
CSE 311: Foundations of Computing

Topic 6:  Set Theory



Sets

Sets are collections of objects called elements. 

Write a ∈	B  to say that a is an element of set B,
and a ∉	B to say that it is not.

Some simple examples
A = {1}
B = {1, 3, 2}
C = {☐, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, Æ, α}



Some Common Sets

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}
ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}
ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48
ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
[n] is the set {1, 2, …, n} when n is a natural number
Æ = {} is the empty set; the only set with no elements



Sets can be elements of other sets

For example
A = {{1},{2},{1,2},Æ}
B = {1,2}

Then B	∈	A.



Definition: Equality

A and B are equal if they have the same elements

A = B  :=	 " x (x Î A « x Î B)

Examples:

• {1} = {1, 1, 1}

• Æ  is the empty set



Definition: Equality

A and B are equal if they have the same elements

A = B  :=	 " x (x Î A « x Î B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}
D = {4, 3, 3}
E = {3, 4, 3}
F = {4, {3}}

Which sets are equal?



Definition: Subset

A is a subset of B if every element of A is also in B

A Í B  :=  " x (x Î A ® x Î B)



Definition: Subset

A is a subset of B if every element of A is also in B

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}

QUESTIONS
A Í B?
C Í B?
Æ Í A?

A Í B  :=  " x (x Î A ® x Î B)



Definition: Subset

A is a subset of B if every element of A is also in B

"xÎA (P(x))

Note the domain restriction!

We will use a shorthand restriction to a set

A Í B  :=  " x (x Î A ® x Î B)

Restricting all quantified variables improves clarity

"x (x Î A ® P(x))means



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Notes:

A Í B  :=  " x (x Î A ® x Î B)

A ⊇ B means B ⊆ A A ⊂ B means A ⊆ B

A = B  :=	 " x (x Î A « x Î B)



Sets & Logic



Proofs About Sets

1. A ⊆ B        Given
2. B ⊆ A        Given

?. A = B        ??



Proofs About Sets

1. A ⊆ B        Given
2. B ⊆ A        Given
3.  ∀x	(x ∈ A → x ∈ B)   Def of Subset: 1
4.  ∀x	(x ∈ B → x ∈ A)   Def of Subset: 2

?. A = B        ??



Proofs About Sets

1. A ⊆ B        Given
2. B ⊆ A        Given
3.  ∀x	(x ∈ A → x ∈ B)   Def of Subset: 1
4.  ∀x	(x ∈ B → x ∈ A)   Def of Subset: 2

?.  ∀x	(x ∈ A ↔ x ∈ B)   ??
?. A = B        Def of Subset

Kevin Zatloukal
Same Set



Proofs About Sets

1. A ⊆ B        Given
2. B ⊆ A        Given
3.  ∀x	(x ∈ A → x ∈ B)   Def of Subset: 1
4.  ∀x	(x ∈ B → x ∈ A)   Def of Subset: 2
 Let y be arbitrary.
 

 5.?. y ∈ A ↔ y ∈ B  ??
5.  ∀x	(x ∈ A ↔ x ∈ B)   Intro ∀
6. A = B        Def of Subset: 5

Kevin Zatloukal
Same Set: 5



Proofs About Sets

1. A ⊆ B        Given
2. B ⊆ A        Given
3.  ∀x	(x ∈ A → x ∈ B)   Def of Subset: 1
4.  ∀x	(x ∈ B → x ∈ A)   Def of Subset: 2
 Let y be arbitrary.
 5.1.  y ∈ A → y ∈ B	  Elim ∀: 3
 5.2.  y ∈ B → y ∈ A	  Elim ∀: 4

 5.?. y ∈ A ↔ y ∈ B  ??
5.  ∀x	(x ∈ A ↔ x ∈ B)   Intro ∀
6. A = B        Def of Subset: 5

Kevin Zatloukal
Same Set: 5



Proofs About Sets

1. A ⊆ B        Given
2. B ⊆ A        Given
3.  ∀x	(x ∈ A → x ∈ B)   Def of Subset: 1
4.  ∀x	(x ∈ B → x ∈ A)   Def of Subset: 2
 Let y be arbitrary.
 5.1.  y ∈ A → y ∈ B	  Elim ∀: 3
 5.2.  y ∈ B → y ∈ A	  Elim ∀: 4
 5.3.  (y ∈ A → y ∈ B) ∧
      (y ∈ B → y ∈ A) Intro ∧: 5.1, 5.2
 5.4. y ∈ A ↔ y ∈ B  Equivalent: 5.3
5.  ∀x	(x ∈ A ↔ x ∈ B)   Intro ∀
6. A = B        Def of Subset: 5

Kevin Zatloukal
Same Set: 5



We can also define a set from a predicate P:

S = the set of all x for which P(x) is true

Every set S defines a predicate  P(x) := “x ∈ S”

Building Sets from Predicates

S  :=  {x : P(x)}

S  :=  {x ∈ U : P(x)}  =  {x : (x ∈ U) ∧ P(x)} 



When a set is defined this way,
we can reason about it using its definition:

Inference Rules on Sets

S  :=  {x : P(x)}

1.  𝒙 ∈ 𝑺      Given
2.  𝑷(𝒙)  Def of S

  …

8.  𝑷(𝒚)
9.  𝒚 ∈ 𝑺  Def of S

This will be our only 
inference rule for sets!



