CSE 311: Foundations of Computing

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

```
Some simple examples

A = \{1\}

B = \{1, 3, 2\}

C = \{\Box, 1\}

D = \{\{17\}, 17\}

E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}
```

N is the set of Natural Numbers; $\mathbb{N} = \{0, 1, 2, ...\}$ \mathbb{Z} is the set of Integers; $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ \mathbb{Q} is the set of Rational Numbers; e.g. ½, -17, 32/48 \mathbb{R} is the set of Real Numbers; e.g. 1, -17, 32/48, $\pi,\sqrt{2}$ [n] is the set {1, 2, ..., n} when n is a natural number $\emptyset = \{\}$ is the empty set; the *only* set with no elements For example A = {{1},{2},{1,2}, \emptyset } B = {1,2}

Then $B \in A$.

A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

Examples:

- {1} = {1, 1, 1}
 Ø is **the** empty set

A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

$$A = \{1, 2, 3\}$$
$$B = \{3, 4, 5\}$$
$$C = \{3, 4\}$$
$$D = \{4, 3, 3\}$$
$$E = \{3, 4, 3\}$$
$$F = \{4, \{3\}\}$$

Which sets are equal?

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

	<u>QUESTIONS</u>	
$A \subseteq B$?		
$C \subseteq B$?		
$\varnothing \subseteq A$?		
$ \mathcal{Q} \subseteq A'$		

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

Note the domain restriction!

We will use a shorthand restriction to a set

$$\forall x \in A(P(x))$$
 means $\forall x (x \in A \rightarrow P(x))$

Restricting all quantified variables improves clarity

• A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

• A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

• Notes: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$ A \supseteq B means B \subseteq A A \subset B means A \subseteq B

Sets & Logic

1. $A \subseteq B$ **2.** $B \subseteq A$

Given Given

- **1.** A ⊆ B
- **2.** B ⊆ A
- **3.** $\forall x (x \in A \rightarrow x \in B)$
- **4.** $\forall x (x \in B \rightarrow x \in A)$

Given Given Def of Subset: 1 Def of Subset: 2

- **1.** A ⊆ B
- **2.** B ⊆ A
- **3.** $\forall x (x \in A \rightarrow x \in B)$
- **4.** $\forall x (x \in B \rightarrow x \in A)$

Given Given Def of Subset: 1 Def of Subset: 2

- ?. $\forall x (x \in A \leftrightarrow x \in B)$
- **?.**A = B

?? Def of Same Set

- **1.** A ⊆ B
- **2.** B ⊆ A
- **3.** $\forall x (x \in A \rightarrow x \in B)$
- 4. $\forall x (x \in B \rightarrow x \in A)$ Let y be arbitrary.

Given Given Def of Subset: 1 Def of Subset: 2

5.?. $y \in A \leftrightarrow y \in B$??5. $\forall x (x \in A \leftrightarrow x \in B)$ Intro \forall 6. A = BDef of Same Set: 5

- **1.** A ⊆ B
- **2.** B ⊆ A
- **3.** $\forall x (x \in A \rightarrow x \in B)$
- 4. $\forall x (x \in B \rightarrow x \in A)$ Let y be arbitrary. 5.1. $y \in A \rightarrow y \in B$ 5.2. $y \in B \rightarrow y \in A$
- Given Given Def of Subset: 1 Def of Subset: 2
- Elim ∀: 3 Elim ∀: 4

5.?. $y \in A \leftrightarrow y \in B$

5. $\forall x (x \in A \leftrightarrow x \in B)$

6. A = B

?? Intro ∀ Def of Same Set: 5

1.	$A \subseteq B$	Give
2.	$B \subseteq A$	Give
3.	$\forall x (x \in A \rightarrow x \in B)$	Def o
4.	$\forall x \ (x \in B \rightarrow x \in A)$	Def o
	Let y be arbitrary.	
	5.1. $y \in A \rightarrow y \in B$	Elim ∀:
	5.2. $y \in B \rightarrow y \in A$	Elim ∀:
	5.3. $(y \in A \rightarrow y \in B) \land$	
	$(y \in B \rightarrow y \in A)$	Intro ∧:
	5.4. $y \in A \leftrightarrow y \in B$	Equivale
5.	$\forall x (x \in A \leftrightarrow x \in B)$	Intro
6.	A = B	Def o

n n of Subset: 1 of Subset: 2

3 4

5.1, 5.2 ent: 5.3 \forall of Same Set: 5 Every set S defines a predicate $P(x) := "x \in S"$

We can also define a set from a predicate P:

S := $\{x : P(x)\}$

S = the set of all x for which P(x) is true

 $S := \{x \in U : P(x)\} = \{x : (x \in U) \land P(x)\}$

$$S := \{x : P(x)\}$$

When a set is defined this way, we can reason about it using its definition:

1. $x \in S$ Given2.P(x)Def of S

This will be our **only** inference rule for sets!

