “Garfield is an orange cat”
s “Garfield likes lasagna”

(q if (r and s)) and (r or (not s))

Logical Connectives

Negation (nhot) =P
Conjunction (and) p A g

Disjunction (or) PVq g “Garfield has black stripes’

Exclusive Or p @ q r “Garfield is an orange cat”

Implication D —T s “Garfield likes lasagna”

Biconditional p < q

“Garfield has black stripes if he is an orange cat and likes
lasagna, and he is an orange cat or does not like lasagna”

v

(g if (rand s)) and (r or (not s))

Logical Connectives

Negation (nhot) =P
Conjunction (and) p A g

Disjunction (or) PVq g “Garfield has black stripes’

Exclusive Or p @ q r “Garfield is an orange cat”

Implication D —T s “Garfield likes lasagna”

Biconditional p < q

“Garfield has black stripes if he is an orange cat and likes
lasagna, and he is an orange cat or does not like lasagna”

v

(g if (rand s)) and (r or (not s))

\

((rAs)—qg)A(rV —s)

Analyzing the Garfield Sentence with a Truth Table

q |7 |s (ras)—->q)AN(rv-s)
F|F|F
FIF|T
F|T]|F
FIT|T
T|F|F
T|F|T
T|T]|F
T|T]|T

subexpressions are not (yet)
columns in this table

we will always include
all subexpressions
(easiest to verify)

Analyzing the Garfield Sentence with a Truth Table

q|r|s|rv-s (rns)—-gq (ras)—=q)AN(@Vs)

Analyzing the Garfield Sentence with a Truth Table

q|r |s|as|rVv-as TAS (rns)—-gq (ras)—=>q)N(@V-s)

Analyzing the Garfield Sentence with a Truth Table

q|r|s|as|rvas rAS (rns)-gq (rAs)—->q)A(rV-as)
FIF|F|T T F T T
FIF|T]|F F F T F
FIT|F|T T F T T
FIT|T|F T T F F
TIFIF|T T F T T
TIF|T|F F F T F
TIT|F|T T F T T
TIT|T|F T T T T

Understanding Garfield Claim

“Garfield has black stripes if he is an orange cat and likes
lasagna, and he is an orange cat or does not like lasagnha”

v

Black Stripes Orange Likes Lasagna Claim
F F F T
F F T F
F T F T
F T T F
T F F T
T F T F
T T F T
T T T T

Propositional Logic makes clear exactly what is being claimed.

Understanding Garfield Claim

Black Stripes Orange Likes Lasagna Claim
F F F T
T T T T
Consistent with but also

Converse, Contrapositive

Implication: Contrapositive:
p—r r — —p
Converse: Inverse:
r—p —p —> —f
Consider pr
r—p

p: 6 is divisible by 2
r: 6 is divisible by 4

—r—> —p

—p —> —r

Converse, Contrapositive

Implication: Contrapositive:
p—or r — —p
Converse: Inverse:
r—p —p —> —f
Consider f:r :
p: 6 is divisible by 2 Hp :
r: 6 is divisible by 4 i
—p —> —r T

Converse, Contrapositive

Implication: Contrapositive:
p—r r — —p
Converse: Inverse:
r—p —p — —r

How do these relate to each other?

p| r p—=>r r—-=p (—p |r —pP —=>—r | ar —->—p

M| M| - |-
M| - | |-

Converse, Contrapositive

Implication: Contrapositive:
p—r F —> —pP
Converse: Inverse:
r—Pp —f —> —F
An implication and its contrapositive
have the same truth value!
p|\ r | p=>r | r—->p |—p |-r —p > —r |—r—>—p
T T T T F| F T T
T|F F T F | T T F
F| T T F T | F F T
F| F T T T | T T T

Converse, Contrapositive

Implication: Contrapositive:
p—r r — —p
Converse: Inverse:
r—p —p — —r

An implication and its inverse
do not have the same truth value!

p| r p—=>r r—-=p (—p |r —pP —=>—r | ar —->—p

n|m|—|-
n|= ||
- | = || -
- || =
—|=|m|m
—|m|=|m
-S| |- |-
-S| =™ |-

Equivalence

* Propositional Logic expressions with the same
truth table are called "equivalent"

 Examples:

— implication and its contrapositive are equivalent
e.g.,(pVag)—(gAr)isequivalentto-(gAr) —>-(pVq)

— implication and its inverse are not equivalent
e.g., (pVg)— (gAr)isnot equivalentto-(pV q) > -(qAr)
assuming they are the same is the "fallacy of the inverse"

* Greatly expand on equivalence next week
— prove equivalence without a truth table

Canonical Forms

CNF & DNF

CNF DNF

O

Canonical CNF

O

Canonical DNF

All Logic Expressions

Canonical Forms

e Canonical is from Latin "canon" (ruler)
— compare against to see if equivalent

* We saw one way to do this already: truth table

* Canonical forms are a second way...

Canonical DNF

@ Find the T rows in the truth table

Suppose F is an expression
using the variables a, b, c

A|lA|A|A|[n || |[n]|o
A | A || |A[A | |[T"]T
=S ||| A || [T] O
| " |HA[T | A [T]| AT

Canonical DNF

@ Find the T rows in the truth table

@ For each T row, write an expression
that is T in that row but no others ("min term")

—aA—-bAcC

ThisisonlyTifa=F, b=F andc=T
(AND requires all arguments to be T)

A|lA|A|A|[n || |[n]|o
A | A || |A[A | |[T"]T
=S ||| A || [T] O
| —HA A=A [T |A |]

Canonical DNF

@ Find the T rows in the truth table

@ For each T row, write an expression
that is T in that row but no others ("min term")

—aA—-bAcC

—aAbAcC
ThisisonlyTifa=F, b=T,andc=T

A|lA|A|A|[n || |[n]|o
A | A || |A[A | |[T"]T
=S ||| A || [T] O
| —HA A=A [T |A |]

Canonical DNF

@ Find the T rows in the truth table

@ For each T row, write an expression
that is T in that row but no others ("min term")

a b C F

F F F F

F F T T —aA-bAc

F T F F

F T T T —aAbAcC

T F F F
— | T F T T aA—bAcC
— | T T F T aAbA—cC
o T T T T aAbAC

A min term includes every variable exactly once,
either negated or unnegated, AND-ed together

Canonical DNF

@ Find the T rows in the truth table

a b C F @ For e.ach.T row, write an expression .
that is T in that row but no others ("min term")
F F F F
F F T T —aA—-bAc
F T F F
F T T T —aAbAc
T F F F
T F T T aA—=bAc
T T F T aAbA—c
T T T T aAbAc

@ Form the disjunction (OR) of the min terms

(maA=bAc)V(maAbAc)vV(@A-bAC)V
(@aAbA=c)V(aAbACQ)

DNF: Canonical and Non

e Stands for "Disjunctive Normal Form"
— outermost operation is disjunction (OR)

