CSE 311: Foundations of Computing

Topic 6: Set Theory

Everyone I’'m not asking
on the You know twice
Hoor what to do

Listen to Mom
hands in the b:::ér Takv':grO“
e Sweater

As God is
my witness

Preachers




Sets

Sets are collections of objects called elements.

Write a € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A={1}

B=1{1, 3, 2}

c={L1, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, I, a}




Some Common Sets

N is the set of Natural Numbers; N ={0, 1, 2, ...}

Z is the set of Integers; Z ={...,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %5, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, 1i,\/2
[n] is the set {1, 2, ..., n} when n is a natural number
D ={} is the empty set; the only set with no elements




Sets can be elements of other sets

For example
A ={{1},{2},{1,2},S}
B=1{1,2}

Then B € A.




Definition: Equality

A and B are equal if they have the same elements

A=B := Vx(xe A xeB)

Examples:
- {1}={1,1,1}
* O isthe empty set




Definition: Equality

A and B are equal if they have the same elements

A=B := Vx(xe A xeB)

A={1, 2,3}
B={3, 4,5}
C=1{3, 4}
D=1{4,3,3} Which sets are equal?
E={3, 4,3}
F={4, {3}}




Definition: Subset

A is a subset of B if every element of A is also in B

AcB :=Vx(xe A—>xeB)



Definition: Subset

A is a subset of B if every element of A is also in B

AcB :=Vx(xe A—>xeB)

A=1{1, 2, 3}
B=1{3,4,5}
C=1{3, 4}
QUESTIONS
AcB?
CcB?

D A?




Definition: Subset

A is a subset of B if every element of A is also in B

AcB :=Vx(xe A—>xeB)
Note the domain restriction!
We will use a shorthand restriction to a set

VxeA (P(x)) means Vx(x € A— P(x))

Restricting all quantified variables improves clarity



Definitions

A and B are equal if they have the same elements

A=B := Vx(xe A xeB)
 Ais asubset of B if every element of A is also in B

AcB :=Vx(xe A—>xeB)

* Notes: (A=B) = (A< B) A(Bc A

A2BmeansBE A ACBmeansAS B



Sets & Logic



Proofs About Sets

1. ACB
2. BC A

?. A

|
v,

Given
Given
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Proofs About Sets

1. ACB
2. BC A
3. Vx(x € A - x € B)
4. Vx(x€EB->x€A)

?. A

|
o)

Given
Given
Def of Subset: 1
Def of Subset: 2

22



Proofs About Sets

.ACB
BCA
Vx(x € A - x € B)
VX(Xx€EB—->x€A)

hONR

?. VX (X € A & x€B)
?. A=B

Given
Given
Def of Subset: 1
Def of Subset: 2

7?
Def of Same Set


Kevin Zatloukal
Same Set


Proofs About Sets

ACB
BCA
Vx (x € A - x € B)
VX(xEB->x€A)
Let y be arbitrary.

pWOMRE

52.yeEAeoyeEB
. Vx(x€E Ao x€EB)
.A=B

o Ol

Given
Given
Def of Subset: 1
Def of Subset: 2

2?
Intro V
Def of Same Set: 5


Kevin Zatloukal
Same Set: 5


Proofs About Sets

o Ol

pWOMRE

ACB

BCA
Vx(x € A - x € B)
VX(Xx€EB—->x€A)
Let y be arbitrary.
51. yeA—->y€EB
52. yeEB-oy€eEA

5?2.yeA-yeERB

. Vx(x€E Ao x€EB)
.A=B

Given
Given
Def of Subset: 1
Def of Subset: 2

ElimV: 3
ElimV: 4

7
Intro V

Def of Same Set: 5


Kevin Zatloukal
Same Set: 5


Proofs About Sets

1. ACB Given

2. BCA Given

3. Vx(x€A->x€EB) Def of Subset: 1

4. Vx(x€B->x€A) Def of Subset: 2
Let y be arbitrary.

bl. yeA—->ye€EB ElimV:3
b2. yeB-y€eA EimV: 4
53. (yeEA->yEB)A
(yeEB—->ye€eA) IntroA:5.1,5.2
54.ye Ao yeEB Equivalent: 5.3
. Vx(x€E Ao x€EB) Intro V