8. P(y)9. $y \in S$ Def of S

A :=
$$\{x : P(x)\}$$
 B := $\{x : Q(x)\}$

Suppose we want to prove $A \subseteq B$.

We have a definition of subset:

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

We need to show that is definition holds

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

9. A ⊆ B

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

8. $\forall x (x \in A \rightarrow x \in B)$ **9.** $A \subseteq B$

?? Def of Subset: 8

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Let **x** be arbitrary

1.1. $x \in A \rightarrow x \in B$ **1.** $\forall x (x \in A \rightarrow x \in B)$ **2.** $A \subseteq B$

?? Intro ∀: 1 Def of Subset: 2

A :=
$$\{x : P(x)\}$$
 B := $\{x : Q(x)\}$

Let x be arbitrary 1.1.1. $x \in A$

Assumption

1.1.?. $x \in B$ 1..1. $x \in A \rightarrow x \in B$ 1. $\forall x (x \in A \rightarrow x \in B)$ 2. $A \subseteq B$??

Direct Proof Intro ∀: 1 Def of Subset: 2

A :=
$$\{x : P(x)\}$$
 B := $\{x : Q(x)\}$

Let x be arbitrary **1.1.1.** $x \in A$ Assumption **1.1.2.** P(x) Def of A 1.1.?. Q(x)**1.1.?.** x ∈ B **1..1.** $x \in A \rightarrow x \in B$ **1.** $\forall x (x \in A \rightarrow x \in B)$ **2**. A ⊆ B

?? Def of B **Direct Proof** Intro ∀: 1 Def of Subset: 2

A :=
$$\{x : P(x)\}$$
 B := $\{x : Q(x)\}$

Prove that $A \subseteq B$.

. . .

Proof: Let x be an arbitrary object.

Suppose that $x \in A$. By definition of A, this means P(x).

Thus, we have Q(x). By definition of B, this means $x \in B$. Since x was arbitrary, we have shown, by definition, that A \subseteq B.

English template for a Subset Proof

Operations on Sets

$$A \cup B := \{ x : (x \in A) \lor (x \in B) \}$$

$$A \cap B := \{ x : (x \in A) \land (x \in B) \}$$

Union

$$A \setminus B := \{ x : (x \in A) \land (x \notin B) \}$$

A = {1, 2, 3}	QUESTIONS
B = {3, 5, 6}	Using A, B, C and set operations, make
C = {3, 4}	[6] =
	{3} =
	{1,2} =

More Set Operations

$$A \oplus B := \{ x : (x \in A) \oplus (x \in B) \}$$

$$\overline{A} = A^{C} := \{ x : x \in U \land x \notin A \}$$
(with respect to universe U)

Symmetric Difference

$$A \bigoplus B = \{3, 4, 6\}$$

 $\overline{A} = \{4, 5, 6\}$

Note that $A \cup \overline{A} = U$

De Morgan's Laws

$\overline{A \cup B} = \overline{A} \cap \overline{B}$

$\overline{A\cap B}=\bar{A}\cup\bar{B}$

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, by definition, that $(A \cup B)^C = A^C \cap B^C$.

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

1. Let x be arbitrary	
2.1. $x \in (A \cup B)^C$	Assumption
2.3. $x \in A^C \cap B^C$	
2. $x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C$	Direct Proof
3.1. $x \in A^C \cap B^C$	Assumption
3.3. $x \in (A \cup B)^C$	
3. $x \in A^C \cap B^C \to x \in (A \cup B)^C$	Direct Proof
4. $(x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C) \land (x \in A^C \cap B^C \rightarrow x \in (A \cup B)^C)$	Intro ∧: 2, 3
5. $x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C$	Biconditional: 4
6. $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$	Intro ∀: 1-5

De Morgan's Laws

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object. Suppose $x \in (A \cup B)^C$.