— operands are conjunctions (ANDs) of
variables or their negations

(aAc)V (—a)V (—maA-b) non-canonical DNF

(aAbA=c)V(maAbAc)V(aA—=bA=C) canonical DNF

(every disjunct is a min term)

Canonical CNF

@ Find the F rows in the truth table

A|lA|A|A|[n || |[n]|o
A | A || |A[A | |[T"]T
=S ||| A || [T] O
| " |HA[T | A [T]| AT

Canonical CNF

@ Find the F rows in the truth table

@ For each F row, write an expression
that is T in every row but that one ("max term")

avVbvc

ThisisonlyFifa=F b=F andc=F
(ORis T if any argumentsis a T)

A|lA|A|A|[n || |[n]|o
A | A || |A[A | |[T"]T
=S ||| A || [T] O
= | " |HA [| A [T | AT

Canonical CNF

@ Find the F rows in the truth table

@ For each F row, write an expression
that is T in every row but that one ("max term")

avVbvc

aVvV-abVvc

ThisisonlyFifa=F, b=T,andc=F

A|lA|A|A|[n || |[n]|o
A | A || |A[A | |[T"]T
=S ||| A || [T] O
= | " |HA [| A [T | AT

Canonical CNF

@ Find the F rows in the truth table

@ For each F row, write an expression
that is T in every row but that one ("max term")

ThisisonlyFifa=T,b=F andc=F

b C F

F F F avbvc
F T T

T F F av-bvVvc
T T T

F F F —aVbVc
F T T

T F T

T T T

A|A|A|A|[n|7m |||

Canonical CNF

@ Find the F rows in the truth table

@ For each F row, write an expression
that is T in every row but that one ("max term")

a b C F

F F F F avVbVvc
F F T T

F T F F av-bvVvc
F T T T

T F F F —aVbvc
T F T T

T T F T

T T T T

@ Form the conjunction (AND) of the max terms

(avbvc)A(av—-bVvc)A(maVvVbVc)

CNF: Canonical and Non

e Stands for "Conjunctive Normal Form"
— outermost operation is conjunction (AND)

— operands (conjuncts) are disjunctions (ORs) of
variables or their negations

(avbVv-=c)A(maVbVvc)A(@aVv bV o) canonical CNF

(avc)A(—a)A(—aVv —b) non-canonical CNF

Comparing DNF and CNF

DNF CNF
operation disjunction (OR) conjunction (AND)
operands conjunctions (ANDs) | disjunctions (ORs)

(of only variables or their negations)

all conjunctions are | all disjunctions are

canonical iff .
min terms max terms

Comparing Min and Max Terms

 Min/Max term if every variable appears exactly once

Min Term Max Term

operation conjunction (AND) disjunction (OR)

(of every variables or its negation)

result only one T row only one F row

Important Corollary of DNF Construction

—, A, V cah implement any Boolean function!
no need for anything else

Why? Because this construction only uses —, A, v
DNF conversion works for any boolean function

Digital Circuits

Application: Digital Circuits

Computing With Logic
—T corresponds to 1 or “high” voltage
—F corresponds to O or “low’ voltage

Gates
— Take inputs and produce outputs (functions)
— Several kinds of gates
— Correspond to propositional connectives

AND, OR, NOT Gates

p q ouT
AND Gate 1 11| 1
p__| 1 0 0

AND ouT

— 0| 1 0

0 0 0
OR Gate Pl a | ou

1 1 1
p

0 1 1

0 0 0
NOT Gate p | our

1 0
p b. out
0 1

Combinational Logic Circuits

AND ouT

AND

gl

Values get sent along wires connecting gates

Combinational Logic Circuits

AND ouT

AND

gl

Values get sent along wires connecting gates

“pA(2g A(rVs))

Combinational Logic Circuits

P

G—oro—

AND

AND

Wires can send one value to multiple gates!

Combinational Logic Circuits

P

G—oro—

AND

AND

Wires can send one value to multiple gates!

(P A=q) V(g AT)

Other Useful Gates

NAND SRR
-(p A q) S ID Rt

NOR e
(V@) o Lo
XOR N
p@Dq Z;J:};Wt
XNOR

P g > D w

out

9] d

O 0 |1

0 1 1

1 O 1

1 1 |0

p g |out
O 0 |1

O 1 |0

1 0 |0

1 1 |0

p g |out
O O [0

0 1 1

1 O 1

1 1 |0

p g |out
O 0 |1

O 1 |0

1 0 |0

1 1 1

Boolean Algebra

* Usual notation used in circuit design

 Boolean algebra
— a set of elements B containing {0, 1}
— binary operations{ +, ¢ }
— and a unary operation{a’ }or{a}

Write these in Boolean Algebra:
p A (=g A(rVs)) (P A=q)V (2q AT)

Boolean Algebra

* Usual notation used in circuit design

 Boolean algebra
— a set of elements B containing {0, 1}
— binary operations{ +, ¢ }
— and a unary operation{a’ }or{a}

Write these in Boolean Algebra:
p A (=g A(rVs)) (P A=q)V (2q AT)

p'q'(r+s) pq +q'r

A Combinational Logic Example

Sessions of Class:

We would like to compute the number of lectures or
quiz sections remaining at the start of a given day of
the week.

— Inputs: Day of the Week, Lecture/Section flag
— Output: Number of sessions left

Examples: Input: (Wednesday, Lecture) Output: 2
Input: (Monday, Section) Output: 1

Implementation in Software

public int classesLeftInMorning(int weekday, boolean islLecture) {
switch (weekday) {
case SUNDAY:
case MONDAY:
return isLecture ? 3 : 1;
case TUESDAY:
case WEDNESDAY:
return isLecture ? 2 : 1;
case THURSDAY:
return isLecture ? 1 : 1;
case FRIDAY:
return isLecture ? 1 : 0;
case SATURDAY:
return isLecture ? 0 : O;

Implementation with Hardware

Encoding:
— How many bits for each input/output?
— Binary number for weekday
— One bit for each possible output

Weekday isLecture

L]

Defining Our Inputs!