.A=B Def of Same Set: 5

o O1


Kevin Zatloukal
Same Set: 5


Building Sets from Predicates

Every set S defines a predicate P(x) :=“x € S”

We can also define a set from a predicate P:

S = {x:P(x)}

S = the set of all x for which P(x) is true

S = {xeU:P(x)} = {x:(x€U)A P(x)}



Inference Rules on Sets

S := {x:P(x)}

When a set is defined this way,
we can reason about it using its definition:

1. X €S Given
2. P(x) Def of S

This will be our only
inference rule for sets!

8. P(y)
0. yeS DefofS



Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}

Suppose we want to prove A c B.

We have a definition of subset:

AcB = Vx(x e A— x e B)

We need to show that is definition holds



Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}



Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}

8 Vx(x€A->x€eB) ??
9. AcCB Def of Subset: 8



Proofs About Sets

A = {x:P(x)}

Let x be arbitrary

1.1. xeA—->X€EB
1. Vx(x€A—->x€B)
2. ACB

B := {x:Q(x)}

7
Intro V: 1
Def of Subset: 2



Proofs About Sets

A = {x:P(x)}

Let x be arbitrary
1.1.1. xeA

1.1.?2. x€B
1.1. xeA—->X€EB
1. Vx(x€A—->x€B)
2. ACB

B := {x:Q(x)}

Assumption

7
Direct Proof

Intro V: 1
Def of Subset: 2



Proofs About Sets

A = {x:P(x)}

Let x be arbitrary
1.1.1. xeA
1.1.2. P(x)

1.1.2. Q(x)
1.1.?2. x€B
1..1. xeA->x€B
1. Vx(x€A->x€B)
2. ACB

B := {x:Q(x)}

Assumption
Def of A

7
Def of B
Direct Proof

Intro V: 1
Def of Subset: 2



Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}

Prove that A — B.

Proof: Let x be an arbitrary object.
Suppose that x € A. By definition of A, this means P(x).

Thus, we have Q(x). By definition of B, this means x € B.

Since x was arbitrary, we have shown, by definition,
that A — B.

English template for a Subset Proof




Operations on Sets




Set Operations

AUB:={x:(x€A)V(x €B)} Union

ANB:={x:(x€A)A(x €B)} Intersection

A\B:={x:(x€A)N(x &B)} SetDifference

A=1{1, 2, 3} QUESTIONS
B=1{3,5, 6} Using A, B, C and set operations, make...
C={3, 4} [6] =

{3} =

{1,2} =




More Set Operations

A®B:={x:(x€A) D (x €B)) Symmetric

Difference
A=A ={x:xeUAx¢gA)}
(with respect to universe U) Complement
A={1,2,3;}
B=1{1, 2, 4,6} 5
Universe: '%6_9 B=13,4, 6]}
U=1{1,2,3,4,5,6) ={4,5,6}

Notethat AUA=U




De Morgan’s Laws

AUB=ANB

ANB=AUB



De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, Proof technique:
by definition, that (A U B)¢= A n B¢,  ToshowC=Dshow

x e C—> xeDand
xeD-osxeC



De Morgan’s Laws

Formally, prove Vx (x € (AU B)¢ & x € A n BY)

1. Let x be arbitrary
21. x € (AU B)¢ Assumption

2.3. x € AN B¢
2.x € (AUB)‘—> x € A n B¢ Direct Proof
3.1. x € A°n B¢ Assumption

3.3. x€e (AuB)¢

3.x€A°NB>x e (AuB)¢ Direct Proof
4. (x€e (AUB) > x€eA°NBOYA(x€eA“NB‘>xe(AuB)®) Introan:2,3
5.x€ (AUB)¢ & x € A° n B¢ Biconditional: 4

6.Vx(x € (AUB)¢ & x € A N BY) Intro V: 1-5



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)C.

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B).

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B).

Thus, we have x € A¢ n B¢,



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B).

Thus, x € A and x € B¢, so we we have x € A® N B¢
by the definition of intersection.



