
CSE 311: Foundations of Computing

Topic 7:  Languages



Theoretical Computer Science



Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S
– example: {0,1}* is the set of binary strings

0, 1, 00, 01, 10, 11, 000, 001, …  and “”

•  S* is defined recursively by
– Basis: ε	Î	S∗ (ε is the empty string, i.e., “”)
– Recursive:  if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*



Languages:  Sets of Strings

• Subsets of strings are called languages
• Examples:
– S*	=	All strings over alphabet S
– palindromes over S
– binary strings with an equal # of 0’s and 1’s
– syntactically correct Java/C/C++ programs
– valid English sentences
– correct solutions to coding problems:

𝑆 = 𝑥#𝑦	 𝑦	is	Java	code	that	does	what	𝑥	says}



Foreword on Intro to Theory C.S.

• Look at different ways of defining languages
• See which are more expressive than others
– i.e., which can define more languages

• Later: connect ways of defining languages to 
different types of (restricted) computers
– computers capable of recognizing those languages

i.e., distinguishing strings in the language from not

• Consequence: computers that recognize more 
expressive languages are more powerful



Palindromes

Palindromes are strings that are the same when 
read backwards and forwards

Basis: 
 ε is a palindrome
  any 𝑎	∈ S is a palindrome

 Recursive step:
   If 𝑝 is a palindrome,
   then 𝑎𝑝𝑎 is a palindrome for every 𝑎 ∈ S



Regular Expressions

Regular expressions over S
•  Basis:

   e is a regular expression   (could also include Æ)
   a is a regular expression for any a Î S

• Recursive step:
If A and B are regular expressions, then so are:

A È B
AB
A*



Each Regular Expression is a “pattern”

e matches only the empty string
a matches only the one-character string a
A È B matches all strings that either A matches 

or B matches (or both)
AB matches all strings that have a first part that A 

matches followed by a second part that B 
matches

A* matches all strings that have any number of 
strings (even 0) that A matches, one after 
another (e	È A	È AA	È AAA È	…)

Definition of the language 
matched by a regular expression



Language of a Regular Expression

The language defined by a regular expression:
 L ε = {𝜀}
 L 𝑎 = {𝑎}
 L 𝐴 ∪ 𝐵 = 𝐿(𝐴) ∪ 𝐿(𝐵)
 L 𝐴𝐵 = {𝑦 • 𝑧 ∶ 	𝑦 ∈ 𝐿(𝐴), 𝑧 ∈ 𝐿 𝐵 }
 L 𝐴∗ = ⋃"#$

% 𝐿(𝐴")
   𝐴!	defined recursively by
   𝐴" = ∅
   𝐴!#$ = 𝐴!𝐴



Examples

001*

0*1*



Examples

001*

0*1*

{00, 001, 0011, 00111, …}

Any number of 0’s followed by any number of 1’s



Examples

(0 È 1) 0 (0 È 1) 0
                    

(0*1*)*



Examples

(0 È 1) 0 (0 È 1) 0
                    

(0*1*)*

{0000, 0010, 1000, 1010}

All binary strings



Examples

• All binary strings that contain 0110

• All binary strings that begin with a string of doubled 
characters (00 or 11) followed by 01010 or 10001

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*



Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g.,  0*(10*10*)*

e.g.,  0*(1 ⋃ 1000*)*(ε ⋃ 10)

at least two 0s between 1s



Finite languages vs Regular Expressions

• All finite languages have a regular expression. 
     (a language is finite if its elements can be put into a list)

Why?

• Given a list of strings s1, s2, …, sn

Construct the regular expression 

      s1 ∪ s2 ∪ … ∪ sn

(Could make this formal by induction on n)



Finite languages vs Regular Expressions

• Every regular expression that does not use * 
generates a finite language.

Why?

• Prove by structural induction on the syntax of regular 
expressions!



Star-free implies finite

Let A be a regular expression that does not use *. Then 
L(A) is finite.

Proof: We proceed by structural induction on A.

Case ε:   

Case a:

Case A ∪ B:

L(ε) = {ε}, which is finite

L(a) = {a}, which is finite

L(A ∪ B) = L(A) ∪ L(B)
 By the IH, each is finite, so their union is finite.



Star-free implies finite

Let A be a regular expression that does not use *. Then 
L(A) is finite.

Proof: We proceed by structural induction on A.
Case AB:   
  L(AB) = {𝑦 • 𝑧 ∶ 	𝑦 ∈ 𝐿(𝐴), 𝑧 ∈ 𝐿 𝐵 } 
 By the IH, L(A) and L(B) are finite. 

 Every element of L(AB) is covered by a pair (y, z) where
   𝑦 ∈ 𝐿(𝐴) and 𝑧 ∈ 𝐿(𝐵), so L(AB) is finite.
 

(No case for A*!)