Weekday Input:
— Binary number for weekday
— Sunday =0, Monday =1, ...
— We care about these in binary:

Weekday = Number Binary

Sunday 0 000
Monday 1 001
Tuesday 2 010
Wednesday 3 011
Thursday 4 100
Friday 5 101
Saturday 6 110

Converting to a Truth Table!

case SUNDAY or MONDAY:

return islLecture ? 3 :
case TUESDAY or WEDNESDAY:

return islLecture ? 2 :
case THURSDAY:

return islLecture ? 1 :
case FRIDAY:

return islLecture ? 1 :
case SATURDAY:

return islLecture ? O :

Weekday islecture| ¢, ¢, ¢, ¢
SUN 000 (%]
SUN 000 1
MON 001 %]
MON 001 1
TUE 010 %)
TUE 010 1
WED 011 %]
WED 011 1
THU 100 -
FRI 101 %)
FRI 101 1
SAT 110 -

Converting to a Truth Table!

case SUNDAY or MONDAY:

return islLecture ? 3 :
case TUESDAY or WEDNESDAY:

return islLecture ? 2 :
case THURSDAY:

return islLecture ? 1 :
case FRIDAY:

return islLecture ? 1 :
case SATURDAY:

return islLecture ? O :

Weekday islecture| ¢, ¢, ¢, ¢
SUN 000 %) © 1 ©0 o0
SUN 000 1 @ 0 0 1
MON 001 %) © 1 ©0 o0
MON 001 1 @ 0 0 1
TUE 010 (%] © 1 ©0 0
TUE 010 1 @ 0 1 0
WED 011 %) © 1 ©0 o0
WED 011 1 © 0 1 0
THU 100 - © 1 ©0 0

FRI 101 (%] 1 o o0 o

FRI 101 1 © 1 ©0 0
SAT 110 - 1 0 o0 o

Truth Table to Logic

d,d;d,

L Let’s begin by finding an expression
SUN 000 %)
1

for c3. To do this, we look at the rows

O 1 ©
where ¢; = 1 (true).
MON 001 0 o 1 olo
TUE 010 0 © 1 o|j]e
TUE 010 1 © 0 1}]6
WED 011 %) O 1 ©0}6
WED 011 1 O 0 19§86
THU 100 - © 1 o|j]e
FRI 101 0 1 o0 0160
FRI 101 1 © 1 oje
SAT 110 - 1 o0 0160

Truth Table to Logic

i
Il
|

-

og

og

Z

=

7))
Il
[

P

2

DAY == MON && L ==1

® © ®© ©O O 0O O o

®© +Hv ® +«H O®© © O O

i

)

)

i

i

)

)

i

L
0

d,d;d,

000

SUN

010
010
011
011

TUE

TUE

WED

WED

100
101
101

THU

FRI

FRI

110

SAT

Truth Table to Logic

dzd.do L
000 0
SUN 000 1

SUN

I

d2d1d0 == 000 && L ==

|

R © P O ©O© ©O© © OO0 IO I

d2d1d0 == 001 && L ==

Substituting DAY for the
binary representation.

® P O KB O P © RO RIS -
© O© O© ©®©O PR © B OO0 IO IO

® ©®© ©®© ©®© O © © oOmr

Truth Table to Logic

dzd.do L
000 0
SUN 000 1

SUN

dy== 0 &&d; == 0 && dy == 0 && L ==

I

d,==0&&d, == 0 && dy == 1 && L ==

|

R © P O ©O© ©O© © OO0 IO I

Splitting up the bits of the day;
so, we cah write a formula.

® P O KB O P © RO RIS -
© O© O© ©®©O PR © B OO0 IO IO

® ©®© ©®© ©®© O © © oOmr

Truth Table to Logic

dzd.do

L
000 0
SUN 000 1

SUN

|

R © P O ©O© ©O© © OO0 IO I

® P O P O KR © RPIOO RIS -

®© © ©®© © B © Fr OO0 IO I

I

® ©®© ©®© ©®© O © © oOmr

dy ed, *d, °L

dy ed, *dyeL

Replacing with
Boolean Algebra...

Truth Table to Logic

dzd.do L
000 0
SUN 000 1

SUN

dy ed, *d, °L

I

dy ed, *dyeL

|

R © P O ©O© ©O© © OO0 IO I

®© P ® P © P © Rlo Il -
® ®© ®© ® P ©® ofc oo e

® ©®© ©®© ©®© O © © oOmr

How do we combine them?

Truth Table to Logic

dzd.do L
000 0
SUN 000 1

SUN

dy ed, *d, °L

I

dy ed, *dyeL

|

R © P O ©O© ©O© © OO0 IO I

Either situation causes c; to be
true. So, we “or” them.

c; =dy*d, °dp °L+
d2"d1’°do’|.

® P O KB O P © RO RIS -
© O© O© ©®©O PR © B OO0 IO IO

® ©®© ©®© ©®© O © © oOmr

Truth Table to Lo

gic

C3 =d2’°d1’°do’°|.+d2’°d1’°do'|.

Here's c; as a circuit:

~

NO

e
-]

-

-

A

AI\D
ND

o>

Truth Table to Logic (Part 2)

C3 C3 =d2"d1”do"|.+d2’°d1”do°|.

Now, we do C..

Truth Table to Logic (Part 3)

d,d.d, L o lcil o c For ¢4, let's look at the Os:
SUN 000 (9 o110 0O
MON 001 0 0 0 ©
—

TUE 910 © |ofJ10l0 o
TUE 010 1

WED 011 o |ol1lo o

THU 100 - %) %)

0
FRI 101 0 1/0/0 of=—l
FRI_ 101 1 |oelilo o

C3 =d2"d1"do"|.+d2”d1”do'|.
C; =dy °dsedy’'°L+dy°dyedpeL

Truth Table to Logic (Part 3)

d,d.d, L o lcil o c For ¢4, let's look at the Os:
SUN 000 (9 o110 0O
MON 001 0 0 0 ©

TUE 910 © |ofJ10l0 o
1

TUE 910 ol 1 o —>d2+d1’+do+L’
WED 011 o |ol1lo o

THU 100 - %) %)
FRI 101 0 1100
FRI_ 101 1 ‘o J1]o

#
m— 277

dy, +d, +dy +L

o © IO

)

Truth Table to Logic (Part 3)

0 0 1 0 qd2+d1’+do+L’

d,d,d, L GGlGlGc ¢
SUN 000 %) O 1190 0O
MON 001 0 0 0 ©
TUE 010 o__oJi1)0 0
TUE 010 1
WED Q11 o JlofJi]o o

WED 011 1 @ 011 o —>d2+d1’+do’+L’

THU

FRI

FRI

100
101
101

%)
1

#
m— ot 40

No matter what L is, we always say it’s 1.
So, we don’t need L in the expression.

o 1] o0

1 O O dy +d, +dy +L

o]i1]o0

o © IO

)

For ¢4, let's look at the Os:

Truth Table to Logic (Part 3)

d,d.d, L o lcil o c For ¢4, let's look at the Os:
SUN 000 (9 o110 0O
MON 001 0 0 0 ©

TUE 910 © |ofJ10l0 o
1

TUE 910 ol 1 o —>d2+d1’+do+L’
WED 011 o |ol1lo o

WED 011 1 @ 011 o —>d2+d1’+do’+L’

THU 100 - %) %)
FRI 101 0 1 .01 0
FRI 101 1 9 9

#
m— ot 40

How do we combine them?

dy, +d, +dy +L

o © IO

)

Truth Table to Logic (Part 3)

d,d.d, L o lcil o c For ¢4, let's look at the Os:
SUN 000 (9 o110 0O
MON 001 0 0 0 ©

TUE 910 © |ofJ10l0 o
1

TUE 010 © 0|1 0|y d,+d +do+L
WED 011 o__lojijo o

THU 100 - %) %)
FRI 101 0 1100
FRI_ 101 1 ‘o J1]o

#
m— ot 40

¢, =(dy+dy+do+L')dy+dys +dy +L')dy+dy +dp+ L)
(da+dy +do’ +L')do’ +dy +do’ + L)(do' +dy’ +do)

dy, +d, +dy +L

o © IO

)