Thus, we have $x \in A^C \cap B^C$.

. . .

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg (x \in A \cup B)$.

Thus, we have $x \in A^C \cap B^C$.

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

Thus, we have $x \in A^C \cap B^C$.

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

Thus, $x \in A^C$ and $x \in B^C$, so we we have $x \in A^C \cap B^C$ by the definition of intersection.
Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

Thus, $\neg (x \in A)$ and $\neg (x \in B)$, so $x \in A^C$ and $x \in B^C$ by the definition of compliment, and we can see that $x \in A^C \cap B^C$ by the definition of intersection. Prove that $(A \cup B)^C = A^C \cap B^C$

Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg (x \in A \cup B)$. The latter says, by the definition of union, that $\neg (x \in A \lor x \in B)$, or equivalently $\neg (x \in A) \land \neg (x \in B)$ by De Morgan's law. Thus, we have $x \in A^C$ and $x \in B^C$ by the definition of compliment, and we can see that $x \in A^C \cap B^C$ by the definition of intersection.

To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$ Prove that $(A \cup B)^C = A^C \cap B^C$

Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$ Then, $x \in A^C \cap B^C$. Suppose $x \in A^C \cap B^C$. Then, by the definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg(x \in A) \land \neg(x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement. A lot of *repetitive* work to show \rightarrow and \leftarrow .

Do we have a way to prove \leftrightarrow directly?

Recall that $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

We can use an equivalence chain to prove that a biconditional holds.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object. The stated biconditional holds since: $x \in (A \cup B)^C \equiv \neg (x \in A \cup B)$ Def of Comp $\equiv \neg (x \in A \lor x \in B)$ Def of Union $\equiv \neg (x \in A) \land \neg (x \in B)$ De Morgan Chains of equivalences $\equiv x \in A^C \land x \in B^C$ are often easier to read Def of Comp like this rather than as $\equiv x \in A^C \cap B^C$ Def of Intersection English text

Since x was arbitrary, we have shown the sets are equal. ■

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

It's Propositional Logic again!

Meta-Theorem: Translate any Propositional Logic equivalence into "=" relationship between sets by replacing U with V, \cap with Λ , and \cdot^{C} with \neg .

"**Proof**": Let x be an arbitrary object.

The stated bi-condition holds since:

- $x \in \text{left side} \equiv \text{replace set ops with propositional logic}$
 - \equiv apply Propositional Logic equivalence
 - \equiv replace propositional logic with set ops

 $\equiv x \in right side$

Since x was arbitrary, we have shown the sets are equal. ■

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(\mathsf{Days})=?$

 $\mathcal{P}(\emptyset)$ =?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$

 $\mathcal{P}(\emptyset)$ =?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$

 $\mathcal{P}(\varnothing) = \{\emptyset\} \neq \emptyset$

$$A \times B := \{x : \exists a \in A \exists b \in B (x = (a, b))\}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

$$A \times B := \{x : \exists a \in A \exists b \in B (x = (a, b))\}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

What is $A \times \emptyset$?

$$A \times B := \{x : \exists a \in A \exists b \in B (x = (a, b))\}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

 $A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$

$$A \times B := \{x : \exists a \in A \exists b \in B \ (x = (a, b))\}$$

• This can be written more concisely as follows...

$$A \times B := \{(a, b) : a \in A, b \in B\}$$

within set builder variables are implicitly ∃-quantified

this is the one <u>exception</u> to the rule that unbound variables are implicitly ∀-quantified

$$S := \{ x : P(x) \}$$
 "filter"

• Then $x \in S$ tells us that P(x) holds

$$T := \{ f(x) : x \in U \}$$
 "map"

• Then $y \in T$ tells us that y = f(x) for some $x \in U$

• Both notations can be used together, e.g.

$$V := \{ f(x) : x \in U, P(x) \}$$

• Then $y \in V$ tells us that y = f(x) for some x such that P(x) holds

these two notations can be thought of as "filter" and "map" they are widely used operations in programming as well

$$S := \{x : x \notin x\}$$

Suppose that $S \in S$...

$$S := \{x : x \notin x\}$$

Suppose that $S \in S$. Then, by the definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of $S, S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."

