
CSE 311: Foundations of Computing I Winter 2026

Problem Set 2
Due: Monday, Jan 26th by 11:00pm

Instructions

Write up carefully argued solutions to the following problems. Each solution should be clear enough
that it can explain (to someone who does not already understand the answer) why it works.

Collaboration policy. You are required to submit your own solutions. You are allowed to discuss the
homework with other students. However, the write up must clearly be your own, and moreover, you
must be able to explain your solution at any time. We reserve ourselves the right to ask you to explain
your work at any time in the course of this class.

Solutions submission. Submit your solution via Gradescope. In particular:

– Each numbered task should be solved on its own page (or pages). Do not write your name on the
individual pages. (Gradescope will handle that.)

– When you upload your pages, make sure each one is properly rotated. If not, you can use the
Gradescope controls to turn them to the proper orientation.

– Follow the Gradescope prompt to link tasks to pages.

– You are not required to typeset your solution, but your submission must be legible. It is your
responsibility to make sure solutions are readable — we will not grade unreadable write-ups.
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Task 1 – Make the First Prove [10 pts]

For each of the following, write a formal proof that the claim holds.
Your proofs are only allowed to use the most basic rules: Modus Ponens, Intro ^, Elim ^, Intro _,

and Elim _ unless stated otherwise.

a) Given p^ pq ^ rq, s, and pr ^ sq Ñ pv ^ uq, it follows that p^ u holds.

b) Given p^ q, ␣q _ r, and p␣p_ rq Ñ s, it follows that s^ p holds.

For this part, you are free to use equivalences. Use the name of the equivalence when applying
it as a rule.

Task 2 – Pack Up the Proving Van [10 pts]

For each of the following, write a formal proof that the claim holds.
Your proofs are only allowed to use the Modus Ponens, Direct Proof, Intro ^, Elim ^, Intro _,

and Elim _. Equivalences are not allowed. (Hint: Direct Proof will be needed!)

a) Given pq ^ rq Ñ ps_ uq, ␣pÑ pr ^␣uq, and p_ q, it follows that ␣pÑ s.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, and Elim _.

b) Given pq _␣pq Ñ r, pq _ pq Ñ u, and p, it follows that ppÑ qq Ñ pr ^ uq.

Task 3 – Provin’ Right Along [10 pts]

For each of the following, write a formal proof that the claim holds.
In addition to the rules from Task 2, your proofs are also allowed to use Cases and the Latin rules.

Equivalences are not allowed.

a) Given p_ q, pÑ pr _ sq, q Ñ pr _ sq, and pr _ sq Ñ pu^ vq. Show that p_ pv ^ uq holds.

Your proof is only allowed to use the rules Modus Ponens, Intro ^, Elim ^, Intro _, and Cases.
(In particular, you do not need Direct Proof.)

b) Given q Ñ ps_␣pq, pp^ sq _ pq ^␣sq, and p_ s, it follows that p holds.

Hint: You might want to use contradiction at some point in your proof.1

1Recall that a “proof by contradiction” uses both Reductio Ad Absurdum and Principium Contradictionis.
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Task 4 – Get a Prove On [10 pts]

For each of the following, write a formal proof that the claim holds.
In addition to the rules from Task 2, your proofs are also allowed to use Intro @, Elim @, Intro D,

Elim D. Equivalences are not allowed.

Let P pxq, Qpx, yq, and Rpx, yq be predicates defined in some fixed domain of discourse, and let c
be some well-known constant in that domain.

a) Given @x,@ y, pQpx, yq Ñ Qpy, xqq and @x, pRpx, cq^@ y, pRpx, yq Ñ Qpx, yqqq, show that Dx,@ y,Qpx, yq.

b) Given @x, pP pxq ^ D y,Qpx, yqq, it follows that @x, D y, pP pxq ^Qpx, yqq.

The fact that we can move the D outside of the ^ was noted (but not proven) in lecture. In this
problem, you will prove that you can sometimes move an D outside of a ^.

Task 5 – Viva la Div-a [10 pts]

Let domain of discourse be the integers. Consider the following claim:

@a@b@c pppa | bq ^ pa | pb` cqq Ñ pa | cqq

In English, this claim says that differences between divisible integers are divisible: if a divides both two
integers b and b ` c (for any a, b, c), a also divides the difference between them, c. As an example, if
you know that 37 divides both 71706 and 88578, you know that 37 also divides 88578´ 71706.

a) Write a formal proof that the claim holds.

b) Translate your formal proof to an English proof.