Finite languages vs Regular Expressions

Key takeaways:

– Regular expressions can represent all finite languages

– To prove a language is "regular", just give the regular 
expression that describes it.

– Regular expressions are more powerful than finite 
languages (e.g., 0* is an infinite language)

– To prove something about all regular expressions, use 
structural induction on the syntax.



Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names, 
keywords in programming languages and compilers

• Used in grep, a program that does pattern matching 
searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential 
feature of PHP

• We can use regular expressions in programs to process 
strings!



Regular Expressions in Java

• Pattern p = Pattern.compile("a*b"); 
• Matcher m = p.matcher("aaaaab"); 
• boolean b = m.matches();

[01]     a 0 or a 1     ^ start of string     $ end of string
[0-9]   any single digit       \.   period    \,  comma  \- minus
. any single character
ab         a followed by b            (AB)
(a|b)  a or b      (A È B)
a?       zero or one of a            (A È	e)
a*       zero or more of a          A*
a+       one or more of a          AA* 

• e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$      
               General form of decimal number  e.g.  9.12  or -9,8 (Europe)



Limitations of Regular Expressions

• Not all languages can be specified by regular 
expressions

• Even some easy things like 
– Palindromes
– Strings with equal number of 0’s and 1’s

• But also more complicated structures in 
programming languages
– Matched parentheses
– Properly formed arithmetic expressions
– etc.



Example Context-Free Grammars

Example:  S ® 0S0 | 1S1 | 0 | 1 | e



Example Context-Free Grammars

Example:  S ® 0S0 | 1S1 | 0 | 1 | e

How does this grammar generate 0110?



Example Context-Free Grammars

Example:  S ® 0S0 | 1S1 | 0 | 1 | e

How does this grammar generate 0110?

S ® 0S0 ® 01S10 ® 01ε10 = 0110



Example Context-Free Grammars

Example:  S ® 0S0 | 1S1 | 0 | 1 | e

How to describe all strings generated?

The set of all binary palindromes



Two ways to Define Binary Palindromes

Recursively-Defined Set
 Basis: 
  ε is a palindrome
   any 𝑎	∈ {0, 1} is a palindrome
 Recursive step:
   If 𝑝 is a palindrome,
   then 𝑎𝑝𝑎 is a palindrome for every 𝑎 ∈ {0, 1}

Grammar    S ® 0S0 | 1S1 | 0 | 1 | e



Example Context-Free Grammars

Example:  S ® A | B
     A ® 0A | e
     B ® 1B | e

How does this grammar generate 000?



Example Context-Free Grammars

Example:  S ® A | B
     A ® 0A | e
     B ® 1B | e

How does this grammar generate 000?

S ® A ® 0A ® 00A ® 000A ® 000ε = 000



Example Context-Free Grammars

Example:  S ® A | B
     A ® 0A | e
     B ® 1B | e

How to describe all strings generated?

strings of all 0s or all 1s

(all 0s) ∪ (all 1s)



Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set 
of substitution rules involving
– A finite set V of variables that can be replaced
– Alphabet S of terminal symbols that can’t be replaced
– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as
                       A ® w1 |  w2 | ⋯ | wk

where each wi is a string of variables and terminals
– that is wi ∈ (V	È	S)*



How CFGs generate strings

• Begin with start symbol S

• If there is some variable A in the current string you 
can replace it by one of the w’s in the rules for A
–  A ® w1 |  w2 | ⋯ | wk

–Write this as    xAy ⇒ xwy
– Repeat until no variables left

• The set of strings the CFG describes are all strings, 
containing no variables, that can be generated in this 
manner (after a finite number of steps)



Example Context-Free Grammars

Example:      S ® 0S | S1 | e



Example Context-Free Grammars

Example:      S ® 0S | S1 | e

0*1*



Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)



Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0"1&": 𝑛 ≥ 0

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0"1&": 𝑛 ≥ 0

S ® 0S1 | e

S ® 0S11 | e



Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0"1"'(0: 𝑛 ≥ 0

S ® 0S1 | e



Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0"1"'(0: 𝑛 ≥ 0

S ® 0S1 | e

S ® A 10
A ® 0A1 | e



Example Context-Free Grammars

Example:       S ® (S) | SS | e



Example Context-Free Grammars

Example:       S ® (S) | SS | e

The set of all strings of matched parentheses



Example Context-Free Grammars

Example:       S ® (S) | SS | e

Suppose S generates 𝑥. Define 𝑓 𝑘  to be
number of “(”s – “)”s in first 𝑘 characters of 𝑥

 E.g., for x = (())()

The set of all strings of matched parentheses

0     1     2     3     4     5     6𝑓



Three possibilities for 𝑓(k) for 𝑘 ∈ {1,… , 𝑛 − 1} 

• 𝑓 𝑘 > 0 for all such 𝑘

• 𝑓 𝑘 = 0 for some such 𝑘

Example Context-Free Grammars

0     1                         n-1 nS ® (S)

S ® SS 0     1                         n-1 n



Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

S ® SS | 0S1 | 1S0 | e



Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

Suppose S generates 𝑥. Define 𝑓 𝑘  to be #0s – #1s
in the first 𝑘 characters of 𝑥.