Truth Table to Logic (Part 3)

d,d,d, L o lcil o c For ¢4, let's look at the Os:
SUN 000 %) 19 o
SUN 000 1 O o 1
MON 001 %) 19 o
MON 001 1 oo 1
TUE 010 %) 19 o
TUE 010 1 o091 o
WED 011 0 111090 o Is c, still in CNF form?
WED o1l 1 o191t ° Yes, but not canonical CNF
THU 100 - o119 o
FRI 101 %) 1 09 o
FRI 101 1 o119 o
SAT 110 - 1 09 o

¢, =(dy+dy+do+L')dy+dys +dy +L')dy+dy +dp+ L)
(da+dy +do’ +L')do’ +dy +do’ + L)(do' +dy’ +do)

Truth Table to Logic (Part 4)

d,d;d, c; C C3

SUN 000 g1 o0 o
SUN 000 ©lo o0 1
MON 001 g1 o0 o
MON 001 ©lo o0 1
TUE 010 g1l o0 o0
TUE 010 o 1 o
WED 011 g1 o0 o
WED 011 o 1 o
THU 100 g1l o0 o0
FRI 101 14190 0 o

FRI 101 g1l o0 o0

SAT 110 14190 0 o

¢y =(dy+dy+do+L)dy+dy+dy +L)
(do+dq +do+L')(dy+dy +do + L)
(dy’ +dg +do’ + L)(dy +dy’ +dp)

C; =dy °dsedg °L+dyedyedpeL
C3 =d2”d1"do”|.+d2"d1"do’|.

Truth Table to Logic (Part 4)

d,d.d, L ol o c ¢, =(dy+dq +dg+L)dy +dg +dy + L)
SUN 000 0 o1 o o 232’1%11’ N 32’1LL’§§3§1“¢1;’1°¢°;>+ ?
SUN 000 1 919 9 1 o —dyedsedy L +dy dsodgel
MON 001 0 e11 o o Cs =dy ody ody oL+ dy ody *dgeL
MON 001 1 o o 1
TUE 010 %) g1 © 0
TUE 010 1 g9 1 0
WED 9011 0 eg1 o o0
WED 9011 1 ego 1 o
o 100] ol1 o o Finally, we do co:

106 © o
(081 0 0

Truth Table to Logic (Part 4)

d,d.d, L ol o c ¢, =(dy+dq +dg+L)dy +dg +dy + L)
SUN 000 0 o1 o o 232’1%11’ N 32’1LL’§§3§1“¢1;’1°¢°;>+ ?
SUN 000 1 919 9 1 o —dyedsedy L +dy dsodgel
MON 001 0 e11 o o Cs =dy ody ody oL+ dy ody *dgeL
MON 001 1 o o 1
TUE 010 %) g1 © 0
TUE 010 1 g9 1 0
WED 9011 0 eg1 o o0
WED 9011 1 ego 1 o
o 100] ol1 o o Finally, we do co:

1.0 0 o0 dyedy’°doe L’
(081 0 0
dardueds

Truth Table to Logic (Part 4)

d,d;d, L G ¢ ©C G

SUN 000 %) © 1 o0 o
SUN 000 1 O 0 0 1
MON 001 %) © 1 o0 o
MON 001 1 O 0 0 1
TUE 010 (%] © 1 © o0
TUE 010 1 © 0 1 o0
WED 011 %) © 1 o0 o
WED 011 1 O 0 1 o0
THU 100 - © 1 © o0
FRI 101 (%] 1 0 o0 o

FRI 101 1 © 1 © o0

SAT 110 - 1 0 o0 o

¢y =(dy+dy+do+L)dy+dy+dy +L)
(do+dq +do+L')(dy+dy +do + L)
(dy’ +dg +do’ + L)(dy +dy’ +dp)

C; =dy °dsedg °L+dyedyedpeL
C3 =d2"d1"do”|.+d2"d1"do’|.
Co =d2’d1"do°|.’ +d2’d1'do’

Mapping Truth Tables to Logic Gates

Given a truth table:
1. Write the output in a table
2. Write the Boolean expression
3. Draw as gates

Equivalence

One Application of Equivalence

Given a truth table:
1. Write the output in a table
2. Write the Boolean expression
3. Draw as gates

This will give us some circuit.
But is it the best circuit?

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

a | b fla,b) | g(a,b)
T | T T F
Fl| T T F
T | F T F
F | F T F

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

Py —p

poOp

(P—>NAPpP

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false
pYv —pP

This is a tautology. It's called the “law of the excluded middie”.
If p is true, then p v —p is true. If p is false, then p v —p is true.

pep
This is a contradiction. It's always false no matter what truth
value p takes on.

(p—>nNAp
This is a contingency. When p=T, r=T, (T = T)AT is true.
When p=T, r=F, (T = F)AT is false.

Logical Equivalence

A = B means A and B are the same thing written twice:
— PAFr=pAr

— PAFFFrAp

Logical Equivalence

A = B means A and B are the same thing written twice:
— PAF=pPAYr
These are equal, because they are character-for-character identical.

— PAFFraAp

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

—PAGAr=(PAQ) AT

Logical Equivalence

A = B means A and B are the same thing written twice:
— PAF=pPAYr
These are equal, because they are character-for-character identical.
— PAFFraAp

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

— PAGAr=(PAQ) AT

These are equal. The parentheses are implicit in the first case.

(Also, things whitespace also should not matter. In full detail,
equality is between parse trees not strings. More later on...)

Logical Equivalence

A = B means A and B are the same thing written twice:
— PAFr=pAr
These are equal, because they are character-for-character identical.
— PAFFFrAp

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A = B means A and B have identical truth values:
— PAF=pAY

— PAF=FAP

— PAFEFrVp

Logical Equivalence

A = B means A and B are the same thing written twice:
— PAF=pPAYr
These are equal, because they are character-for-character identical.
— PAFFraAp
These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.
A = B means A and B have identical truth values:
— PAF=pPAY
Two formulas that are equal also are equivalent.
— PAF=rAp
These two formulas have the same truth table!

— PAFEFrvVp
When p=T and r=F, p Aris false, but p V r is true!

A< B vs. A=B

A <> B is a proposition that may be true or false
depending on the truth values of A and B.

Example: (p Ar)<>(rv p) has 4 rows in its truth table

A = B is an assertion over all possible truth values
that A and B always have the same truth values.

Example: pAr=rap istrue

A =B and (A <> B) =T have the same meaning
as does “A <> B is a tautology”

Logical Equivalence A=B

A = B is an assertion that two propositions A and B
always have the same truth values.

A =B and (A <> B) =T have the same meaning.

PAF=rAp

PAr | rAp (pAr) e (rap)

M| A4S
n|—|Tm ||

Logical Equivalence A=B

A = B is an assertion that two propositions A and B
always have the same truth values.