Keep in mind that your proof will be read by a human, not a computer, so you should explain the
algebra steps in more detail, whereas some of the predicate logic steps (e.g., Elim D) can be skipped.

3



Task 6 – Extra Credit: Put That In Your Type and Smoke It

In this problem, we will extend the machinery we used in Homework 1’s extra credit problem in two ways.
First, we will add some new instructions. Second, and more importantly, we will add type information
to each instruction.

Rather than having a machine with single bit registers, we will imagine that each register can
store more complex values such as

Primitives These include values of types int, long, float, boolean, char, and String.

Pairs of values The type of a pair is denoted by writing “ˆ” between the types of the two parts. For
example, the pair p1, trueq has type “int ˆ boolean” since the first part is an int and the second
part is a boolean.

Functions The type of a function is denoted by writing a “Ñ” between the input and output types.
For example, a function that takes an int and returns a String is written “intÑ String”.

We add type information, describing what is stored in each each register, in an additional column
next to the instructions. For example, if R1 contains a value of type int and R2 contains a value of type
int Ñ pString ˆ intq, i.e., a function that takes an int as input and returns a pair containing a String
and an int, then we could write the instruction

R3 :“ CALLpR1, R2q Stringˆ int

which calls the function stored in R2, passing in the value from R1 as input, and stores the result in R3,
and write a type of “Stringˆ int” in the right column since that is the type that is now stored in R3.

In addition to CALL, we add new instructions for working with pairs. If R1 stores a pair of type
Stringˆ int, then LEFTpR1q returns the String part and RIGHTpR1q returns the int part. If R2 contains
a char and R3 contains a boolean, then PAIRpR2, R3q returns a pair of containing a char and a boolean,
i.e., a value of type charˆ boolean.

a) Complete the following set of instructions so that they compute a value of type floatˆ char in the
last register assigned (RN for some N):

R1 floatˆ pStringˆ booleanq

R2 int

R3 pbooleanˆ intq Ñ plongˆ charq

R4 :“ . . . . . .

The first three lines show the types already stored in registers R1, R2, and R3 at the start, before
your instructions are executed. You are free to use the values in those registers in later instructions.

Store into a new register on each line. Do not reassign any registers.

b) Compare the types listed next to these instructions to the propositions listed on the lines of your
proof in Task 1a. Give a collection of text substitutions, such as replacing all instances of “P” by
“float” (these can include substitutions for atomic propositions and for operators), that will make
the sequence of propositions in Task 1a exactly match the sequence of types in part (a).

Note: You may need to change your solution to part (a) slightly to make this work!
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c) Now, let’s add another way to form new types. If A and B are types, then A` B will be the type
representing values that can be of either type A or type B. For example, String ` int would be a
type of values that can be strings or integers.

To work with this new type, we need some new instructions. First, if R1 has type A, then the
instruction LCASEpR1q returns the same value but now having type A` B and RCASEpR1q returns
the same value but now having type B`A (Note that we can pick any type B that we want here.)

Second, if R2 stores a value of type A ` B, R3 stores a function of type A Ñ C (a function
taking an A as input and returning a value of type C), and R4 stores a function of type B Ñ C,
then the instruction SWITCHpR2, R3, R4q returns a value of type C: it looks at the value in R2, and,
if it is of type A, it calls the function in R3 and returns the result, whereas, if it is of type B, it calls
the function in R4 and returns the result. In either case, the result is something of type C.

Complete the following set of instructions so that they compute some value whose type is
float` plongˆ charq in the last register assigned:

R1 float` String

R2 floatÑ pboolean` intq

R3 StringÑ pboolean` intq

R4 pboolean` intq Ñ pcharˆ longq

R5 :“ . . . . . .

The first four lines again show the types of values already stored in registers R1 through R4. As
before, do not reassign any registers. Use a new register for each instruction’s result.

d) Compare the types listed next to these instructions to the propositions listed on the lines of your
proof in Task 3a. Give a collection of text substitutions, such as replacing all instances of “P” by
“float” (these can include substitutions for atomic propositions and for operators), that will make
the sequence of propositions in Task 3a exactly match the sequence of types in part (c). (You may
need to change your solution to part (c) slightly to make this work!)

e) Now that we see how to match up the propositions in our earlier proofs with types in the code above,
let’s look at the other two columns. Describe how to translate each of the rules of inference used in
the proofs from both Task 1a and 3a so that they turn into the instructions in parts (a) and (c).

f) One of the important rules not used in Task 1a or 3a was Direct Proof. What new concept would
we need to introduce to our assembly language so that the similarities noted above apply could also
to proofs that use Direct Proof?
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