We have a definition of subset:

Suppose we want to prove A Í B.

Proofs About Sets

A Í B  :=  "x (x Î A ® x Î B)

A  :=  {x : P(x)} B  :=  {x : Q(x)}

We need to show that is definition holds



Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}

9. A ⊆ B       ??



Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}

8.  ∀x	(x ∈ A → x ∈ B)  ??
9. A ⊆ B       Def of Subset: 8



Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}

Let x be arbitrary
  

  
 1.1.  x ∈ A → x ∈ B  ??
1.  ∀x	(x ∈ A → x ∈ B)   Intro ": 1
2. A ⊆ B        Def of Subset: 2



Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}

Let x be arbitrary
  1.1.1.  x ∈ A   Assumption

  1.1.?.  x ∈ B   ??
 1..1.  x ∈ A → x ∈ B     Direct Proof
1.  ∀x	(x ∈ A → x ∈ B)    Intro ": 1
2. A ⊆ B         Def of Subset: 2



Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}

Let x be arbitrary
  1.1.1.  x ∈ A   Assumption
  1.1.2.  P(x)    Def of A

  1.1.?.  Q(x)    ??
  1.1.?.  x ∈ B   Def of B
 1..1.  x ∈ A → x ∈ B     Direct Proof
1.  ∀x	(x ∈ A → x ∈ B)    Intro ": 1
2. A ⊆ B         Def of Subset: 2



Prove that A Í B.

Proof: Let x be an arbitrary object.
Suppose that x ∈ A. By definition of A, this means P(x).
…
Thus, we have Q(x). By definition of B, this means x ∈ B.
Since x was arbitrary, we have shown, by definition, 
that A Í	B.

Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}

English template for a Subset Proof



Operations on Sets



Set Operations

𝐴 ∪ 𝐵	:=	{	𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥	 ∈ 𝐵 }

𝐴 ∩ 𝐵	:= {	𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 }

𝐴	\	𝐵	:= {	𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 }

Union

Intersection

Set Difference

A = {1, 2, 3}
B = {3, 5, 6} 
C = {3, 4}

QUESTIONS
Using A, B, C and set operations, make…
[6] =
{3} =
{1,2} =



More Set Operations

𝐴⊕𝐵	:=	{	𝑥 ∶ 𝑥 ∈ 𝐴 ⊕ 𝑥 ∈ 𝐵 }

5𝐴	 = 𝐴! 	:= 	𝑥 ∶ 𝑥 ∈ 𝑈 ∧ 𝑥 ∉ 𝐴	
           (with respect to universe U)                   

Symmetric
 Difference

Complement

A = {1, 2, 3}
B = {1, 2, 4, 6} 
Universe:
U = {1, 2, 3, 4, 5, 6}

A ⊕ B = {3, 4, 6}
 !𝖠 = {4,5,6}

Note that  A∪ !𝖠 = 𝑈



De Morgan’s Laws



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown,
by definition, that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	
1. Let x be arbitrary
    2.1.  𝑥 ∈ 𝐴 ∪ 𝐵 !	         Assumption
    …            
    2.3.  𝑥 ∈ 𝐴! ∩ 𝐵!   
2. 𝑥 ∈ 𝐴 ∪ 𝐵 !®	𝑥 ∈ 𝐴! ∩ 𝐵!      Direct Proof
    3.1. 𝑥 ∈ 𝐴! ∩ 𝐵!	          Assumption
    …            
    3.3.  𝑥 ∈ 𝐴 ∪ 𝐵 !	  
3. 𝑥 ∈ 𝐴! ∩ 𝐵!®	𝑥 ∈ 𝐴 ∪ 𝐵 !      Direct Proof
4. 𝑥 ∈ 𝐴 ∪ 𝐵 !®	𝑥 ∈ 𝐴! ∩ 𝐵! 	Ù	(𝑥 ∈ 𝐴! ∩ 𝐵!®	𝑥 ∈ 𝐴 ∪ 𝐵 !) Intro Ù: 2, 3
5. 𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!      Biconditional: 4
6. ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	 	 	 	 	 Intro ∀: 1-5



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! 	= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . 

…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! 	= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵).

…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! 	= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).
…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).
…
Thus, 𝑥 ∈ 𝐴!  and 𝑥 ∈ 𝐵! , so we we have 𝑥 ∈ 𝐴! ∩ 𝐵!  
by the definition of intersection.