A =B and (A <> B) =T have the same meaning.

PAF=rAp

PAr | rAp (pAr) e (rap)
T

M| A4S
M| 4| M| 4| =
b O e O e I
b O |

T
T
T

Familiar Equivalence

Double Negation

p = ——p

De Morgan’s Laws

—(pAr)=—p Vv r
—(pvr)=—pA-r

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement,
ask “when is the original statement false”.

It’s false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

Example: —(p Ar)=—p v —r

—p VvV ar

pATr

—|(p/\l")

T e T I B R i o

nlA | A S

| |7m|m

e B B T R B B

De Morgan’s Laws

Example: —(p Ar)=—p v —r

plr| —p —r | —pv—=r | par | —(pAr)
T|T| F F F T F
T|F F T T F T
FIT T F T F T
F|F T T T F T

De Morgan’s Laws

—(pAr)=—p Vv -r
—(pvr)=—pA-r

if (!(front != null && value > front.data)) {
front = new ListNode(value, front);

} else {
ListNode current = front;
while (current.next != null &R current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

De Morgan’s Laws

—(pAr)=—p Vv -r
—(pvr)=—pA-r

I'(front != null & value > front.data)

front == null || value <= front.data

Law of Implication

p—>r=—pvr

p—>r | —p | ApvVvr

T[S
o m B T e O R I

Law of Implication

p—>r=—pvr

P | r |p—>r|ap |apvVvr
T T T F T
T| F| F ; ;
F T T T T
F F T T T

Biconditional: p & r

e pifandonlyifr

(p iff r)

 pimplies rand rimplies p
* pis necessary and sufficient for r

p r | por | po>r| rop |(p=>0)AT-p)
T T T T T
T F F F T
F T F T F
F F T T T

Biconditional: p & r

e pifandonlyifr

(p iff r)

 pimplies rand rimplies p
* pis necessary and sufficient for r

p r | por | po>r| rop |(p=>0)AT-p)
T T T T T T
T F F F T F
F T F T F F
F F T T T T

Some Familiar Properties of Arithmetic

*x+y=y+x (Commutativity)

e x-(y+z)=x-y+x-z (Distributivity)

s (x+y)+z=x+(y+2z) (Associativity)

Important Equivalences

 Associative
- (vgevr=pv(qVvr)
—-@ADAT=DpA(QAT)

* Distributive
—-pA@Vr)=(@EAqQV(pAT)
—-pv@Ar) =@V A(pVrT)

e Commutative
—pvq=qVp
—PAGQ=qADp

Some Familiar Properties of Arithmetic

e x-1=x (Identity)
*x+0=x

e x-0=0 (Domination)

Important Equivalences

* |dentity
—pANT=p
—pVF=p

* Domination
—pVT=T
—pAF=F

Some Familiar Properties of Arithmetic

* Usual properties hold under relabeling:
— 0, 1 becomesF, T
— “+” becomes “Vv”
— “ -7 becomes “A”

 But there are some new facts:
— Distributivity works for both “A” and “v”
— Domination works with T

* There are some other facts specific to logic...

Important Equivalences

* |dempotent * Absorption
—pVp=Ep -pV(pAgqQ)=p
—pApP =D -pA(PVg =p

 Negation
—pV-ap=T

—pA-p=F

Important Equivalences

Identity .
—pANT=p

—pVF=p

Domination .
—pVT=T

—pAF=F

Idempotent .
—pPVpPp=EPp

—PADP=D

Commutative .
—pVqg=qVp

—PAQ=qADp

Associative

- (pvgeVvr=pv(qVvr)

- @AQDAT=pA(GAT)
Distributive
—-pA@Vr)=(@EAqQV(pAT)
-pV@Ar)=(@EVgA(pVrT)
Absorption

-pV(pAgqQ)=p
-pA(PVg =p
Negation
—pVap=T

—pAp=F

Using Equivalences

* Note that p, g, and r can be any propositions
(not just atomic propositions)

s Ex: ro>os)A(t)=(=t)A(r—8)

— apply commutativity: pAg=qg AP
withp:=r—s
and q := —t

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

What is the runtime of our algorithm?

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

Yes! Generate the truth tables for both propositions and check
if they are the same for every entry.

What is the runtime of our algorithm?

Every atomic proposition has two possibilities (T, F). If there are
n atomic propositions, there are 2™ rows in the truth table.

Another approach: Equivalence Chains

To show A is equivalent to B

— Apply a series of logical equivalences to
sub-expressions to convert Ato B

To show A is a tautology

— Apply a series of logical equivalences to
sub-expressions to convert Ato T

Another approach: Equivalence Chains

To show A is equivalent to B

— Apply a series of logical equivalences to
sub-expressions to convert Ato B

Example:
Let Abe “pV (p Ap)”, and B be “p”.
Our general equivalence proof looks like:

pV(pAp)

Another approach: Logical Equivalences

* Identity » Associative De Morgan’s Laws
- pAT=p - (vevr=pvigvr) “(PAQ) =—DV —q
-pVF=p - (@PAQAT=pA(gAT) —~(pvq)=—pAr—q
* Domination * Distributive

Law of Implication

—pVT=T —pA(@gvr)=@Aqg)V(pAT
—p/\F=F —pv(q/\r)=(pvq)/\Eer; P=a=-pvq
p - PViq =WPVy P Contrapositive
* ldempotent * Absorption _

_ _ p—>q=—-q—>—p
“PVPEP —pVpAD=p Biconditional
—pADP=D -pA(PVq =p preq=p->9r(@q@—>Dp)

* Commutative * Negation
-pVvqg=qVp —pV=p=T Double Negation
—-DPAQ=qAD —pA=-p=F p=——p
Example:

Let Abe “pV (p Ap)”, and B be “p”.
Our general equivalence proof looks like:

pV(pAp)

Il
=

Logical Equivalences

* Identity * Associative
-pAT=p - (vevr=pvigvr)
-pVF=p - (@PAQAT=pA(gAT)
* Domination * Distributive
-pVT=T -pAQ@Vr)=(@AQV(PAT)
- pAF=F -pV@Ar)=(@VaA(Vr)
* |dempotent * Absorption
- PVP=D -pVAg =p
- PAP=D -pA(pVg =p
* Commutative * Negation
- pVvVqg=qVp —pV-ap=T
—pAQ=qAp —pA=-p=F
Example:

De Morgan’s Laws
—(PArq)=—pPV—q
—(Pva)=—pPAr—q

Law of Implication

bp—>q=-—-pvq
Contrapositive
p—>q=-—-q9—>—p

p<>q=@>q9(@q—>p)
Double Negation
p=——p

Let Abe “pV (p Ap)”, and B be “p”.
Our general equivalence proof looks like:

pV(pAP)=pVp

p

Idempotent

Idempotent

Logical Equivalences

To show A is a tautology

— Apply a series of logical equivalences to
sub-expressions to convert Ato T

Example:
LetAbe “—pV (pVDp)".
Our general equivalence proof looks like:

-pV (pVp)

Logical Equivalences

* Identity * Associative
-pAT=p - (vevr=pvigvr)
-pVF=p - (@PAQAT=pA(gAT)
* Domination * Distributive
-pVT=T -pAQ@Vr)=(@AQV(PAT)
- pAF=F -pV(@Ar)=(@VA(pVT)
* |dempotent * Absorption
- pPVp=p -pvpAg =p
- PAP=D -pA(PpVQ =p
* Commutative * Negation
- pVvVqg=qVp —pV-ap=T
—pAQ=qAp —pA=-p=F
Example:

LetAbe “—pV (pVDp)".