 E.g., for x = 011100
0     1     2     3     4     5     6

Example Context-Free Grammars

S ® SS | 0S1 | 1S0 | e

𝑓



Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

Suppose S generates 𝑥. Define 𝑓 𝑘  to be #0s – #1s
in the first 𝑘 characters of 𝑥.

    If 𝑘-th character is 0, then 𝑓 𝑘 = 𝑓 𝑘 − 1 + 1
    If 𝑘-th character is 1, then 𝑓 𝑘 = 𝑓 𝑘 − 1 − 1

Example Context-Free Grammars

S ® SS | 0S1 | 1S0 | e



Let 𝑥 ∈ (0 ∪ 1)∗. Define 𝑓& 𝑘  to be the number 0s 
minus the number of 1s in the 𝑘 characters of 𝑥.

 E.g., for x = 011100

𝑓 𝑘 = 0 when first k characters have #0s = #1s
– starts out at 0   𝑓 0 = 0
– ends at 0     𝑓 𝑛 = 0

0     1     2     3     4     5     6

Example Context-Free Grammars

𝑓



Three possibilities for 𝑓(k) for 𝑘 ∈ {1,… , 𝑛 − 1} 

• 𝑓 𝑘 > 0 for all such 𝑘

• 𝑓 𝑘 < 0 for all such 𝑘

• 𝑓 𝑘 = 0 for some such 𝑘

Example Context-Free Grammars

0     1                         n-1 n

S ® 0S1

S ® 1S0

S ® SS

0     1                         n-1 n

0     1                         n-1 n



Simple Arithmetic Expressions

E®  E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
   | 5 | 6 | 7 | 8 | 9

Generate  (2 + x) * y 



Simple Arithmetic Expressions

E®  E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
   | 5 | 6 | 7 | 8 | 9

Generate  (2 + x) * y 

E ⇒ E*E	⇒	(E)*E	⇒ (E+E)*E	⇒ (2+E)*E	⇒ (2+x)*E	⇒ (2+x)*y



Parse Trees 

Suppose that grammar G generates a string x
• A parse tree of x for G has
– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by 

symbols of w left-to-right  for some rule A ® w
– The symbols of x label the leaves ordered left-to-right

S ® 0S0 | 1S1 | 0 | 1 | e

S

0 0S

S1 1

1
Parse tree of 01110



Simple Arithmetic Expressions

E®  E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
   | 5 | 6 | 7 | 8 | 9

Generate x+y∗z in two ways that give two different 
parse trees



Simple Arithmetic Expressions

E®  E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4 
   | 5 | 6 | 7 | 8 | 9

Generate x+y∗z in ways that give two different parse trees

E ⇒ E+E	⇒ x+E	⇒	x+E∗E	⇒ x+y∗E	⇒ x+y∗z	
(multiply	y	with	z	and	then	add	to	x)

E ⇒ E∗E	⇒	E+E∗E	⇒ x+E∗E
				⇒ x+y∗E	⇒ x+y∗z	
(add	x	to	y,	then	multiply	by	z)

E

E

+
x

E*

z
y

E E

E

E +

x

E

*
zy

E E



Induction on Parse Trees

Structural induction is the tool used to prove many 
more interesting theorems

• General associativity follows from our one rule
– likewise for generalized De Morgan’s laws

• Okay to substitute 𝑦 for 𝑥 everywhere in a modular 
equation when we know that 𝑥 ≡" 𝑦

• The "Meta Theorem" on set operators

These are proven by induction on parse trees
– parse trees are recursively defined



Theorem:   For any set of strings (language) 𝐴 
described by a regular expression, there is a 
CFG that recognizes 𝐴.  

Proof idea:
P(A) is “A is recognized by some CFG”
Structural induction based on the recursive 
definition of regular expressions...

CFGs and Regular Expressions



Regular Expressions over S

• Basis:
– ɛ is a regular expression
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

A È B
AB
A*



CFGs are more general than REs

• CFG to match RE e

S ® e

• CFG to match RE a (for any 𝑎 Î S)

S ® a



CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A 
   CFG with start symbol S2 matches RE B

• CFG to match RE A È B

S ® S1 | S2    + rules from original CFGs

• CFG to match RE AB

S ® S1 S2     + rules from original CFGs



CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A 
 

• CFG to match RE A*  (= e È A È AA È AAA È ... )

S ® S1 S | e    + rules from CFG with S1


