
CSE 311: Foundations of Computing I Winter 2026

Problem Set 3
Due: Friday, Feb 6th by 11:00pm

Instructions

Write up carefully argued solutions to the following problems. Each solution should be clear enough
that it can explain (to someone who does not already understand the answer) why it works.

Collaboration policy. You are required to submit your own solutions. You are allowed to discuss the
homework with other students. However, the write up must clearly be your own, and moreover, you
must be able to explain your solution at any time. We reserve ourselves the right to ask you to explain
your work at any time in the course of this class.

Solutions submission. Submit your solution via Gradescope. In particular:

– Each numbered task should be solved on its own page (or pages). Do not write your name on the
individual pages. (Gradescope will handle that.)

– When you upload your pages, make sure each one is properly rotated. If not, you can use the
Gradescope controls to turn them to the proper orientation.

– Follow the Gradescope prompt to link tasks to pages.

– You are not required to typeset your solution, but your submission must be legible. It is your
responsibility to make sure solutions are readable — we will not grade unreadable write-ups.

– Extra practice problems are included at the bottom of the assignment. These will not be graded,
so don’t submit solutions to them.
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Task 1 – Acts of Mod [10 pts]

Let m and n be positive integers, with gcdpm,nq “ 1. Consider the following claim: for any integers a
and b, there exists an integer x such that x ”m a and x ”n b. 1

a) Write a formal proof that the claim holds. The proof should begin with the following lines:

1. m ą 0 ^ n ą 0

2. gcdpm,nq “ 1

...

Given

Given

b) Translate your formal proof to an English proof.

Hints:

- An application of Bézout’s theorem grants us integers s and t such that sm ` tn “ 1. Then, the
number x “ bsm ` atn is a solution to the system of congruences.

- In your formal proof, you should use the following formulation of Bézout’s theorem:

Bézout’s Theorem: @u, @v,
`

pu ą 0 ^ v ą 0q Ñ Ds, Dt, psu ` tv “ gcdpu, vqq
˘

- The inference rules Cite or Apply will be useful in your formal proof. Note that these inference
rules can be used with theorems with any number of @-quantifiers.

- In your formal proof, you are allowed to Intro/Elim multiple @-quantifiers in one step. Likewise,
you are allowed to Intro/Elim multiple D-quantifiers in one step.

1This claim is a simple version of (the existence part of) the Chinese Remainder Theorem.
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Task 2 – Euclidean, My Dear Watson [10 pts]

We say that an equation is in “standard form” if it looks like Ax ”n B for some constants A, B, and
n. The first equation below is in standard form, but the second is not.

Solve each of the below modular equations by following these steps, showing your work as described
next.

1. If the modular equation is not in standard form, then transform it into standard form.

Show the sequence of operations, either adding to both sides or simplifying (e.g., algebraically
modifying terms on individual sides as done in lecture).

2. Calculate one solution to the modular equation in standard form using the Extended Euclidean
Algorithm.

Show your work by writing out the sequence of quotients and remainders, the resulting tableau,
and the sequence of substitutions needed to calculate the relevant multiplicative inverse. Then,
show how multiplying the initial equation on both sides by the multiplicative inverse gives you a
solution to the equation.

3. State all integer solutions to the modular equation in standard form.

Your answer should be of the form “x “ C ` Dk for any integer k”, where C and D are integers
with 0 ď C ă D.

4. If the original modular equation was not in standard form, justify briefly (in one sentence) why the
solutions to the equation in standard form are the same as the solutions to the original equation.

5. Show that there is some solution z P Z such that z ě 1000.

a) 9x ”41 7

b) 54x ´ 6 ”42 7 ´ 19x
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Task 3 – Sum Kind of Wonderful [10 pts]

Prove, by induction, that
n

ÿ

i“0

p11p12qi ` 2q “ p12qn`1 ` 2n ` 1

holds for all integers n ě 0.

Write an English proof, following the template given in lecture.