De Morgan’s Laws
—(PArq)=—pPV—q
—(Pva)=—pPAr—q

Law of Implication

bp—>q=-—-pvq
Contrapositive
p—>q=-—-q9—>—p

p<>q=@>q9(@q—>p)
Double Negation
p=——p

Our general equivalence proof looks like:

-pV (pVp)

1l
-]

Logical Equivalences

* Identity * Associative De Morgan’s Laws
-pAT=p - (vevr=pv(qvVvr) (P AQ)=—DV—q
-pVF=p - (@PAQAT=pA(gAT) =(pvq@)=—pAr—q

* Domination * Distributive o

Law of Implication
—pVT=T -pAQ@Vvr)=(@AQV(pAT) _
- pAF=F -pv@Ar)=(@VveA(Vr) ot e
- - Contrapositive
* |dempotent * Absorption _
B B p—>q=-—-q—>—p
~PVP=Pp —rvpArg=p Biconditional
—pAp = - DpA \% =
PAP=P P_(p QO =p p<>q=(@>9AG—>p)

* Commutative * Negation
-pVvqg=qVp —pV=p=T Double Negation
—-DPAQ=qAD —pA=-p=F p=——p
Example:

LetAbe “—pV (pVDp)".
Our general equivalence proof looks like:

—pVDp ldempotent

pV-ap Commutative
T Negation

-pV (pVp)

Prove these propositions are equivalent: Option 1

Prove:pA(p—>hN=pAr
Make a Truth Table and show:

pPA(@-o1) o@AT)=T

por |[(pA(p-T1) PAT A1) = (@PAT)

M| A
m|(A (||

Prove these propositions are equivalent: Option 1

Prove:pA(p—>hN=pAr
Make a Truth Table and show:

pPA(@-o1) o@AT)=T

p|r | por |pAP-T) PAT A(@-o1) o @PAT)
T| T T T T T
T|F F F F T
F|T T F F T
F|F T F F T

Prove these propositions are equivalent: Option 2

Prove:pA(p > HN=pAr

pA(—-T)

=DAT

* Identity * Associative De Morgan’s Laws
-pPAT=p -(vevr=pvigvr) -
-pVF=p —(@PAQAT=pA(qAT) _‘gpi/\qu_‘pzﬁq

* Domination * Distributive —~PVa)=—pPAr—q
—pVT=T -pA(@Vr)=(@AqQV(PAT) Law of Implication
—-pAF=F —-pVv(@Ar)=(@VgA(pVr) p—>q=-pvq

* ldempotent * Absorption Contrapositive
—PVDP=DP -pvipAq =p p—>q=—-9—>-p
—-pApP=D —pA(pVvq) =p Biconditional

« Commutative * Negation p<q=@P>9AQ—>p)
-pVvVqg=qVp -pV-p=T Double Negation
- pPAgG=qAp —pA-p=F

p=—-p

Prove these propositions are equivalent: Option 2

pAP->1)=EpA(-pVT)
=(@A-p)V(pAT)

Prove: p A (p — 1)

=FV(pAT)
=(pAr)VF
=DAT

=p ATl

Law of Implication
Distributive

Negation
Commutative
Identity

* Identity
—-pAT=p
—-pVF=p

* Domination
—pVT=T
—pAF=F

* |dempotent
—PVP=PD
—PAP=D

* Commutative
-pPvVqg=EqVp
—PAQ=qAp

* Associative

-(vevr=pv(gvr)
- (@A AT=pA(qAT)

* Distributive

—pA(@Vvr)=(@AqQV(pAT)
-pvV@Ar) =@V A(Vr)

* Absorption

-pVAg =p
-pA(pV@ =p

* Negation

De Morgan’s Laws
—(pArg)=—pVv—q
—(pva)=—pr—q

Law of Implication

bp—>q=-pvq

Contrapositive

p—o>q=—-q9—>—p

Biconditional

p<q={@>q9(Qq—>p)
Double Negation
p=——p

Prove this is a Tautology: Option 1

(pAT)—>(rvp)

Make a Truth Table and show:

(pAT) > (rVvp) =T

PAT

rvp

(pAT) > (rVvp)

== S

m| =S |||

Prove this is a Tautology: Option 1

(pAT)—>(rvp)

Make a Truth Table and show:

(pAT) > (rVvp) =T

PAT

rvp

(pAT) > (rVvp)

== S

m| =S |||

m(m| 7|~

e R |

- - |-

Prove this is a Tautology: Option 2

(pAT)—>(rvp)

Use a series of equivalences like so:

(pAT) > (rVp)

Identity
—-pAT=p
-pVF=p

Domination
—pVT=T
— pAF=F

Idempotent
—PVpP=EP
—PAP=PD

Commutative
—pPVqa=qVp

—PAGQ=qAp

Il
-]

Associative
-(vevr=pv(qvr)

- (@A AT=pA(qAT)
Distributive
-pA@Vvr)=(@AQV (AT
-pv@Ar)=(@VA(VT)
Absorption

-pvpAgQ =p
-pA(PVg =p

Negation

—pVap=T

—-pA-p=F

Associative
-(@vgevr=pviqvr)

Prove this is a Tautology: Option 2 |- eronr=rmann

Distributive
-pA@Vvr)=(@AQV (AT
-pv@Ar)=(@VA(VT)
(p /\ r) % (r\/ p) Absorption
-pvpAgQ =p
-pA(PVg =p
Negation

Use a series of equivalences like so: CpVop=T

—-pA-p=F

-(pAT)V (rvp) Law of Implication
(-pV-r)V(rvp) De Morgan
apV (=rV (rVvp)) Associative

(pAT) > (rVp)

Identity = —p V ((—IT V 7") V p) Associative

_ 5355 =-pV(pV(arvr)) Commutative
Pominadion =(=pVp)V(arvr) Associative

-pVvT=

— pAF=F =(pV-ap)V(@rVv-ar) Commutative (twice)
'Ciessoge;tp = TVT Negation (twice)

- pApP=p =T Domination/ldentity
Commutative

- pvVqg=qVp

—PANQ=qADp

Chains of Equivalence/Tautology

* Not smaller than truth tables when there are only
a few propositional variables...

e ...but usually much shorter than truth table proofs
when there are many propositional variables

* A big advantage will be that we can extend them
to a more in-depth understanding of logic for

which truth tables don’t apply.