Representing Sets Using Bits

- Suppose universe U is $\{1, 2, ..., n\}$
- Can represent set $B \subseteq U$ as a vector of bits:

 $b_1b_2 \dots b_n$ where $b_i = 1$ when $i \in B$ $b_i = 0$ when $i \notin B$

- Called the *characteristic vector* of set B

• Given characteristic vectors for *A* and *B*

– What is characteristic vector for $A \cup B$? $A \cap B$?

Bitwise Operations

Recursive Definitions of Functions

- $0! = 1; (n+1)! = (n+1) \cdot n!$ for all $n \ge 0$.
- F(0) = 0; F(n+1) = F(n) 1 for all $n \ge 0$.
- G(0) = 1; $G(n+1) = 2 \cdot G(n)$ for all $n \ge 0$.
- H(0) = 1; $H(n + 1) = 2^{H(n)}$ for all $n \ge 0$.

Prove $n! \le n^n$ for all $n \ge 1$

- **1.** Let P(n) be " $n! \le n^n$ ". We will show that P(n) is true for all integers $n \ge 1$ by induction.
- **2.** Base Case (n=1): $1!=1\cdot 0!=1\cdot 1=1^1$ so P(1) is true.
- 3. Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 1$. I.e., suppose $k! \le k^k$.

Prove $n! \le n^n$ for all $n \ge 1$

- **1.** Let P(n) be " $n! \le n^n$ ". We will show that P(n) is true for all integers $n \ge 1$ by induction.
- **2.** Base Case (n=1): $1!=1\cdot 0!=1\cdot 1=1^1$ so P(1) is true.
- 3. Inductive Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 1$. I.e., suppose $k! \le k^k$.
- 4. Inductive Step:

Goal: Show P(k+1), i.e. show $(k+1)! \le (k+1)^{k+1}$ $(k+1)! = (k+1) \cdot k!$ by definition of ! $\le (k+1) \cdot k^k$ by the IH $\le (k+1) \cdot (k+1)^k$ since $k \ge 0$ $= (k+1)^{k+1}$

Therefore P(k+1) is true.

5. Thus P(n) is true for all $n \ge 1$, by induction.

Suppose that $h: \mathbb{N} \to \mathbb{R}$.

Then we have familiar summation notation: $\sum_{i=0}^{0} h(i) = h(0)$ $\sum_{i=0}^{n+1} h(i) = h(n+1) + \sum_{i=0}^{n} h(i) \text{ for } n \ge 0$

There is also product notation: $\prod_{i=0}^{0} h(i) = h(0)$ $\prod_{i=0}^{n+1} h(i) = h(n+1) \cdot \prod_{i=0}^{n} h(i) \text{ for } n \ge 0$

$$f_0 = 0$$

$$f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2} \text{ for all } n \ge 2$$

$$f_0 = 0$$

$$f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2} \text{ for all } n \ge 2$$

A Mathematician's Way* of Converting Miles to Kilometers

- $3 \text{ mi} \approx 5 \text{ km}$
- $5 \text{ mi} \approx 8 \text{ km}$ $f_n \text{ mi} \approx f_{n+1} \text{ km}$
- $8 \text{ mi} \approx 13 \text{ km}$

1. Let P(n) be " $f_n < 2^n$ ". We prove that P(n) is true for all integers $n \ge 0$ by strong induction.

- **1.** Let P(n) be " $f_n < 2^n$ ". We prove that P(n) is true for all integers $n \ge 0$ by strong induction.
- **2.** Base Case: $f_0 = 0 < 1 = 2^0$ so P(0) is true.

- **1.** Let P(n) be " $f_n < 2^n$ ". We prove that P(n) is true for all integers $n \ge 0$ by strong induction.
- 2. Base Cases: $f_0 = 0 < 1 = 2^0$ so P(0) is true and $f_1 = 1 < 2 = 2^1$ so P(1) is true.

$$f_0 = 0$$
 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$

- **1.** Let P(n) be " $f_n < 2^n$ ". We prove that P(n) is true for all integers $n \ge 0$ by strong induction.
- **2.** Base Cases: $f_0=0 < 1= 2^0$ so P(0) is true and $f_1 = 1 < 2 = 2^1$ so P(1) is true.
- 3. Inductive Hypothesis: Assume that for some arbitrary integer $k \ge 1$, we have $f_i < 2^j$ for every integer j from 0 to k.