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that -(x € AV x € B).

Thus, =(x € A) and =(x € B), sox € A® and x € B¢
by the definition of compliment, and we can see that

x € A® N B¢ by the definition of intersection.



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.

Suppose x € (A U B)¢. Then, by the definition of
complement, we have —(x € A U B). The latter says,
by the definition of union, that =(x € AV x € B), or
equivalently —=(x € A) A =(x € B) by De Morgan’s law.
Thus, we have x € A® and x € B¢ by the definition of
compliment, and we can see that x € A° N B¢ by the

definition of intersection. Proof technique:

To show C = D show
xe C—->xeDand
xeD-oxeC



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
Suppose x € (AU B)¢.... Then, x € A* n BC.

Suppose x € A® N B¢. Then, by the definition of
intersection, we have x € A and x € B¢. That is, we
have —(x € A) A =(x € B), which is equivalent to
—(x € AV x € B) by De Morgan’s law. The last is
equivalent to =(x € A U B), by the definition of union,
so we have shown x € (4 U B)¢, by the definition of
complement.



Proofs About Set Equality

A lot of repetitive work to show — and «.

Do we have a way to prove < directly?

Recall that A=B and (A <> B) =T are the same

We can use an equivalence chain to prove that a
biconditional holds.



De Morgan’s Laws

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
The stated biconditional holds since:

x €E(AUB)t =—(x € AUB) Def of Comp
=-(x€AVxE€ERB) Def of Union
Chains of equivalences = _I(x € A) A _I(x € B) De Morgan
are often easier to read =N = AC NANX E BC Def of Comp
like this rather than as
English text = x € A° N B¢ Def of Intersection

Since x was arbitrary, we have shown the sets are equal. B



Distributive Laws

ANBUC)=ANB)UANC)
AUBNC)=(AUB)N(A UC(C)

vl




The Meta Theorem Template

Meta-Theorem: Translate any Propositional Logic

“_n

equivalence into “=” relationship between sets by
replacing U with V, N with A, and -¢ with —.

“Proof”: Let x be an arbitrary object.
The stated bi-condition holds since:
x € left side

replace set ops with propositional logic

apply Propositional Logic equivalence
= replace propositional logic with set ops

= x € right side
Since x was arbitrary, we have shown the sets are equal. B



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BCA)

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=?

P(LD)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BCA)

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(LD)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BCA)

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(Q)={} # &



Cartesian Product

AXB:={x:3a € A3b € B (x =(a,b)) }

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.
7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a, b, c}, then A X B ={(1,a), (1,b), (1,0),
(2,a), (2,b), (2,c)}.



Cartesian Product

AXB:={x:3a € A3b € B (x =(a,b)) }

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.

7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a, b, c}, then A X B ={(1,a), (1,b), (1,0),
(2,a), (2,b), (2,c)}.

What is AX®?



Cartesian Product

AXB:={x:3a € A3b € B (x =(a,b)) }

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.

7. X 7. is “the set of all pairs of integers”

IfA={1,2},B={a,b,c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

AXP={(a,b):a€c ANDbed}={(ab):ac€A NF} =0



More Set Builder Notation

AXB:={x:3a€ A3b € B (x = (a,b))}

* This can be written more concisely as follows...

AXB :={(a,b) :a € A,b€EB}

— within set builder variables are implicitly 3-quantified

this is the one exception to the rule that
unbound variables are implicitly V-quantified




More Set Builder Notation

S={x:P(x)} "filter"

* Then x € S tells us that P(x) holds

T={f(x): xeU} "map"

* Theny € T tellsus that y = f(x) forsome x € U



More Set Builder Notation

* Both notations can be used together, e.g.

V={f(x):x€eUPx)}

* Theny €V tells us that y = f(x) for some x
such that P(x) holds

these two notations can be thought of as "filter" and "map"
they are widely used operations in programming as well



Russell’s Paradox

S={x:x&x}

Suppose that S € S...



Russell’s Paradox

S={x:x&x}

Suppose that S € S. Then, by the definition of S5, S € S, but
that’s a contradiction.

Suppose that S € S. Then, by the definition of S, S € S, but
that’s a contradiction too.