Task 4 – Winnie the Two [10 pts]

Prove, by induction, that 3 | n3 ` 2n holds for all n ě 0.

Write an English proof, following the template given in lecture.

Hint: In this case, the claim is that 3 | n3 ` 2n, so you need to prove that the definition of divides
holds with 3 and n3 ` 2n. The definition is an equation, so once you prove that an equation of the
right shape holds for n, you can say that you have proven P pnq.
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Task 5 – Barking Up the Strong Tree [10 pts]

When you first learned recursion in CSE 123, a mysterious person gave you the following recursive Java
method and claimed that it behaves like the natural-number version of Math.pow():

int mysteriousPow(int b, int m) { /* Assumes: b >= 1 and m >= 0 */

if (m == 0) {

return 1;

} else if (m == 1) {

return b;

} else {

return (b - 1) * mysteriousPow(b, m - 1) + b * mysteriousPow(b, m - 2);

}

}

You wrote some tests and realized that this method might be correct, but you didn’t know how to
prove it rigorously...until you are taking CSE 311 and learn strong induction! Now, let’s try to prove the
correctness of this method. Not sure what I mean? Let’s put it another way:

Let b be a positive integer. The function fpmq is defined for all integers m ě 0 recursively as follows:

fp0q “ 1

fp1q “ b

fpmq “ pb ´ 1q ¨ fpm ´ 1q ` b ¨ fpm ´ 2q if m ě 2

Use strong induction to prove that the following holds for all integers n ě 0:

fpnq “ bn

Write an English proof, following the template given in lecture.
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Task 6 – Extra Credit: Stone By the Company He Keeps [0 pts]

Consider an infinite sequence of positions 1, 2, 3, . . . and suppose we have a stone at position 1 and
another stone at position 2. In each step, we choose one of the stones and move it according to the
following rule: Say we decide to move the stone at position i; if the other stone is not at any of the
positions i ` 1, i ` 2, . . . , 2i, then it goes to 2i, otherwise it goes to 2i ` 1.

For example, in the first step, if we move the stone at position 1, it will go to 3 and if we move the
stone at position 2 it will go to 4. Note: no matter how we move the stones, they will never be at the
same position.

Use induction to prove that, for any given positive integer n, it is possible to move one of the stones
to position n. For example, if n “ 7 first we move the stone at position 1 to 3. Then, we move the
stone at position 2 to 5 Finally, we move the stone at position 3 to 7.
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Task 7 – Optional Practice Problems (Ungraded) [0 pts]

Note: The problems below are optional practice problems that are not required and will not be
graded. They are provided to help you practice; you do not need to submit solutions to these problems.

Find solutions to each of the following modular equations.

a) 15x ”28 14

b) 13x ´ 3 ”7 x

Prove each of the following claims. It should not be necessary to use induction.

c) Let n and c be positive integers. For any integers a and b, if a ”n b, then ca ”cn cb. (Note that
the subscript has changed from n to cn!)

d) Let n and k be positive integers, with gcdpn, kq “ 1. If ka ”n kb, then a ”n b, for any integers a
and b.

e) For any positive integer a, gcdpa, a ` 1q “ 1.

f) For any positive integers a and b, gcdpa, bq “ gcdpb, aq

g) For any positive integers a, b, and c, gcdpca, cbq “ c ¨ gcdpa, bq.

Prove each of the following claims using induction. (You must decide by yourself whether to use weak
or strong induction.)

h) 6 | p7n ´ 1q for all integers n ě 1.

i) Every positive integer is either even or odd.

j) If a ”n b for some positive integer n, then ak ”n bk for all integers k ě 0.

k) 2n ą n2 for all integers n ě 5.

l) Every amount of postage of ě 12 cents can be formed using only 4-cent and 5-cent stamps.

m) Consider a sequence defined by a1 “ 1, a2 “ 3, and an “ 3an´1 ´ 2an´2 for n ě 3. Prove that
an “ 2n ´ 1 for all n ě 1.
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