Recall: Truth Table to Logic

Co =d2°d1’°do°|.’ +d2’d1°do’ +d2°d1’do
c1 =d2’.d1’.do’.L’ +d2’.d1’.d0.L’ +d2’.d1.d0’.L’ +d2’.d1.do.L’ +d2.d1’.do’ +d2.d1’.d0.L
C; =dy°dsedg eL+dy°dyedp°L

C3 =d2’°d1’°do’°|.+d2’°d1’°do°|.
Here's c; as a circuit:
—{NO
d, NPT

NO
dy

dolNo AND
Ny

W

o>

Simplifying using Boolean Algebra

c3=d2’ed1l’+edO’sL + d2’ed1’+dO-L

In Boolean Algebra,

=d2'ed1l’*(d0’ + dO)eL Distributivity we skip Associativity,
=d2 ed1’ e 1L Negation Commutativity, and
] Identity steps
=d2'ed1’ L |dentity
In Boolean Algebra,
d2 —Inot write "=" instead of "="
AND
d1 —Inot |

Uses of Equivalence

* Working with logical formulas
— simplification

* Working with circuits
— hardware verification

e Software applications
— query optimization and caching
— artificial intelligence
— program verification

Predicate Logic

Predicate Logic

* Propositional Logic

— Allows us to analyze complex propositions in
terms of their simpler constituent parts (a.k.a.
atomic propositions) joined by connectives

* Predicate Logic

— Lets us analyze them at a deeper level by
expressing how those propositions depend on
the objects they are talking about

”

“All positive integers x, y, and z satisfy x> + y3 # z3.

Predicate Logic

Adds two key notions to propositional logic
— Predicates

— Quantifiers

Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) := “x is a cat”

Prime(x) := “x is prime”

HasTaken(x, y) := “student x has taken course y”
LessThan(x, y) := “x<y”

Sum(x, vy, z) :=“x+y=2"

GreaterThan5(x) := “x > 5”

HasNChars(s, n) := “string s has length n”

Predicates can have varying numbers of arguments
and input types.

Domain of Discourse

For ease of use, we define one “type”’/“domain” that we
work over. This non-empty set of objects is called the
“domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

“mammals” or “sentient beings” or “cats and dogs” or ...
(2) “x is prime”, “x =07, “x> 07, “x is a power of two”
“numbers” or “integers” or “non-negative integers” or ...

(3) “student x has taken course y” “x is a pre-req for 7’

“students and courses” or “university entities” or ...

Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @)

P(x) is true for every x in the domain QUANTIFIEF
read as “for all x, P of x”

Ix P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Truth Depends on the Domain of Discourse

 Example: "Everybody was Kung Fu fighting"
— true if the domain is people in the arena
— false if the domain is the whole world

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): Vx P(x)

P(x) is true for every x in the domain
read as “for all x, P of x”

Exam pleS: Are these true?

¢ Vx 0dd(x)

e VX LessThan4(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): Vx P(x)

P(x) is true for every x in the domain
read as “for all x, P of x”

Examp|es: Are these true? It depends on the domain. For example:

{1, 3,-1,-27} Integers Odd Integers

¢ Vx 0dd(x)

True False True

» Vx LessThan4(x) True False False

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examples: Arethese true?

¢ dx Odd(x)

e dx LessThan4(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examp|es: Are these true? It depends on the domain. For example:

Positive
{1,3,-1,-27} Integers Multiples of 5
e dx Odd(x)
True True True

* dx LessThan4(x) True True False

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) := “x is even” Greater(x, y) := “x>y”

| Positive Integers 0dd(x) := “x is odd” Equal(x, y) := “x=y”
\Prime(x) := “xis prime” Sum(x, y, z) := “x+y=2")

Determine the truth values of each of these statements:

dx Even(x) T eg.24,60,..

Vx Odd(x) F eg.24,6,..

Vx (Even(x) v Odd(x)) T every integer is either even or odd
dx (Even(x) A Odd(x)) F nointeger is both even and odd
Vx Greater(x+1, x) T adding 1 makes a bigger number

dx (Even(x) A Prime(x)) T Even(2) is true and Prime(2) is true

Syntax of Quantifiers

Precedence
Negation (not) —p] highest
For all Vx P(x)
Exists dx P(x)
Conjunction (and) p Agq i
Disjunction (or) pVq i
Exclusive Or p D q
Implication p—1 |
Biconditional p < q lowest

Vx =P(x) AQ(y) means (VYx =P(x))AQ(y)

Syntax of Quantifiers

Negation (nhot)
For all

Exists
Conjunction (and)
Disjunction (or)
Exclusive Or
Implication
Biconditional

—p

Vx P(x)
dx P(x)
pAq
pVq
pDaq

p—Tr

P—(q

Not everyone uses
this convention!

We will try to
accommodate
both approaches...

Syntax of Quantifiers (Two Conventions)

Negation (not) —p] highest
For all Vx P(x)
Exists dx P(x)]

Conjunction (and) p Agq
Disjunction (or) pVq

Exclusive Or p D q
Implication p—T]
Biconditional p — g
For all vx, P(x)]|

Exists 3@ (x) | lowest

Syntax of Quantifiers (Two Conventions)

Negation (nhot)
For all

Exists
Conjunction (and)
Disjunction (or)
Exclusive Or
Implication
Biconditional

For all

Exists

—p

Vx P(x)
Ix P(x) |
pAqg
pVq

p D q
p—T
p < q
Vx, P(x)

3x, P(x)_

V.X', —IP(.X) N Q(y)

means

Vx (=P(x) AQ(y))

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) := “x is even” Greater(x, y) := “x>y”

| Positive Integers 0dd(x) := “x is odd” Equal(x, y) := “x=y”
\Prime(x) := “xis prime” Sum(x, y, z) := “x+y=2")

Translate the following statements to English

Vx dy Greater(y, x)
For every positive integer x, there is a positive integer y, such thaty > x.
dy Vx Greater(y, x)

There is a positive integer y such that, for every pos. int. X, we have y > x.

Vx 3y (Prime(y) A Greater(y, x))

For every positive integer x, there is a pos. int. y such that y is prime and y > x.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

For each positive integer X, if x is prime, then x = 2 or x is odd.

dx Ay (Prime(x) A Prime(y) A Sum(x, 2, y))

There exist positive integers x and y such that x and y are prime and x + 2 =.

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) := “x is even” Greater(x, y) := “x>y”

| Positive Integers 0dd(x) := “x is odd” Equal(x, y) := “x=y”
\Prime(x) := “xis prime” Sum(x, y, z) := “x+y=2")

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer x, there is a positive integer y, such thaty > x.
dy Vx Greater(y, x)

There is a positive integer y such that, for every pos. int. X, we have y > x.
Vx 3y (Prime(y) A Greater(y, x))

For every positive integer x, there is a pos. int. y such that y is prime and y > x.

