CSE 311: Foundations of Computing

Topic 7: Languages

OH NO! THE KILLER || BUT TO FIND THEM WE'D HAVE T0 SEARCH
fm{sﬂ TEARN A} MUST HAVE. ROLLOWED)] | THROUGH 200 MB GF EMAILS LOOKING FOR
Ne

W SKILL T ConcocT | | HER ON VACATION ! sm:rmrf FORMATTED LIKE AN ADDRESS!

ELABORATE. RNTASY |
SCENARI0S WHERE (T _ ~— [T5 HOPELESS!
LETS ME SAVE THE DAY, %

T KNOW REGUAR

Nt
sl

Theoretical Computer Science

Strings

 An alphabet X is any finite set of characters

* The set X* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000, 004, ... and *"

 2* js defined recursively by
— Basis: ¢ € 2™ (¢ is the empty string, i.e., “”)
— Recursive: ifw € 2*,a € 2, then wa € 2*

Languages: Sets of Strings

* Subsets of strings are called languages

 Examples:
— 2" = All strings over alphabet =
— palindromes over X
— binary strings with an equal # of O’'s and 1’s
— syntactically correct Java/C/C++ programs
— valid English sentences
— correct solutions to coding problems:

S = {x#y | y is Java code that does what x says}

Foreword on Intro to Theory C.S.

* Look at different ways of defining languages

 See which are more expressive than others
— i.e., which can define more languages

e Later: connect ways of defining languages to
different types of (restricted) computers

— computers capable of recognizing those languages
i.e., distinguishing strings in the language from not

 Consequence: computers that recognize more
expressive languages are more powerful

Palindromes

Palindromes are strings that are the same when
read backwards and forwards

Basis:

e Is a palindrome
any a € 2 is a palindrome

Recursive step:

If p is a palindrome,
then apa is a palindrome for every a € X

Regular Expressions

Regular expressions over X

* Basis:
€ is a regular expression (could also include &)
a is a regular expression forany a € ~

* Recursive step:
If A and B are regular expressions, then so are:
AUB
AB
A*

Each Regular Expression is a “pattern”

€ matches only the empty string
a matches only the one-character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another (e U AU AA U AAA U ...)

Definition of the language
matched by a regular expression

Language of a Regular Expression

The language defined by a regular expression:
L(e) = {¢}
L(a) = {a}
LLAUB) =L(A)VUL(B)
L(AB) ={yez: yeL(A),z € L(B)}
L(A") = Up=o L(A")
A™ defined recursively by
A =0
AL — A g

Examples

001*

O*1*

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples

Oul)o0oulo

(O*1*)*

Examples

Oul)o0oulo

{0000, 0010, 1000, 1010}

(O*1*)*

All binary strings

Examples

* All binary strings that contain 0110

Oul)*0110 (0L 1)*

* All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001

(00U 11)* (01010 L 10001) (Ow 1)*

Examples

* All binary strings that have an even # of 1’s

e.g., 0%(10%10%)*

* All binary strings that don’t contain 101

e.g., 0*(1 U 1000*)*(e U 10)

at least two Os between 1s

Finite languages vs Regular Expressions

* All finite languages have a regular expression.

(a language is finite if its elements can be put into a list)

Why?

* Given a list of strings s, s,, ..., S,

Construct the regular expression

s;Us,U..Us,

(Could make this formal by induction on n)

Finite languages vs Regular Expressions

* Every regular expression that does not use *
generates a finite language.

Why?

* Prove by structural induction on the syntax of regular
expressions!

Star-free implies finite

Let A be a regular expression that does not use *. Then
L(A) is finite.

Proof: We proceed by structural induction on A.

Case ¢: L(¢) = {€}, which is finite
Case a: L(a) = {a}, which is finite
Case A U B:

L(AU B)=L(A) U L(B)
By the IH, each is finite, so their union is finite.

Star-free implies finite

Let A be a regular expression that does not use *. Then
L(A) is finite.

Proof: We proceed by structural induction on A.
Case AB:
L(AB) ={yez: y€ L(A),z € L(B)}
By the IH, L(A) and L(B) are finite.