This is reminiscent of the truth value of the statement “This
statement is false.”



Representing Sets Using Bits

* Suppose universe U is {1,2, ...,n}
 Can represent set B € U as a vector of bits:
b:b, ...b, where b; =1wheni€E€RB
b =0wheni & B
— Called the characteristic vector of set B

 Given characteristic vectors for A and B
— What is characteristic vector for AU B? AN B?



Bitwise Operations

01101101 Java: z=x|y
v 00110111
01111111

00101010 Java: z=x&y
A 00001111
00001010

01101101 Java: z=x"y
@ 00110111
01011010




Recursive Definitions
of Functions



Recursive definitions of functions

Ol=1 (n+D!'=m+1)-n! foralln = 0.

F(0O)=0; Fn+1)=Fn)—1foralln > 0.

GO0)=1; G(n+1)=2-G(n)foralln> 0.

HO0)=1; Hn+1) =2® foralln > 0.



Proven! <n"foralln>1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.

2. Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.



Proven! <n"foralln>1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.

Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.

Inductive Step:
Goal: Show P(k+1), i.e. show (k+1)! < (k+1)k+1
(k+1)! = (k+1)-k! by definition of !
< (k+1)- kX by the IH
< (k+1)- (k+1)k since k>0
= (k+1)k+
Therefore P(k+1) is true.

5. Thus P(n) is true for all n > 1, by induction.



More Recursive Definitions

Suppose that hi: N — R.

Then we have familiar summation notation:
_o h(i) = h(0)
Z”“ h(i)=h(n+ 1)+ X ,h(@) forn=>0

There is also product notation:
_o h(i) = h(0)
H“+1 h(i) =h(n+1)-[[~yh(i) forn >0



Fibonacci Numbers

fo=0
fi=1
fn = fn-1+t fn_p foralln = 2




Fibonacci Numbers

fo=0
fi=1
fn = fn1+ fnp foralln = 2

@ Tamas Gorbe
& @TamasGorbe

A Mathematician's Way* of Converting Miles to

Kilometers
3mi =~ 5 km
bmi ~ &8 km f,mi = f,1q km
Smi ~ 13 km



Bounding Fibonacci: f,, < 2" foralln = 0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0< 1=2° so P(0) is true.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Cases: f,=0<1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.

fo=0 fi1=1
fn=F n-1+fn foralln =2




Bounding Fibonacci: f,, < 2" foralln =0

1.

2.

Let P(n) be “f, <2"”. We prove that P(n) is true for all

integers n > 0 by strong induction.

Base Cases: f,=0 < 1= 2° so P(0) is true and
f,=1<2=2's0P(1) is true.

Inductive Hypothesis: Assume that for some arbitrary

integer k > 1, we have f; < 2! for every integer j from 0 to k.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.
2. Base Cases: f,=0 < 1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 1, we have f; < 2! for every integer j from 0 to k.

4. Inductive Step: |Goal: Show P(k+1); that is, f,,, < 21

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Cases: f,=0 < 1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 1, we have f; < 2 for every integer j from 0 to k.

4. Inductive Step: |Goal: Show P(k+1); that is, f,,; < 2k+1
Since k+1 > 2, f ., =f, + f_, by definition
< 2K+ 2k1py the IH since k-1 >0
< 2k4 2k
= 2.7k
— 2k+1

so P(k+1) is true.
(k+1) fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci: f,, < 2" foralln =0

1.

2.

S.

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Cases: f,=0 < 1= 2° so P(0) is true and
f,=1<2=2's0P(1) is true.

Inductive Hypothesis: Assume that for some arbitrary

integer k > 1, we have f; < 2! for every integer j from 0 to k.

Inductive Step: |Goal: Show P(k+1); that is, f,,; < 2k
Since k+1 > 2, f ., =f, + f_; by definition
< 2+ 2k1py the IH since k-1 >0
< 2k+ 2k = 2.2k = Pk+1
so P(k+1) is true.
Therefore, by strong induction, f, < 2" for all integers n > 0.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Recursive Definitions of Sets



Recursive Definitions of Sets (Data)

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even numbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S



Recursive Definition of Sets

Recursive definition of set S
 Basis Step: 0 €S
 Recursive Step: If x€ S, thenx+2 €S

The only elements in S are those that follow from
the basis step and a finite number of recursive steps



Recursive Definitions of Sets

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: (0,00€eS,(4,1)eS
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.



