
CSE 311: Foundations of Computing I Winter 2026

Problem Set 1
Due: Friday, Jan 16th by 11:00pm

Instructions

Write up carefully argued solutions to the following problems. Each solution should be clear enough
that it can explain (to someone who does not already understand the answer) why it works. However,
you may use results from lecture, the reference sheets, and previous homework without proof.

Collaboration policy. You are required to submit your own solutions. You are allowed to discuss the
homework with other students. However, the write up must clearly be your own, and moreover, you
must be able to explain your solution at any time. We reserve ourselves the right to ask you to explain
your work at any time in the course of this class.

Late policy. You have a total of three late days during the quarter, but you can only use one late day
on any one problem set. Please plan ahead. The final problem set will not be accepted late.

Solutions submission. Submit your solution via Gradescope. In particular:

– Each numbered task should be solved on its own page (or pages). Do not write your name on the
individual pages. (Gradescope will handle that.)

– When you upload your pages, make sure each one is properly rotated. If not, you can use the
Gradescope controls to turn them to the proper orientation.

– Follow the Gradescope prompt to link tasks to pages.

– You are not required to typeset your solution, but your submission must be legible. It is your
responsibility to make sure solutions are readable — we will not grade unreadable write-ups.

1



Task 1 – Good to the Last Prop [8 pts]

Consider this sentence: Andre goes out with friends if it’s a Friday or if Andre doesn’t have both
homework and an exam on the next day.

a) Define a set of four atomic propositions. Then, use them to translate the sentence above into
propositional logic.

b) Take the contrapositive of the logical statement from part (a). Then, rewrite it so that all ␣ symbols
are next to atomic propositions, by applying De Morgan’s law and Double Negation as necessary.

c) Translate the sentence from part (b) back to English.

d) Assuming translation between English and propositional logic is unambiguous, does your English
sentence from part (c) have the same truth value as the original English sentence above? Why or
why not?

Task 2 – With a Fine-Truth Comb [6 pts]

For each of the following pairs of propositions, use truth tables to determine whether they are equivalent.
Include the full truth table and state whether they are equivalent. (In principle, only one row is

needed to show non-equivalence, but please turn in the entire table so that we can give partial credit in
case of errors.) Your truth table must include columns for all subformulas.

a) P ‘Q vs. ␣P ‘ pP ^Qq

b) pP Ñ Qq Ñ R vs. pP _Rq ^ pQÑ Rq

Task 3 – Too Cool For Rule [10 pts]

Prove the following assertions using a sequence of logical equivalences such as Absorption, Associativity,
Commutativity, Contrapositive, De Morgan, Distributivity, Double Negation, Idempotency, Identity, Law
of Implication, and Negation.

Hints: For equivalences where one side is much longer than the other, a good heuristic is to start
with the longer side and try to apply the rules that will shorten it. In some cases, it may work better to
work to shorten both sides to the same expression and then combine those two sequences into one.

a) pP _␣Qq ^ pP ^␣Qq ” P ^␣Q (Hint: It is not necessary to use Distributivity here.)

b) 1 p␣QÑ Rq ^ pQÑ Rq ” R

c) pP _RÑ Qq Ñ R ” p␣P Ñ Rq ^ pQÑ Rq

1This corresponds to what is commonly known as proof by “simple cases”; if one can prove that R holds when Q is
true and also when Q is false, then R must always hold.

2



Task 4 – Fizz, and Only Fizz [12 pts]

Shane practices a personal ritual every day to decide whether he will drink a ginger ale. He flips a coin
4 times, and assigns values of 1 (heads) or 0 (tails) to variables a, b, c, and d based on the results of
the flips, in that order. Shane then applies a secret boolean function G to those variables, and drinks a
ginger ale if and only if Gpa, b, c, dq “ 1.

Ilya wants to figure out the secret function G. After extensive observation, he has recorded a truth
table for G, shown below. Help Ilya reconstruct the function!

a b c d Gpa, b, c, dq

1 1 1 1 1
1 1 1 0 1
1 1 0 1 0
1 1 0 0 0
1 0 1 1 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 0
0 1 1 1 1
0 1 1 0 1
0 1 0 1 0
0 1 0 0 0
0 0 1 1 1
0 0 1 0 1
0 0 0 1 0
0 0 0 0 0

a) Write a Boolean algebra expression for G in canonical DNF form 2.

b) Use equivalences of Propositional Logic to simplify your expression from (a) down to an expression
that includes only 3 gates (each of which is either AND, OR, or NOT).