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! 	= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵). 
…
Thus, ¬(𝑥 ∈ 𝐴) and ¬(𝑥 ∈ 𝐵), so 𝑥 ∈ 𝐴!  and 𝑥 ∈ 𝐵!  
by the definition of compliment, and we can see that 
𝑥 ∈ 𝐴! ∩ 𝐵!  by the definition of intersection.



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)! 	= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵), or 
equivalently ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) by De Morgan’s law. 
Thus, we have 𝑥 ∈ 𝐴!  and 𝑥 ∈ 𝐵!  by the definition of 
compliment, and we can see that 𝑥 ∈ 𝐴! ∩ 𝐵!  by the 
definition of intersection.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! .... Then, 𝑥 ∈ 𝐴! ∩ 𝐵! .
Suppose 𝑥 ∈ 𝐴! ∩ 𝐵! . Then, by the definition of 
intersection, we have 𝑥 ∈ 𝐴!  and 𝑥 ∈ 𝐵! . That is, we 
have ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵), which is equivalent to 
¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) by De Morgan’s law. The last is 
equivalent to ¬(𝑥 ∈ 𝐴 ∪ 𝐵), by the definition of union, 
so we have shown 𝑥 ∈ 𝐴 ∪ 𝐵 ! , by the definition of 
complement.



Proofs About Set Equality

A lot of repetitive work to show → and ←.

Do we have a way to prove ↔ directly?

We can use an equivalence chain to prove that a 
biconditional holds.

Recall that A º B and (A « B) º T are the same



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
The stated biconditional holds since:
𝑥 ∈ 𝐴 ∪ 𝐵 !  ≡ ¬(𝑥 ∈ 𝐴 ∪ 𝐵)     Def of Comp

     ≡ ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)    Def of Union

     ≡ ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵)   De Morgan

     ≡ 𝑥 ∈ 𝐴! ∧ 𝑥 ∈ 𝐵!     Def of Comp

     ≡ 𝑥 ∈ 𝐴! ∩ 𝐵!       Def of Intersection

Since x was arbitrary, we have shown the sets are equal.

Chains of equivalences 
are often easier to read 
like this rather than as 

English text



Distributive Laws

𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ 𝐴	 ∪ 𝐶

C

A B

C

A B

It’s Propositional Logic again!



The Meta Theorem Template

Meta-Theorem: Translate any Propositional Logic 
equivalence into “=” relationship between sets by 
replacing ∪ with ∨, ∩ with ∧, and >!  with ¬.

“Proof”: Let x be an arbitrary object.
The stated bi-condition holds since:
𝑥 ∈ left side  ≡ replace set ops with propositional logic
     ≡ apply Propositional Logic equivalence
     ≡ replace propositional logic with set ops
     ≡ 𝑥 ∈ right side
Since x was arbitrary, we have shown the sets are equal.



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

	 𝒫(Days)=?

    𝒫(Æ)=?

𝒫 𝐴 	:=	{𝐵 ∶ 𝐵 ⊆ 𝐴	}



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

	 𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

    𝒫(Æ)=?

𝒫 𝐴 	:=	{𝐵 ∶ 𝐵 ⊆ 𝐴	}



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

	 𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

    𝒫(Æ)={Æ} ≠ Æ

𝒫 𝐴 	:=	{𝐵 ∶ 𝐵 ⊆ 𝐴	}



Cartesian Product

𝐴×𝐵	:=	{𝑥 ∶ ∃𝑎 ∈ 𝐴	∃𝑏 ∈ 𝐵	(𝑥 = (𝑎, 𝑏))	}

ℝ	×	ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ	×	ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A ×	B = {(1,a), (1,b), (1,c),
                 (2,a), (2,b), (2,c)}.



Cartesian Product

ℝ	×	ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ	×	ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A ×	B = {(1,a), (1,b), (1,c),
                 (2,a), (2,b), (2,c)}.
 
What is 𝑨×∅?

𝐴×𝐵	:=	{𝑥 ∶ ∃𝑎 ∈ 𝐴	∃𝑏 ∈ 𝐵	(𝑥 = (𝑎, 𝑏))	}



Cartesian Product

ℝ	×	ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ	×	ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A ×	B = {(1,a), (1,b), (1,c),
                 (2,a), (2,b), (2,c)}.
 