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) := “x is even” Greater(x, y) := “x>y”

| Positive Integers 0dd(x) := “x is odd” Equal(x, y) := “x=y”
\Prime(x) := “xis prime” Sum(x, y, z) := “x+y=2")

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer, there is some larger positive integer.
dy Vx Greater(y, x)

There is a positive integer that is larger than every other positive integer.
Vx 3y (Prime(y) A Greater(y, x))

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) := “xis even” Greater(x, y) := “x>y”

| Positive Integers Odd(x) := “x is odd” Equal(x, y) := “x=y”
\Prime(x) := “xis prime” Sum(x, y, z) := “x+y=2")

Translate the following statements to English

dx Ay (Prime(x) A Prime(y) A Sum(x, 2, y))

There exist positive integers x and y such that x and y are prime and x + 2 =y.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

For each positive integer X, if x is prime, then x = 2 or x is odd.

Spot the domain restriction patterns

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) := “xis even” Greater(x, y) := “x>y”

| Positive Integers Odd(x) := “x is odd” Equal(x, y) := “x=y”
\Prime(x) := “xis prime” Sum(x, y, z) := “x+y=2")

Translate the following statements to English

dx Ay (Prime(x) A Prime(y) A Sum(x, 2, y))

There exist primes x and y such that x + 2 =y.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Spot the domain restriction patterns

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) := “xis even” Greater(x, y) := “x>y”

| Positive Integers Odd(x) := “x is odd” Equal(x, y) := “x=y”
\Prime(x) := “xis prime” Sum(x, y, z) := “x+y=2")

Translate the following statements to English

dx Ay (Prime(x) A Prime(y) A Sum(x, 2, y))

There exist primes x and y such that x + 2 =y.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

Spot the domain restriction patterns

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) := “xis a cat”

Mammals | Red(x) := “x is red”
\LikesTofu(x) := “x likes tofu”)

“All red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu”

1y ((Red(y) A Cat(y)) A —LikesTofu(y))

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) := “x is a cat”

Mammals | Red(x) := “x is red”
\LikesTofu(x) := “x likes tofu”)

—]

When putting two predicates together like this, we
‘ use an “and”.

When restricting to a smaller
domain in a “for all” we use

“All Red cats like tofu”«

implication.
—d4 _ When restricting to a smaller
“Some red cats don’t like tofu” €— domain in an “exists” we use
and.

“Some” means “there exists”.

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) := “x is a cat”

Mammals | Red(x) := “x is red”
\LikesTofu(x) := “x likes tofu”)

“All Red cats like tofu”
“Red cats like tofu”

L When there’s no leading quantification,
it usually means “for all”.

“Some red cats don’t like tofu”
“A red cat doesn’t like tofu”

l — “A” means “there exists”.

Statements with Quantifiers (Natural Translations)

Translations usually sound more natural if we

1. Notice “domain restriction” patterns
Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names

Vx dy Greater(y, x)

For every positive integer, there is some larger positive integer.

3. Can sometimes drop “all” or “there is”
— dx (Even(x) A Prime(x) A Greater(x, 2))

No even prime is greater than 2.

More English Ambiguity

Implicit quantifiers in English are often ambiguous

Three people that are all friends can form a raiding party \vJ

Three people that | know were all friends with Paul Allen =

Formal logic removes this ambiguity
— quantifiers can always be specified

— unquantified variables that are not known constants (e.g, i)
are implicitly V-quantified (mostly... one special case coming later)

Quantifiers in Java

* Implementing quantifiers in Java...

boolean forAll (Map<Integer, Boolean> P) {
for (Integer x : P.keySet()) {
if (!'P.get(x)) return false;

} Vx P(x)

return true;

(Bound) variable names don’'t matter: Vx P(x) = Va P(a)

boolean exists (Map<Integer, Boolean> P) {
for (Integer x : P.keySet()) {
if (P.get(x)) return true;

) Ix P(x)

return false;

Domain of Discourse

Scope of Quantifiers _{1,2,3, ..., 100} |

Example: 31 x Greater (x,y)= 1z Greater (z, y)

truth value:

doesn’t depend on X or Z “bound variables”
does depend on 'y “free variable”

Domain of Discourse

Scope of Quantifiers _{1,2,3, ..., 100} |

Example: 31 x Greater (x,y)= 1z Greater (z, y)

truth value:

doesn’t depend on X or z “bound variables”
does depend on 'y “free variable”

quantifiers only act on free variables of the formula

vV x 3y (Plxy) = ¥V xQly, x)))

Quantifier “Style”

vV x (3y (P(x,y) A V¥ xQly, x)))

This isn’t “wrong”, it's just horrible style.
Don’t confuse your reader by using the same
variable multiple times...there are a lot of letters...

Scope of Quantifiers

dx (P(x) AQ(x)) vs. (IxP(x)) A (IxQ(x))

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Variables with the same name do not
necessarily refer to the same object.

Nested Quantifiers

* Bound variable names don’t matter
Vx Ay P(x, y) = Va db P(a, b)

* Positions of quantifiers can sometimes change
Vx (Q(x) A Jy P(x, y)) = Vx Jy (Q(x) A P(x, y))

 But: orderis important...

Quantifier Order Can Matter

Domain of Discourse

Predicate Definitions

{1I 2) 3) 4}

GreaterEq(x, y) ©:= “x2y”

x2
3
4

“Every number has a number greater than or equal to it.”

Yy dx GreaterEq(x, y)

2 3 4
TUF | F|F
TIT|F!|F
N
IS EFIE
| |
)
TTT Tl T
| ~e—

Quantifier Order Can Matter

Domain of Discourse Predicate Definitions

11,23 4) GreaterEq(x, y) ::= “x2y”

2 3 4
) ' " T(F|F|F

There is a number greater than or equal to all numbers. 5
TIT|F|F

X (\
dx Vy GreaterEq(x, y) Kk
N

“Every number has a number greater than or equal to it.” [_4 TITITHT

Yy dx GreaterEq(x, y)

The purple statement requires an entire row to be true.

The red statement requires one entry in each column to be true.

-
Important: both include the case x =y

Different names does not imply different objects!

.

~\

y,

Quantification with Two Variables

expression

when true

when false

Vx YV yP(x,y)

Every pair is true.

At least one pair is false.

dx3yP(x,)

At least one pair is true.

All pairs are false.

vV x3yP(x,vy)

We can find a specific y for
each x.

(Xll yl)i (Xz, y2)l (X3r y3)

Some x doesn’t have a
corresponding y.

dy V xP(x, y)

We can find ONE y that
works no matter what x is.

(Xll y)/ (XZI y)l (X3, y)

For any candidate y, there is
an x that it doesn’t work for.

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

There is no unicorn — 3Jx Unicorn(x)

Every animal is not a unicorn VX — Unicorn(x)

These are equivalent but not equal

De Morgan’s Laws for Quantifiers

Eash to check that

— 3Ix (P(x) A R(x)) = Vx (P(x) > — R(x))

and similarly that

—VX (P(x) = R(x)) = Ix (P(x) A = R(x))

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)