Every element of L(AB) is covered by a pair (y, z) where
y € L(A) and z € L(B), so L(AB) is finite.

(No case for A*!)

Finite languages vs Regular Expressions

Key takeaways:

Regular expressions can represent all finite languages

To prove a language is "regular”, just give the regular
expression that describes it.

Regular expressions are more powerful than finite
languages (e.g., 0* is an infinite language)

To prove something about all regular expressions, use
structural induction on the syntax.

Regular Expressions in Practice

* Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential
feature of PHP

* We can use regular expressions in programs to process
strings!

Regular Expressions in Java

* Pattern p = Pattern.compile("a*b");
* Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral Astartofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(a|lb) aorb (A U B)
av zero or one of a (AU Eg)
a* zero or more of a A*

a+ one or more of a AA*

* eg ~[\-+]1?[0-9]1*(\.|\,)?[0-9]+S
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like
— Palindromes
— Strings with equal number of O's and 1's

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— etc.

Example Context-Free Grammars

Example: S—>0S0|1S1|0|1]¢

Example Context-Free Grammars

Example: S—>0S0|1S1|0|1]¢

How does this grammar generate 0110?

Example Context-Free Grammars

Example: S—>0S0|1S1|0|1]¢

How does this grammar generate 0110?

S — 0S0 — 01510 —- 0110 = 0110

Example Context-Free Grammars

Example: S—>0S0|1S1|0|1]¢

How to describe all strings generated?

The set of all binary palindromes

Two ways to Define Binary Palindromes

Recursively-Defined Set
Basis:

e Is a palindrome
any a € {0, 1} is a palindrome

Recursive step:

If p is a palindrome,
then apa is a palindrome for every a € {0, 1}

Grammar S—>0S0|1S1|0|1]¢

Example Context-Free Grammars

Example: S—>A|B
A—O0OA|¢
B—>1B|¢

How does this grammar generate 000?

Example Context-Free Grammars

Example: S—>A|B
A—>0A | ¢
B—>1B | ¢

How does this grammar generate 000?

S—> A— 0OA — 00A — 000A — 000 = 000

Example Context-Free Grammars

Example: S—>A|B
A—>0A | ¢
B—>1B | ¢

How to describe all strings generated?

strings of all Os or all 1s

(all Os) U (all 1s)

Context-Free Grammars

* A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving

— Afinite set V of variables that can be replaced

— Alphabet X of terminal symbols that can’t be replaced
— One variable, usually S, is called the start symbol

* The substitution rules involving a variable A, written as
A—wy| wy |- | w

where each w; is a string of variables and terminals
—thatisw, € (VU X)’

How CFGs generate strings

* Begin with start symbol S

* If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A

—A-ow | wy || wy
— Write thisas xAy = xwy
— Repeat until no variables left

* The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner (after a finite number of steps)

Example Context-Free Grammars

Example: S—>0S|S1]|¢

Example Context-Free Grammars

Example: S—>0S|S1]|¢

0*1*

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S1]|¢

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S1]|¢

Grammar for {0"1%":n > 0}

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S1]|¢

Grammar for {0"1%":n > 0}

S —>0S11 | ¢

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S1]|¢

Grammar for {0"1"*10:n > 0}

Example Context-Free Grammars

Grammar for {0"1™":n = 0}
(i.e., matching 0*1* but with same number of O’s and 1’s)

S—>0S1|¢

Grammar for {0"1"*10:n > 0}

S—>A10
A — 0Al | ¢

Example Context-Free Grammars

Example: S—>S)|SS|c¢

Example Context-Free Grammars

Example: S—>S)|SS|c¢

The set of all strings of matched parentheses

Example Context-Free Grammars

Example: S—>S)|SS|c¢

The set of all strings of matched parentheses

Suppose S generates x. Define f (k) to be
number of “("s - “)”s in first k characters of x

Eg. forx=(0)) 7 N~

Example Context-Free Grammars

Three possibilities for f (k) for k € {1,...,n — 1}

* f(k) > 0forallsuch k /

S > (S)

* f(k) =0 forsome such k

S—>SS

Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

S—>SS|0S1]|1S0 | ¢

Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

S—>SS|0S1]|1S0 | ¢

Suppose S generates x. Define f (k) to be #0s - #1s
in the first k characters of x.