You should format your work like an equivalence chain with one expression per line and with
the name of the identity applied to produce that line written next to it. However, since we are
using Boolean algebra notation, which does not include unnecessary parentheses, you do not need to
include lines that apply Associativity, Commutativity, or Identity (you may still cite them for clarity
if desired).

c) Write a truth table for your simplified expression from part (b) and confirm that it matches the one
used to define G originally. As always, be sure to include all subexpressions as their own columns.

d) Draw your simplified expression from part (b) as a circuit.

2With circuits, these are usually called sum-of-products

3



Task 5 – The Odd One Out [14 pts]

The following parts use the predicates Odd, Prime, and IsTwo, defined as follows:

Oddpxq :“ Dk px “ 2k ` 1q

Primepxq :“ ␣pDjDkppjk “ xq ^ pj ‰ 1q ^ pj ‰ xqqq ^ px ě 2q

IsTwopxq :“ px “ 2q

Note: Prime will be true for prime numbers t2, 3, 5, 7, 11, . . .u and false for all other inputs (a natural
is prime if it has no divisors other than 1 and itself). For this problem, you do not need to make your
translation sound natural (literal is fine).

a) Let the domain of discourse be all non-negative integers (the naturals: 0, 1, 2, . . .).

i) Translate the proposition
@x pPrimepxq Ñ Oddpxqq

directly into English. Then, state whether the proposition is true or false (no justification
needed).

ii) Translate the proposition

@x ppPrimepxq ^ ␣ IsTwopxqq Ñ Oddpxqq

directly into English. Then, state whether the proposition is true or false (no justification
needed).

iii) Translate the proposition

p@x pPrimepxq ^ ␣ IsTwopxqqq Ñ p@x Oddpxqq

directly into English. Then, state whether the proposition is true or false (no justification
needed).

b) Let the domain of discourse be all non-negative even integers (the even naturals: 0, 2, 4, 6, . . .).

i) Translate the proposition
@x pPrimepxq Ñ Oddpxqq

directly into English. Then, state whether the proposition is true or false (no justification
needed).

ii) Translate the proposition

@x ppPrimepxq ^ ␣ IsTwopxqq Ñ Oddpxqq

directly into English. Then, state whether the proposition is true or false (no justification
needed).

4



iii) Translate the proposition

p@x pPrimepxq ^ ␣ IsTwopxqqq Ñ p@x Oddpxqq

directly into English. Then, state whether the proposition is true or false (no justification
needed).

c) Let P and Q be predicates, and fix a domain of discourse. Given that @xpP pxq Ñ Qpxqq is true, is
@x pP pxqq Ñ @x pQpxqq always true? Justify your answer with 1-2 sentences.

5



Task 6 – Extra Credit: XNORing

Imagine a computer with a fixed amount of memory. We give names, R1, R2, R3, . . . , to each of the
locations where we can store data and call these “registers.” The machine can execute instructions, each
of which reads the values from some register(s), applies some operation to those values to calculate a
new value, and then stores the result in some register. For example, the instruction R4 :“ ANDpR1, R2q

would read the values stored in R1 and R2, compute the logical and of those values, and store the result
in register R4.

We can perform more complex computations by using a sequence of instructions. For example, if
we start with register R1 containing the value of the proposition A and R2 containing the value of the
proposition B, then the following instructions:

1. R3 :“ NOTpR1q

2. R4 :“ ANDpR1, R2q

3. R4 :“ ORpR3, R4q

would leave R4 containing the value of the expression ␣A _ pA ^ Bq. Note that this last instruction
reads from R4 and also stores the result into R4. This is allowed.

Now, assuming A is stored in register R1 and B in register R2, give a sequence of instructions that

- only uses the XNOR operation (no AND, OR, etc.),

- only uses registers R1 and R2 (no extra space), and

- ends with B stored in R1 and A stored in R2 (i.e., with the original values in R1 and R2 swapped).

6