𝑨×∅	={(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨	 ∧ 	𝒃 ∈ ∅} = {(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨	 ∧ 	𝗙} 	= 	∅

𝐴×𝐵	:=	{𝑥 ∶ ∃𝑎 ∈ 𝐴	∃𝑏 ∈ 𝐵	(𝑥 = (𝑎, 𝑏))	}



More Set Builder Notation

• This can be written more concisely as follows…

– within set builder variables are implicitly ∃-quantified
this is the one exception to the rule that
unbound variables are implicitly ∀-quantified

𝐴×𝐵	:=	{𝑥 ∶ ∃𝑎 ∈ 𝐴	∃𝑏 ∈ 𝐵	(𝑥 = (𝑎, 𝑏))}

𝐴×𝐵	:=	{ 𝑎, 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵	}



𝑇	:=	{	𝑓(𝑥) ∶ 	𝑥 ∈ 𝑈	}

More Set Builder Notation

• Then 𝑥 ∈ 𝑆 tells us that P(𝑥) holds

𝑆	:=	{	𝑥 ∶ 𝑃 𝑥 	}

• Then 𝑦 ∈ 𝑇 tells us that 𝑦 = 𝑓(𝑥) for some 𝑥 ∈ 𝑈

"filter"

"map"



More Set Builder Notation

• Both notations can be used together, e.g.

• Then 𝑦 ∈ 𝑉 tells us that 𝑦 = 𝑓(𝑥) for some 𝑥
such that P(𝑥) holds

these two notations can be thought of as "filter" and "map"
they are widely used operations in programming as well

𝑉	:=	{	𝑓 𝑥 ∶ 𝑥 ∈ 𝑈, 𝑃 𝑥 }



Russell’s Paradox

𝑆	:=	{𝑥 ∶ 𝑥 ∉ 𝑥	}
Suppose that 𝑆 ∈ 𝑆…



Russell’s Paradox

Suppose that 𝑆 ∈ 𝑆.  Then, by the definition of 𝑆, 𝑆 ∉ 𝑆, but 
that’s a contradiction.

Suppose that 𝑆 ∉ 𝑆.  Then, by the definition of 𝑆, 𝑆 ∈ 𝑆, but 
that’s a contradiction too.

This is reminiscent of the truth value of the statement “This 
statement is false.”

𝑆	:=	{𝑥 ∶ 𝑥 ∉ 𝑥	}



Representing Sets Using Bits

• Suppose universe 𝑈 is {1,2, … , 𝑛}
• Can represent set 𝐵 ⊆ 𝑈 as a vector of bits: 
              𝑏.𝑏/…𝑏0 where 𝑏1 = 1 when 𝑖 ∈ 𝐵
          𝑏1 = 0	when 𝑖 ∉ 𝐵
– Called the characteristic vector of set B

• Given characteristic vectors for 𝐴 and 𝐵
–What is characteristic vector for 𝐴 ∪ 𝐵?  𝐴 ∩ 𝐵?



Bitwise Operations

01101101                Java: z=x|y
    Ú 00110111                         
        01111111              
  

      00101010         Java:  z=x&y
   Ù  00001111               
        00001010  
   

  01101101                Java:  z=x^y
   Å	 00110111                         
         01011010



Recursive Definitions
of Functions



Recursive definitions of functions 

• 0! = 1;	 (𝑛 + 1)! = (𝑛 + 1) > 𝑛!  for all 𝑛 ≥ 	0.

• 𝐹 0 = 0; 	 𝐹 𝑛 + 1 = 𝐹 𝑛 − 1 for all 𝑛 ≥ 	0. 

• 𝐺(0) = 1; 	 𝐺(𝑛 + 1) = 2 > 𝐺(𝑛) for all 𝑛 ≥ 	0. 

• 𝐻(0) = 1; 	 𝐻(𝑛 + 1) = 22 0  for all 𝑛 ≥ 	0.



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:  
          Goal:  Show P(k+1), i.e. show (k+1)! ≤ (k+1)k+1

         (k+1)! = (k+1)·k!            by definition of !
                                 ≤ (k+1)· kk           by the IH
                             ≤ (k+1)· (k+1)k    since k ≥ 0
                      = (k+1)k+1

   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ≥ 1, by induction.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



More Recursive Definitions

Suppose that ℎ:ℕ	 → ℝ.  

Then we have familiar summation notation: 
∑"#$$ ℎ 𝑖 = ℎ(0)
∑"#$%&'ℎ 𝑖 = ℎ 𝑛 + 1 + ∑"#$% ℎ 𝑖  for 𝑛 ≥ 0

There is also product notation:  
∏"#$
$ ℎ 𝑖 = ℎ(0)

∏"#$
%&'ℎ 𝑖 = ℎ(𝑛 + 1) P ∏"#$

% ℎ 𝑖  for 𝑛 ≥ 0



Fibonacci Numbers

𝑓$ = 0 
𝑓' = 1 
𝑓% = 𝑓%(' + 𝑓%()  for all 𝑛 ≥ 2



Fibonacci Numbers

𝑓$ = 0 
𝑓' = 1 
𝑓% = 𝑓%(' + 𝑓%()  for all 𝑛 ≥ 2

𝑓% mi  ≈  𝑓%&' km



Bounding Fibonacci:  𝑓% < 2% for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0=0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≤ 2k+1

           Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.
  Case k+1 ≥ 2:  Then fk+1 = fk   +  fk-1 by definition
                                                          ≤ 2k + 2k-1 by the IH                                       

            ≤ 2k + 2k = 2·2k  = 2k+1                                   
      so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏%𝟏 + 𝒇𝒏%𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci:  𝑓% < 2% for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0 = 0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≤ 2k+1

           Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.
  Case k+1 ≥ 2:  Then fk+1 = fk   +  fk-1 by definition
                                                          ≤ 2k + 2k-1 by the IH                                       

            ≤ 2k + 2k = 2·2k  = 2k+1                                   
      so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏%𝟏 + 𝒇𝒏%𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci:  𝑓% < 2% for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏%𝟏 + 𝒇𝒏%𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci:  𝑓% < 2% for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0=0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏%𝟏 + 𝒇𝒏%𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci:  𝑓% < 2% for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0=0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏%𝟏 + 𝒇𝒏%𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci:  𝑓% < 2% for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0=0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

           Since k+1 ≥ 2, fk+1 = fk   +  fk-1 by definition
                                          < 2k + 2k-1 by the IH since k-1 ≥ 0
       < 2k + 2k 
       = 2·2k  

       = 2k+1 
  so P(k+1) is true. 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 

𝒇𝒏 = 𝒇𝒏%𝟏 + 𝒇𝒏%𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci:  𝑓% < 2% for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0=0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

           Since k+1 ≥ 2, fk+1 = fk   +  fk-1 by definition
                                          < 2k + 2k-1 by the IH since k-1 ≥ 0 
       < 2k + 2k = 2·2k  = 2k+1 
  so P(k+1) is true.
5. Therefore, by strong induction, fn < 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏%𝟏 + 𝒇𝒏%𝟐  for all 𝒏 ≥ 𝟐



Recursive Definitions of Sets



Recursive Definitions of Sets (Data)

Natural numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+1 ∈	S 

Even numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+2 ∈	S 



Recursive Definition of Sets

Recursive definition of set S
• Basis Step: 0 ∈	S
• Recursive Step: If x ∈	S, then x + 2 ∈	S

The only elements in S are those that follow from
the basis step and a finite number of recursive steps



Recursive Definitions of Sets

Basis:    (0, 0) ∈	S, (1, 1) ∈	S
Recursive:   If (n-1, x) ∈	S and (n, y) ∈	S,
     then (n+1, x + y) ∈	S.

Powers of 3:
 Basis: 1 ∈	S
 Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+1 ∈	S 

Even numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+2 ∈	S 

?



Recursive Definitions of Sets

Powers of 3:
 Basis: 1 ∈	S
 Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+1 ∈	S 

Even numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+2 ∈	S 

Fibonacci numbers
Basis:    (0, 0) ∈	S, (1, 1) ∈	S
Recursive:   If (n-1, x) ∈	S and (n, y) ∈	S,
     then (n+1, x + y) ∈	S.



Last time: Recursive definitions of functions 

• Before, we considered only simple data
– inputs and outputs were just integers

• Proved facts about those functions with induction
– n! ≤ nn

– fn < 2n and fn ≥ 2n/2-1

• How do we prove facts about functions that work 
with more complex (recursively defined) data?
– we need a more sophisticated form of induction



Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case:  Show that 𝑃(𝑢) is true for all specific 
elements 𝑢	of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃	is true for some 
arbitrary values of each of the existing named 
elements	mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤	constructed in the Recursive step 
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case:  Show that 𝑃(𝑢) is true for all specific 
elements 𝑢	of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃	is true for some 
arbitrary values of each of the existing named 
elements	mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤	constructed in the Recursive step 
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	

Basis:    0 ∈	S
Recursive:   If x ∈	S, then x+2 ∈	S 



Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of 
structural induction:

Recursive definition of ℕ
Basis:   0 ∈	ℕ
Recursive step:  If 𝑘	∈	ℕ then 𝑘 + 1	∈	ℕ

Structural induction follows from ordinary 
induction:

Define 𝑄(𝑛) to be “for all 𝑥 ∈	𝑆	that can be  
                        constructed in at most                             

       𝑛 recursive steps, 𝑃(𝑥) is true.”



Using Structural Induction

• Let 𝑆 be given by…
– Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
– Recursive:  if 𝑥, 𝑦 ∈ 𝑆	 then	𝑥 + 𝑦 ∈ 𝑆.

Claim:  Every element of 𝑆 is divisible by 3.