$$f_0 = 0$$
 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$

- **1.** Let P(n) be " $f_n < 2^n$ ". We prove that P(n) is true for all integers $n \ge 0$ by strong induction.
- **2.** Base Cases: $f_0=0 < 1= 2^0$ so P(0) is true and $f_1 = 1 < 2 = 2^1$ so P(1) is true.
- 3. Inductive Hypothesis: Assume that for some arbitrary integer $k \ge 1$, we have $f_i < 2^j$ for every integer j from 0 to k.
- 4. Inductive Step: Goal: Show P(k+1); that is, $f_{k+1} < 2^{k+1}$

$$f_0 = 0$$
 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$

- **1.** Let P(n) be " $f_n < 2^n$ ". We prove that P(n) is true for all integers $n \ge 0$ by strong induction.
- **2.** Base Cases: $f_0=0 < 1= 2^0$ so P(0) is true and $f_1 = 1 < 2 = 2^1$ so P(1) is true.
- 3. Inductive Hypothesis: Assume that for some arbitrary integer $k \ge 1$, we have $f_i < 2^j$ for every integer j from 0 to k.
- 4. Inductive Step: Goal: Show P(k+1); that is, $f_{k+1} < 2^{k+1}$

Since k+1 ≥ 2, $f_{k+1} = f_k + f_{k-1}$ by definition $< 2^k + 2^{k-1}$ by the IH since k-1 ≥ 0 $< 2^k + 2^k$ $= 2 \cdot 2^k$ $= 2^{k+1}$

so P(k+1) is true.

$$f_0 = 0$$
 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$

- **1.** Let P(n) be " $f_n < 2^n$ ". We prove that P(n) is true for all integers $n \ge 0$ by strong induction.
- **2.** Base Cases: $f_0=0 < 1= 2^0$ so P(0) is true and $f_1 = 1 < 2 = 2^1$ so P(1) is true.
- 3. Inductive Hypothesis: Assume that for some arbitrary integer $k \ge 1$, we have $f_i < 2^j$ for every integer j from 0 to k.
- 4. Inductive Step: Goal: Show P(k+1); that is, $f_{k+1} < 2^{k+1}$ Since k+1 ≥ 2, $f_{k+1} = f_k + f_{k-1}$ by definition $< 2^k + 2^{k-1}$ by the IH since k-1 ≥ 0 $< 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$

so P(k+1) is true.

5. Therefore, by strong induction, $f_n < 2^n$ for all integers $n \ge 0$.

$$f_0 = 0$$
 $f_1 = 1$
 $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$

Recursive Definitions of Sets

Recursive Definitions of Sets (Data)

Natural numbersBasis: $0 \in S$ Recursive:If $x \in S$, then $x+1 \in S$

Even numbers

Basis: $0 \in S$ Recursive:If $x \in S$, then $x+2 \in S$
Recursive definition of set S

- **Basis Step:** $0 \in S$
- Recursive Step: If $x \in S$, then $x + 2 \in S$

The only elements in S are those that follow from the basis step and a finite number of recursive steps

Recursive Definitions of Sets

Natural numbers 0 ∈ S **Basis**: **Recursive:** If $x \in S$, then $x+1 \in S$ **Even numbers** Basis: $0 \in S$ Recursive: If $x \in S$, then $x+2 \in S$ Powers of 3: Basis: $1 \in S$ Recursive: If $x \in S$, then $3x \in S$. **Basis**: $(0, 0) \in S, (1, 1) \in S$ Recursive: If $(n-1, x) \in S$ and $(n, y) \in S$,

then $(n+1, x + y) \in S$.

?

Recursive Definitions of Sets

Natural numbers Basis: $0 \in S$ **Recursive:** If $x \in S$, then $x+1 \in S$ **Even numbers** Basis: $0 \in S$ Recursive: If $x \in S$, then $x+2 \in S$ Powers of 3: Basis: $1 \in S$ Recursive: If $x \in S$, then $3x \in S$. **Basis**: $(0, 0) \in S, (1, 1) \in S$ **Recursive:** If $(n-1, x) \in S$ and $(n, y) \in S$, Fibonacci numbers then $(n+1, x + y) \in S$.