Recursive Definitions of Sets

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: (0,00€eS,(4,1)eS
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.

Fibonacci numbers



Last time: Recursive definitions of functions

 Before, we considered only simple data
— Inputs and outputs were just integers

 Proved facts about those functions with induction
—n!'sn”
—f, <2"andf, 2 2v21

« How do we prove facts about functions that work

with more complex (recursively defined) data?
— we need a more sophisticated form of induction



Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Structural Induction | Basis:

Recursive: If x €S, then )gi-2 €S

How to prove V x € S, P(x) is trde:

Base Case: ﬂow that P(u) is true for all specific
elements u of S mentioned in the \Basis step

Inductive Hypothesis: Assume that P is/true for some
arbitrary values of each of the existing named
elements mentioned | Recursi

Inductive Step\Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of
structural induction:
Recursive definition of N

Basis: 0N
Recursive step: If ke Nthenk+1€N

Structural induction follows from ordinary

induction:
Define Q(n) to be “for all x € S that can be

constructed in at most
n recursive steps, P(x) is true.”



Using Structural Induction

* Let S be given by...

—Basis: 6e5; 15€ S
— Recursive: if x,y €S thenx +y € S.

Claim: Every element of S is divisible by 3.



Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

Basis: 6 S5; 15€S
Recursive: if x,y € S,thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Basis: 6 S5; 15€S
Recursive: if x,y € S,thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Basis: 6 S5; 15€S
Recursive: if x,y € S,thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.

Basis: 6 S5; 15€S
Recursive: if x,y € S,thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.
5. Therefore by induction 3|x for all x € S.

Basis: 6 S5; 15€S
Recursive: if x,y € S,thenx+y €S




Using Structural Induction

* Let T be given by...

—Basis: 6 <T; 15T
— Recursive: ifxeT,thenx+6 €€Tandx + 15 €T

e Two base cases and two recursive cases

Claim: Every element of T is also in S.



Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

Basis: 6 S5; 15€S$ Basis: 6 T; 15T
Recursive: if x,y € §, Recursive: if x e T,thenx +6 €T
thenx +y €S andx+15€T




Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

Basis: 6<S5; 15€ S
Recursive: if x,y € §,
thenx +y eSS

Basis: 6 T; 15T
Recursive: if x e T,thenx+ 6 €T
and x + 15 €T




Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) is true
for some arbitrary xe T

Basis: 6 S5; 15€S$ Basis: 6 T; 15T
Recursive: if x,y € §, Recursive: if x e T,thenx +6 €T
thenx +y €S andx+15€T




Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) is true

for some arbitrary xe T

4. Inductive Step: |Goal: Show P(x+6) and P(x+15)

Basis: 6<S5; 15€ S
Recursive: if x,y € §,
thenx +y eSS

Basis: 6 T; 15T
Recursive: if x e T,thenx+ 6 €T
and x + 15 €T




Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) is true

for some arbitrary xe T

4. Inductive Step: |Goal: Show P(x+6) and P(x+15)

Since P(x) holds, we have x € S. From the recursive step of S,
we can see that x + 6 €S, so P(x+6) is true, and

we can see that x + 15 € S, so P(x+15) is true.

Basis: 6<S5; 15€ S
Recursive: if x,y € §,
thenx +y eSS

Basis: 6 T; 15T
Recursive: if x e T,thenx+ 6 €T
and x + 15 €T




Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) is true

for some arbitrary xe T

4. Inductive Step: |Goal: Show P(x+6) and P(x+15)

Since P(x) holds, we have x € S. From the recursive step of S,
we can see that x + 6 €S, so P(x+6) is true, and

we can see that x + 15 € S, so P(x+15) is true.
5. Therefore P(x) for all x € T by induction.