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,	then	𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,	then	𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

      for some arbitrary x,y	∈	S
4. Inductive Step:  Goal:  Show P(x+y)

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,	then	𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

      for some arbitrary x,y	∈	S
4. Inductive Step:  Goal:  Show P(x+y)
      Since P(x) is true, 3|x and so x=3m for some integer m and   

since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

       Hence P(x+y) is true.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,	then	𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

      for some arbitrary x,y	∈	S
4. Inductive Step:  Goal:  Show P(x+y)
      Since P(x) is true, 3|x and so x=3m for some integer m and   

since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

       Hence P(x+y) is true.
5. Therefore by induction 3|x for all x ∈	S.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,	then	𝑥 + 𝑦 ∈ 𝑆



Using Structural Induction

• Let 𝑇 be given by…
– Basis: 6	Î	𝑇; 	 15	Î	𝑇
– Recursive:  if 𝑥 ∈ 𝑇,	then	𝑥 + 6 ∈ 𝑇	and	𝑥 + 15 ∈ 𝑇

• Two base cases and two recursive cases

Claim:  Every element of 𝑇 is also in 𝑆.



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6	∈	S and 15	∈	S so P(6) and P(15) are true 

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6	∈	S and 15	∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true    
       for some arbitrary x	∈	T

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6	∈	S and 15	∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true    
       for some arbitrary x	∈	T
4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6	∈	S and 15	∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true    
       for some arbitrary x	∈	T
4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)
 Since P(x) holds, we have x ∈	S. From the recursive step of S,
  we can see that x + 6 ∈	S, so P(x+6) is true, and
 we can see that x + 15 ∈	S, so P(x+15) is true.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6	∈	S and 15	∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true    
       for some arbitrary x	∈	T
4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)
 Since P(x) holds, we have x ∈	S. From the recursive step of S,
  we can see that x + 6 ∈	S, so P(x+6) is true, and
 we can see that x + 15 ∈	S, so P(x+15) is true.
5. Therefore P(x) for all x ∈	T by induction.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Lists of Integers

• Basis: nil ∈ List
• Recursive step: 
  if L ∈ List and a ∈ ℤ,

  then a	::	L ∈ List

Examples:
– nil          
– 1	::	nil         1
– 1	::	2	::	nil        1 ➝ 2
– 1	::	2	::	3	::	nil       1 ➝ 2 ➝ 3



Functions on Lists

Length:

 len(nil)	:=	0
 len(a	::	L)	:=	len(L)	+	1   for any L ∈	List and a ∈	ℤ

Concatenation:
 concat(nil,	R) := R      for any R ∈	List
 concat(a	::	L,	R)	:=	a	::	concat(L,	R)		 for any L, R ∈	List and
                 any a ∈ ℤ	



Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case:  Show that 𝑃(𝑢) is true for all specific 
elements 𝑢	of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃	is true for some 
arbitrary values of each of the existing named 
elements	mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤	constructed in the Recursive step 
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Claim:  concat(L,	nil)	=	L for all L	∈ List



Let P(L) be “concat(L,	nil)	=	L” .   
We will prove P(L) for all L ∈	List by structural induction.

Claim:  concat(L,	nil)	=	L for all L	∈ List



Let P(L) be “concat(L,	nil)	=	L” .   
We will prove P(L) for all L ∈	List by structural induction.

Base Case (nil): By the definition of concat, we can see that 
concat(nil,	nil)	=	nil, which is P(nil).

Claim:  concat(L,	nil)	=	L for all L	∈ List



Let P(L) be “concat(L,	nil)	=	L” .   
We will prove P(L) for all L ∈	List by structural induction.

Base Case (nil): By the definition of concat, we can see that 
concat(nil,	nil)	=	nil, which is P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., concat(L,	nil)	=	L.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ

Claim:  concat(L,	nil)	=	L for all L	∈ List



Let P(L) be “concat(L,	nil)	=	L” .   
We will prove P(L) for all L ∈	List by structural induction.

Base Case (nil): By the definition of concat, we can see that 
concat(nil,	nil)	=	nil, which is P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., concat(L,	nil)	=	L.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.

Let a	∈	ℤ be arbitrary. We can calculate as follows

 concat(a	::	L,	nil)	=	a	::	concat(L,	nil)  def of concat
	 	 	 	 	 	 =	a	::	L		 	 	   IH

which is P(a	::	L).

By induction, we have shown the claim holds for all L ∈ List.

Claim:  concat(L,	nil)	=	L for all L	∈ List



Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then,

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then,

	 len(concat(nil,	R))	=	len(R)		 	 	 	 def of concat
	 	 	 	 	 	 			=	0	+	len(R)	 	 	
	 	 	 	 	 	 			=	len(nil)	+	len(R)		 def of len

Since R was arbitrary, P(nil) holds.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.

Let a	∈	ℤ and R	∈	List be arbitrary. Then, 

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.