E.g., for x = 011100 f AN

N

Example Context-Free Grammars

Binary strings with equal numbers of Os and 1s
(not just O"1", also 0101, 0110, etc.)

S—>SS|0S1]|1S0 | ¢

Suppose S generates x. Define f (k) to be #0s - #1s
in the first k characters of x.

If k-th characteris O, then f(k) = f(k—1) +1
If k-th characteris 1,then f(k) = f(k—1) —1

Example Context-Free Grammars

Let x € (0 U 1)*. Define f,. (k) to be the number Os
minus the number of 1s in the k characters of x.

N

N

f (k) = 0 when first k characters have #0s = #1s
—startsout at O f(0)=0
—ends at O f(n)=0

E.g., for x = 011100

Example Context-Free Grammars

Three possibilities for f (k) for k € {1,...,n — 1}

* f(k) > 0forallsuch k / N\
S - 081

* f(k) <0 forall such k \ /
S - 1S0

* f(k) = 0 for some such k / >

S—>SS

Simple Arithmetic Expressions

E> E+E|E<E | (E) [x|y|z|O|1]2]|3]4
1516]718]9

Generate (2 +Xx) *y

Simple Arithmetic Expressions

E> E+E|E<E | (E) [x|y|z|O|1]2]|3]4
|516]7]8]9

Generate (2 +Xx) *y

E=>E*E=(E)*E= (E+E)*E = (2+E)*E = (2+X)*E = (2+X)*y

Parse Trees

Suppose that grammar G generates a string x
* A parse tree of x for G has
— Root labeled S (start symbol of G)

— The children of any node labeled A are labeled by
symbols of w left-to-right for some rule A —>w

— The symbols of x label the leaves ordered left-to-right

o\
0 SO
\

1 S 1

S—>0S0|1S1|0|1]|¢

Parse tree of 01110 .

Simple Arithmetic Expressions

E> E+E|E<E | (E) [x|y|z|O|1]2]|3]4
1516]718]9

Generate x+y*z in two ways that give two different
parse trees

Simple Arithmetic Expressions

E> E+E|E<E | (E) [x|y|z|O|1]2]|3]4
|516]7]8]9

Generate x+y*z in ways that give two different parse trees

E E = E+E = x+E = x+E*E = x+y*E = x+y*z
/ | AN (multiply y with z and then add to x)

RN E
X E % E /|\ E = E*E = E+E*E = x+E*E
| | E % E = X+y*E = x+y*z
Y, Z VA RN | (add xtoy, then multiply by z)
T
X Y

Induction on Parse Trees

Structural induction is the tool used to prove many
more interesting theorems

* General associativity follows from our one rule
— likewise for generalized De Morgan’s laws

* Okay to substitute y for x everywhere in a modular
equation when we know that x =,,, y

* The "Meta Theorem" on set operators

These are proven by induction on parse trees
— parse trees are recursively defined

CFGs and Regular Expressions

Theorem: For any set of strings (language) A
described by a regular expression, there is a
CFG that recognizes A.

Proof idea:
P(A) is “A is recognized by some CFG”

Structural induction based on the recursive
definition of regular expressions...

Regular Expressions over X

* Basis:
— € IS a regular expression
— a is a regular expression for any a € X

* Recursive step:
— If A and B are regular expressions then so are:
AUB
AB
A*

CFGs are more general than REs

e CFGto match RE ¢

S—>¢

 CFG to match RE a (for any a €)

S—a

CFGs are more general than REs

Suppose CFG with start symbol S; matches RE A
CFG with start symbol S, matches RE B

e CFGtomatchREAUB

S—>S,|S, + rules from original CFGs

e CFGto match RE AB

S—>S,S, + rules from original CFGs

CFGs are more general than REs

Suppose CFG with start symbol S; matches RE A

e CFGtomatchREA®* (e UAUAAUAAAU ...)

S—>S,S|¢ + rules from CFG with S,