Basis: 6<S5; 15€ S
Recursive: if x,y € §,
thenx +y eSS

Basis: 6 T; 15T
Recursive: if x e T,thenx+ 6 €T
and x + 15 €T




Lists of Integers

* Basis: nil € List

* Recursive step:
if L € List and a € Z,
then a:: L € List

Examples:
— nil
— 1 ::nil 1
— 1::2::nil 1—2

— 1::2:3::nil 1—2—3



Functions on Lists

Length:

len(nil) :=0
len(a:: L) :=1len(L) + 1 forany L € Listand a € Z

Concatenation:

concat(nil, R) :=R for any R € List
concat(a:: L,R):=a:: concat(L,LR) foranyl, R € List and
anya€Z



: Basis» nil € List
Structural Induction o .
Recursive step:

if L € Listand a € Z,

How to prove V x € S, P(x) is true: _
thena:: L € List

Base Case: Sho P(u) is trye for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) hol of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis

Conclude thatV x € S, P(x)



Claim: concat(L, nil) = L for all L € List




Claim: concat(L, nil) = L for all L € List

Let P(L) be “concat(L, nil) =L".
We will prove P(L) for all L € List by structural induction.



Claim: concat(L, nil) = L for all L € List

Let P(L) be “concat(L, nil) =L".
We will prove P(L) for all L € List by structural induction.

Base Case (nil): By the definition of concat, we can see that
concat(nil, nil) = nil, which is P(nil).



Claim: concat(L, nil) = L for all L € List

Let P(L) be “concat(L, nil) =L".
We will prove P(L) for all L € List by structural induction.

Base Case (nil): By the definition of concat, we can see that

concat(nil, nil) = nil, which is P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., concat(L, nil) = L.

Inductive Step:| Goal: Show that P(a :: L) is true for any a € Z




Claim: concat(L, nil) = L for all L € List

Let P(L) be “concat(L, nil) =L".
We will prove P(L) for all L € List by structural induction.

Base Case (nil): By the definition of concat, we can see that
concat(nil, nil) = nil, which is P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., concat(L, nil) = L.
Inductive Step:| Goal: Show that P(a :: L) is true for any a € Z.

Let a € Z be arbitrary. We can calculate as follows

concat(a:: L, nil) = a:: concat(L, nil) def of concat
=a: L IH

which is P(a :: L).

By induction, we have shown the claim holds for all L € List.



Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List




Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.



Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

Length: Concatenation:
len(nil) :=0 concat(nil, R) :=R
len(a: L) :=len(L) +1 concat(a:: L, R) := a:: concat(L, R)




Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

len(concat(nil, R)) =len(R) def of concat
=0 + len(R)
= len(nil) + len(R)  def of len

Since R was arbitrary, P(nil) holds.



Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.



Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Inductive Step:| Goal: Show that P(a :: L) is true for any a € Z.




Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Inductive Step:

Goal: Show that P(a :: L) is true for any a € Z.

Let a € Z and R € List be arbitrary. Then,

Length:

len(nil) :=0
len(a::L):=len(L) +1

Concatenation:

concat(nil,R) :=R
concat(a:: L, R) := a:: concat(L, R)




Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Inductive Step:

Goal: Show that P(a :: L) is true for any a € Z.

Let a € Z and R € List be arbitrary. Then, we can calculate
len(concat(a:: L, R)) =len(a :: concat(L, R)) def of concat

= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
= len(a:: L) + len(R) def of len

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all L € List.



Claim: concat(L, concat(R, S)) = concat(concat(L, R), S) for all L,R,S € List

Let P(L) be “concat(concat(L, R, S)) = concat(concat(L, R), S) for all R, S € List”".
We prove P(L) for all L € List by structural induction.



Claim: concat(L, concat(R, S)) = concat(concat(L, R), S) for all L,R,S € List

Let P(L) be “concat(concat(L, R), S) = concat(concat(L, R), S) for all R, S € List”".
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R, S be arbitrary lists. Then, we can see that

concat(concat(nil, R), S)
= concat(R, S) def of concat
= concat(concat(nil, R), S) def of concat

which is P(nil).