Last time: Recursive definitions of functions

- Before, we considered only simple data
 - inputs and outputs were just integers
- Proved facts about those functions with induction
 - n! ≤ nⁿ
 - $f_n < 2^n \text{ and } f_n \ge 2^{n/2-1}$
- How do we prove facts about functions that work with more complex (recursively defined) data?
 - we need a more sophisticated form of induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the **existing named elements** mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements *w* constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of \mathbb{N} **Basis:** $0 \in \mathbb{N}$ **Recursive step:** If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Define Q(n) to be "for all $x \in S$ that can be constructed in at most n recursive steps, P(x) is true."

- Let *S* be given by...
 - **Basis:** $6 \in S$; $15 \in S$
 - **Recursive:** if $x, y \in S$ then $x + y \in S$.

1. Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.

1. Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

- **1**. Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$

4. Inductive Step: Goal: Show P(x+y)

- **1.** Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- **4. Inductive Step:** Goal: Show P(x+y)

Since P(x) is true, 3 | x and so x=3m for some integer m and since P(y) is true, 3 | y and so y=3n for some integer n. Therefore x+y=3m+3n=3(m+n) and thus 3 | (x+y).

Hence P(x+y) is true.

Basis: $6 \in S$; $15 \in S$

Recursive: if $x, y \in S$, then $x + y \in S$

- **1.** Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- **4. Inductive Step:** Goal: Show P(x+y)

Since P(x) is true, 3 | x and so x=3m for some integer m and since P(y) is true, 3 | y and so y=3n for some integer n. Therefore x+y=3m+3n=3(m+n) and thus 3 | (x+y).

Hence P(x+y) is true.

5. Therefore by induction 3 | x for all $x \in S$.

- Let *T* be given by...
 - **Basis:** $6 \in T$; $15 \in T$
 - **Recursive:** if $x \in T$, then $x + 6 \in T$ and $x + 15 \in T$

• Two base cases and two recursive cases

Claim: Every element of T is also in S.

1. Let P(x) be " $x \in S$ ". We prove that P(x) is true for all $x \in T$ by structural induction.

Basis: $6 \in S$; $15 \in S$ Basis: $6 \in T$; $15 \in T$ Recursive: if $x, y \in S$,Recursive: if $x \in T$, then $x + 6 \in T$ then $x + y \in S$ and $x + 15 \in T$

1. Let P(x) be " $x \in S$ ". We prove that P(x) is true for all $x \in T$ by structural induction.

2. Base Case: $6 \in S$ and $15 \in S$ so P(6) and P(15) are true

Basis: $6 \in S$; $15 \in S$ Basis: $6 \in T$; $15 \in T$ Recursive: if $x, y \in S$,Recursive: if $x \in T$, then $x + 6 \in T$ then $x + y \in S$ and $x + 15 \in T$

- **1**. Let P(x) be " $x \in S$ ". We prove that P(x) is true for all $x \in T$ by structural induction.
- **2.** Base Case: $6 \in S$ and $15 \in S$ so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) is true for some arbitrary $x \in T$

Basis: $6 \in S$; $15 \in S$ Basis: $6 \in T$; $15 \in T$ Recursive: if $x, y \in S$,Recursive: if $x \in T$, then $x + 6 \in T$ then $x + y \in S$ and $x + 15 \in T$

- **1**. Let P(x) be " $x \in S$ ". We prove that P(x) is true for all $x \in T$ by structural induction.
- **2.** Base Case: $6 \in S$ and $15 \in S$ so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) is true for some arbitrary $x \in T$
- **4. Inductive Step:** Goal: Show P(x+6) and P(x+15)

Basis: $6 \in S$; $15 \in S$	Basis: $6 \in T$; $15 \in T$
Recursive: if $x, y \in S$,	Recursive: if $x \in T$, then $x + 6 \in T$
then $x + y \in S$	and $x + 15 \in T$

- **1**. Let P(x) be " $x \in S$ ". We prove that P(x) is true for all $x \in T$ by structural induction.
- **2.** Base Case: $6 \in S$ and $15 \in S$ so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) is true for some arbitrary $x \in T$
- **4. Inductive Step:** Goal: Show P(x+6) and P(x+15)

Since P(x) holds, we have $x \in S$. From the recursive step of S, we can see that $x + 6 \in S$, so P(x+6) is true, and we can see that $x + 15 \in S$, so P(x+15) is true.