Let a	∈	ℤ and R	∈	List be arbitrary. Then, we can calculate
 len(concat(a	::	L,	R))	=	len(a	::	concat(L,	R))  def of concat
	 	 	 	 	 	 	 =	1	+	len(concat(L,	R))  def of len
	 	 	 	 	 	 	 =	1	+	len(L)	+	len(R)  IH
	 	 	 	 	 	 	 =	len(a	::	L)	+	len(R)  def of len
Since R was arbitrary, we have shown P(a	::	L).
By induction, we have shown the claim holds for all L ∈ List.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Claim: concat(L,	concat(R,	S))	=	concat(concat(L,	R),	S) for all L,R,S	∈ List

Let P(L) be “concat(concat(L,	R,	S))	=	concat(concat(L,	R),	S) for all R, S ∈	List”.
We prove P(L) for all L ∈	List by structural induction.



Claim: concat(L,	concat(R,	S))	=	concat(concat(L,	R),	S) for all L,R,S	∈ List

Let P(L) be “concat(concat(L,	R),	S)	=	concat(concat(L,	R),	S) for all R, S ∈	List”.
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R, S	be arbitrary lists. Then, we can see that

 concat(concat(nil,	R),	S)
	 	 =	concat(R,	S)	 	 	 	 	 def of concat
	 	 =	concat(concat(nil,	R),	S)		 def of concat

which is P(nil).



Claim: concat(L,	concat(R,	S))	=	concat(concat(L,	R),	S) for all L,R,S	∈ List

Let P(L) be “concat(concat(L,	R),	S)	=	concat(concat(L,	R),	S) for all R, S ∈	List”.
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): …

Inductive Hypothesis:  Assume that P(L) is true for an arbitrary L	∈	List, 
i.e., concat(L,	concat(R,	S))	=	concat(concat(L,	R),	S) for all R, S.

Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.
Let a	∈	ℤ and R, S	∈	List be arbitrary.  Then, we can calculate



Claim: concat(L,	concat(R,	S))	=	concat(concat(L,	R),	S) for all L,R,S	∈ List

Let P(L) be “concat(concat(L,	R),	S)	=	concat(concat(L,	R),	S) for all R, S ∈	List”.
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R, S	be arbitrary lists. Then, we can see that 
concat(nil,	concat(R,	S))	=	concat(R,	S)	=	concat(concat(nil,	R),	S), by 
the definition of concat. This is P(nil).

Inductive Hypothesis:  Assume that P(L) is true for an arbitrary L	∈	List, 
i.e., concat(L,	concat(R,	S))	=	concat(concat(L,	R),	S) for all R, S.

Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.
Let a	∈	ℤ and R, S	∈	List be arbitrary.  Then, we can calculate
 concat(a	::	L,	concat(R,	S))
	 	 =	a	::	concat(L,	concat(R,	S))  def of concat
	 	 =	a	::	concat(concat(L,	R),	S)  IH
	 	 =	concat(a	::	concat(L,	R),	S)	  def of concat
	 	 =	concat(concat(a	::	L,	R),	S)  def of concat
Since R was arbitrary, we have shown P(a	::	L).
By induction, we have shown the claim holds for all L ∈ List.



Rooted Binary Trees

• Basis:      •    is a rooted binary tree



Rooted Binary Trees

• Basis:      •    is a rooted binary tree
• Recursive step: 
 
   If                and                are rooted binary trees,

    

    then                      also is a rooted binary tree.   

T1 T2

T1 T2



Defining Functions on Rooted Binary Trees

• size(•) ::= 1

• size (                    ) ::= 1 + size(T1) + size(T2)

• height(•) ::= 0

• height (                     ) ::= 1 + max{height(T1), height(T2)}

T1 T2

T1 T2



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case:  Show that 𝑃(𝑢) is true for all specific 
elements 𝑢	of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃	is true for some 
arbitrary values of each of the existing named 
elements	mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤	constructed in the Recursive step 
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true. 
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
  rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P(          ).



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true. 
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
  rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P(          ).

         size(             )

          ≤ 2height(            )+1 – 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true. 
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
  rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P(          ).

    By def, size(             ) =1+size(T1)+size(T2) 
                              ≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

          by IH for T1 and T2

       = 2height(T1)+1+2height(T2)+1–1  
       ≤ 2(2max(height(T1),height(T2))+1)–1  
       = 2(2height(      )) – 1 = 2height(            )+1 – 1 
                                                which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction. 



Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S
– example: {0,1}* is the set of binary strings

0, 1, 00, 01, 10, 11, 000, 001, …  and “”

•  S* is defined recursively by
– Basis: ε	Î	S∗ (ε is the empty string, i.e., “”)
– Recursive:  if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case:  Show that 𝑃(𝑢) is true for all specific 
elements 𝑢	of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃	is true for some 
arbitrary values of each of the existing named 
elements	mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤	constructed in the Recursive step 
using the named elements mentioned in the 
Inductive Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Functions on Recursively Defined Sets (on S*)
Length:
 len(ε)   := 0
 len(wa)  := len(w) + 1 for w ∈	S*, a ∈	S

Concatenation:
 x • ε := x for x ∈ S*
 x • wa := (x • w)a for x ∈	S*, a ∈	S

Reversal:
  ε R  := ε
 (wa)R := εa • wR for w ∈	S*, a ∈	S

Number of c’s in a string:
 #c(ε) := 0
 #c(wc) := #c(w) + 1 for w ∈	S*
 #c(wa) := #c(w) for w ∈	S*, a ∈	S, a ≠ c

separate cases for
c  vs  a ≠ c



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x	∈	S* be arbitrary. Then,

	 	 len(x	•	ε)	 =	len(x)	 	 	 	 def of •
	 	 	 	 	 =	len(x)	+	0
	 	 	 	 	 =	len(x)	+	len(ε)	 def of	len

Since x was arbitrary, P(ε) holds.