Concatenation:

concat(nil,R) :=R
concat(a:: L, R) := a:: concat(L, R)




Claim: concat(L, concat(R, S)) = concat(concat(L, R), S) for all L,R,S € List

Let P(L) be “concat(concat(L, R), S) = concat(concat(L, R), S) for all R, S € List”".
We prove P(L) for all L € List by structural induction.

Base Case (nil):

Inductive Hypothesis: Assume that P(L) is true for an arbitrary L € List,
i.e., concat(L, concat(R, S)) = concat(concat(L, R), S) for all R, S.

Inductive Step:

Goal: Show that P(a :: L) is true for any a € Z.

Let a € Z and R, S € List be arbitrary. Then, we can calculate

Concatenation:

concat(nil, R) :=R
concat(a:: L, R) := a:: concat(L, R)



Claim: concat(L, concat(R, S)) = concat(concat(L, R), S) for all L,R,S € List

Let P(L) be “concat(concat(L, R), S) = concat(concat(L, R), S) for all R, S € List”".
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R, S be arbitrary lists. Then, we can see that
concat(nil, concat(R, S)) = concat(R, S) = concat(concat(nil, R), S), by
the definition of concat. This is P(nil).

Inductive Hypothesis: Assume that P(L) is true for an arbitrary L € List,
i.e., concat(L, concat(R, S)) = concat(concat(L, R), S) for all R, S.

Inductive Step: |Goal: Show that P(a :: L) is true for any a € Z.

Let a € Z and R, S € List be arbitrary. Then, we can calculate
concat(a:: L, concat(R, S))

= a :: concat(L, concat(R, S)) def of concat
= a :: concat(concat(L, R), S) IH

= concat(a :: concat(L, R), S) def of concat
= concat(concat(a:: L, R), S) def of concat

Since R was arbitrary, we have shown P(a :: L).
By induction, we have shown the claim holds for all L € List.



Rooted Binary Trees

* Basis: * |s arooted binary tree



Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree

°
L



Defining Functions on Rooted Binary Trees

size(®) =1

) =1+ size(T,) + size(T,)

::= 1 + max{height(T,), height(T,)}



Basis: e is arooted binary tree

Last time: Structural Induction  |=>,

]: and ¢

Sl S

1 | |

How to prove V x € S, P(x) is true /N, oot ey v

............

Base Case: /S{ow that P(u) is truef/for all specific
elements u of S mentioned in the(Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step@ove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]




Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.

size(*) =1 height(®) =0
size ( T1 T 2 ) =1 + size(T,) + size(T,) height ( T1 Tz ) ::= 1 + max{height(T,), height(T,)}




Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.



Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1" We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(*)=0, and 2°+'-1=21-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heishtTI+1 — 1 for k=1,2
4. Inductive Step: Goal: Prove P( T/\ ).

---------------




Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightTJ+1 — 1 for k=1,2

4. Inductive Step: Goal: Prove P( T/\ ).
size( /\ )
o'qT1‘\‘ :'.Tz“‘
size(*) =1
size ( T/\T ) =1 + size(T,) + size(T,)
height(¢) =0
height T/\T ) ::= 1+ maxfheight(T,), height(T,)}| < 2height( ?/\ )+1 _ 1




Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightTJ+1 — 1 for k=1,2
4. Inductive Step: Goal: Prove P( \r/\)

By def, size( T/\T ) =1+size(T,)+size(T,)

""""""""""""

by IH for T, and T,
— 2height(T1)+1+2height(T2)+1_1

< 2(2max(height(Tl),height(Tz))+1)_1

=2 ( 2 height( ;/\T

............................

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.