Claim: len(x•y) = len(x) + len(y) for all x,y ∈	S*



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x	∈	S* be arbitrary. Then, len(x • ε) = len(x) =
    len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis:  Assume that P(w) is true for some arbitrary 
       w	∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Claim: len(x•y) = len(x) + len(y) for all x,y ∈	S*



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x	∈	S* be arbitrary. Then, len(x • ε) = len(x) =
    len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis:  Assume that P(w) is true for some arbitrary 
       w	∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Inductive Step:  Goal: Show that P(wa) is true for every a	∈	S
Let a	∈	S and x	∈	S*. Then,

Claim: len(x•y) = len(x) + len(y) for all x,y ∈	S*



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x	∈	S* be arbitrary. Then, len(x • ε) = len(x) =
    len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis:  Assume that P(w) is true for some arbitrary 
       w	∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Inductive Step:  Goal: Show that P(wa) is true for every a	∈	S
Let a	∈	S and x	∈	S*. Then len(x•wa) = len((x•w)a)  def of •
                                                                     = len(x•w)+1   def of len
                                                                     = len(x)+len(w)+1 IH
                                                                     = len(x)+len(wa)   def of len
Therefore, len(x•wa)= len(x)+len(wa) for all x	∈	S*, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ S*

Claim: len(x•y) = len(x) + len(y) for all x,y ∈	S*

Does this look 
familiar?



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let a	∈	ℤ be arbitrary. Then, len(concat(nil,	R))	=	
	 len(R)	=	len(nil)	+	len(R). Since a was arbitrary, P(nil) holds.
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.

Let a	∈	ℤ and R	∈	List be arbitrary. Then, we can calculate
 len(concat(a	::	L,	R))	=	len(a	::	concat(L,	R))  def of concat
	 	 	 	 	 	 	 =	1	+	len(concat(L,	R))  def of len
	 	 	 	 	 	 	 =	1	+	len(L)	+	len(R)  IH
	 	 	 	 	 	 	 =	len(a	::	L)	+	len(R)  def of len
Since R was arbitrary, we have shown P(a	::	L).
By induction, we have shown the claim holds for all L ∈ List.

Recall: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Lists versus Strings

• Our strings are basically lists
except that we draw them backward

[1, 2, 3]   1 :: 2 :: 3 :: nil   1➝ 2 ➝ 3

“abc”   εabc     a ⇠ b ⇠ c

– would be represented the same way in memory
– but we think of head as the right-most not left-most



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.

Claim:  len(xR) = len(x) for all x ∈	S*



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.
Base Case (x = ε): Then, len(ε!) = len(ε) by def of string reverse.

Claim:  len(xR) = len(x) for all x ∈	S*



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.
Base Case (x = ε): Then, len(ε!) = len(ε) by def of string reverse.

Inductive Hypothesis:  Assume that P(w) is true for some arbitrary 
       w	∈	S*, i.e., len(wR) = len(w).

Inductive Step:  Goal: Show that len((wa)R) = len(wa) for every a

Claim:  len(xR) = len(x) for all x ∈	S*



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.
Base Case (x = ε): Then, len(ε!) = len(ε) by def of string reverse.

Inductive Hypothesis:  Assume that P(w) is true for some arbitrary 
       w	∈	S*, i.e., len(wR) = len(w).

Inductive Step:  Goal: Show that len((wa)R) = len(wa) for every a

Let a	∈	S. Then, len((wa)R) = len(εa • wR)  def of reverse
                                                  = len(εa) + len(wR)  by previous result
                                                  = len(εa) + len(w) IH
                                                  = 1 + len(w)   def of len (twice)
          = len(wa)   def of len

Therefore, len((wa)R)= len(wa), so P(wa) is true for every a	∈	S.

So, we have shown len(xR) = len(x) for all x ∈ S* by induction.

Claim:  len(xR) = len(x) for all x ∈	S*



More Theorems

Structural induction is the tool used to prove many 
more interesting theorems

• General associativity follows from our one rule
– likewise for generalized De Morgan’s laws

• Okay to substitute 𝑦 for 𝑥 everywhere in a modular 
equation when we know that 𝑥 ≡" 𝑦

• More coming shortly…