Strings

 An alphabet X is any finite set of characters

* The set X* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000, 004, ...  and *"

 2* js defined recursively by
— Basis: ¢ € 2™ (¢ is the empty string, i.e., “”)
— Recursive: ifw € 2*,a € 2, then wa € 2*



Basis: ¢ € X *

Last time: Structural Induction ——=2., qive steps:

ifweX*anda e 2,

How to prove V x € S, P(x) is/true: | —thenwa ¢ *

T

Base Case: S at P(u) is true for all spegific
elements uof S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing nam
elements mentioned in the Recursive step

Inductive Step: Prove tha S for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the
Inductive Hypothesis

Conclude thatV x € S, P(x)



Functions on Recursively Defined Sets (on X*)

Length:
len(e) :=0
len(wa) :=len(w)+1forweX* aeX

Concatenation:
xeg :=xforxeX®
xewa :=(xew)aforxeX* aeX

Reversal:
e R =€
(wWa)R =caewhRforweX™ aeX

Number of c¢’s in a string:
#(e) =0
# (wc) =#(w)+1forweX”
#(wa) =#(w)forweX* a€eX, a#c

separate cases for
CVS a#C(C



Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y = £): Let x € Z* be arbitrary. Then,

len(x e &) =len(x) def of e
=len(x) + 0
=len(x) +len(¢) def oflen

Since x was arbitrary, P(€) holds.

len(e) :=0
len(wa) :=len(w)+1




Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y = €): Let x € Z* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(€) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X7, i.e., len(xew) = len(x) + len(w) for all x



Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z* "
We prove P(y) for all y € * by structural induction.

Base Case (y = £): Let x € Z* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(¢g) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary

Inductive Step:

w E X* i.e., len(xew) = len(x) + len(w) for all x

Goal: Show that P(wa) is true for every a € E‘

Leta € X and x € X*. Then,

len(e) :=0
len(wa) :=len(w)+1




Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x €| Does this look
We prove P(y) for all y € X* by structural indu familiar?

Base Case (y = €): Let x € Z* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(€) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X* i.e., len(xew) = len(x) + len(w) for all x
Inductive Step:| Goal: Show that P(wa) is true for every a € X

Let a € X and x € Z*. Then len(xewa) = len((xew)a) def of o
= len(xew)+1 def of len
= len(x)+len(w)+1 IH
= len(x)+len(wa) def of len

Therefore, len(xewa)= len(x)+len(wa) for all x € £*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X"



Recall: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let a € Z be arbitrary. Then, len(concat(nil, R)) =
len(R) = len(nil) + len(R). Since a was arbitrary, P(nil) holds.

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.

Inductive Step:

Goal: Show that P(a :: L) is true for any a € Z.

Let a € Z and R € List be arbitrary. Then, we can calculate
len(concat(a:: L, R)) =len(a :: concat(L, R)) def of concat

= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
= len(a:: L) + len(R) def of len

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all L € List.



Lists versus Strings

* Qur strings are basically lists
except that we draw them backward

[1, 2, 3] 1::2:3::nil 1—2—3

o n

abc gabc a<-be-cC

— would be represented the same way in memory
— but we think of head as the right-most not left-most



Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".

We will prove P(x) for all x € * by structural induction.

Length:
len(g) ::=0
len(wa) ::=len(w) + LforweX*, aeX

Reversal:
eRu=¢
(Wa)k i=caewRforweX* aeX




Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € * by structural induction.
Base Case (x = €): Then, len(e®) = len(g) by def of string reverse.



Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € * by structural induction.
Base Case (x = €): Then, len(e®) = len(g) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X7, i.e., len(wR) = len(w).
Inductive Step: | Goal: Show that len((wa)?) = len(wa) for every a

Length: Reversal:
len(e) :=0 gfu=¢

len(wa) :=len(w) +1forweX* ae X (wa)f :=ca e wRforw€eX", a€X




Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € * by structural induction.
Base Case (x = €): Then, len(e®) = len(g) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X7, i.e., len(wR) = len(w).
Inductive Step: | Goal: Show that len((wa)?) = len(wa) for every a

Let a € Z. Then, len((wa)R) = len(ca * wR) def of reverse
=len(ga) + len(w®) by previous result
=len(ga) + len(w) IH
=1+ len(w) def of len (twice)
= len(wa) def of len

Therefore, len((wa)?)= len(wa), so P(wa) is true for every a € 2.

So, we have shown len(x®) = len(x) for all x € X" by induction.



More Theorems

Structural induction is the tool used to prove many
more interesting theorems

* General associativity follows from our one rule
— likewise for generalized De Morgan’s laws

* Okay to substitute y for x everywhere in a modular
equation when we know that x =,,, y

* More coming shortly...