Basis: $6 \in S$; $15 \in S$	Basis: $6 \in T$; $15 \in T$
Recursive: if $x, y \in S$,	Recursive: if $x \in T$, then $x + 6 \in T$
then $x + y \in S$	and $x + 15 \in T$

- **1.** Let P(x) be " $x \in S$ ". We prove that P(x) is true for all $x \in T$ by structural induction.
- **2.** Base Case: $6 \in S$ and $15 \in S$ so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) is true for some arbitrary $x \in T$
- **4. Inductive Step:** Goal: Show P(x+6) and P(x+15)

Since P(x) holds, we have $x \in S$. From the recursive step of S, we can see that $x + 6 \in S$, so P(x+6) is true, and we can see that $x + 15 \in S$, so P(x+15) is true.

5. Therefore P(x) for all $x \in T$ by induction.

Basis: $6 \in S$; $15 \in S$	Basis: $6 \in T$; $15 \in T$
Recursive: if $x, y \in S$,	Recursive: if $x \in T$, then $x + 6 \in T$
then $x + y \in S$	and $x + 15 \in T$

Lists of Integers

- **Basis:** nil ∈ **List**
- Recursive step:

if $L \in List$ and $a \in \mathbb{Z}$,

then $a :: L \in List$

Examples:

- nil
- 1 :: nil
- 1 :: 2 :: nil
- 1 :: 2 :: 3 :: nil

1 $1 \rightarrow 2$ $1 \rightarrow 2 \rightarrow 3$

Functions on Lists

Length:

len(nil) := 0len(a :: L) := len(L) + 1

for any $\mathsf{L} \in \textbf{List}$ and $\mathsf{a} \in \mathbb{Z}$

Concatenation:

concat(nil, R) := R concat(a :: L, R) := a :: concat(L, R) for any $R \in List$ for any L, $R \in List$ and any $a \in \mathbb{Z}$

Structural Induction

Basis→ nil ∈ List

Recursive step:

How to prove $\forall x \in S, P(x)$ is true:

if $L \in List$ and $a \in \mathbb{Z}$,

then $a :: L \in List$

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Base Case (nil): By the definition of concat, we can see that concat(nil, nil) = nil, which is P(nil).

Base Case (nil): By the definition of concat, we can see that concat(nil, nil) = nil, which is P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

 $L \in List, i.e., concat(L, nil) = L.$ Inductive Step: Goal: Show that P(a :: L) is true for any $a \in \mathbb{Z}$

Base Case (nil): By the definition of concat, we can see that concat(nil, nil) = nil, which is P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

 $L \in List, i.e., concat(L, nil) = L.$

Inductive Step: Goal: Show that P(a :: L) is true for any $a \in \mathbb{Z}$.

Let $a \in \mathbb{Z}$ be arbitrary. We can calculate as follows

concat(a :: L, nil) = a :: concat(L, nil) def of concat = a :: L IH

which is P(a :: L).

By induction, we have shown the claim holds for all $L \in List$.

Base Case (nil): Let $R \in List$ be arbitrary. Then,

Length:

len(nil) := 0len(a :: L) := len(L) + 1 **Concatenation:**

concat(nil, R) := R concat(a :: L, R) := a :: concat(L, R)

Base Case (nil): Let $R \in List$ be arbitrary. Then,

len(concat(nil, R)) = len(R) def of concat= 0 + len(R)= len(nil) + len(R) def of len

Since R was arbitrary, P(nil) holds.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$. **Inductive Step:** Goal: Show that P(a :: L) is true for any $a \in \mathbb{Z}$.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$. **Inductive Step:** Goal: Show that P(a :: L) is true for any $a \in \mathbb{Z}$.

Let $a \in \mathbb{Z}$ and $R \in List$ be arbitrary. Then,

Length:

len(nil) := 0len(a :: L) := len(L) + 1 **Concatenation:**

```
concat(nil, R) := R
concat(a :: L, R) := a :: concat(L, R)
```

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R)) = len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.

Inductive Step: Goal: Show that P(a :: L) is true for any $a \in \mathbb{Z}$.

Let $a \in \mathbb{Z}$ and $R \in \text{List}$ be arbitrary. Then, we can calculate len(concat(a :: L, R)) = len(a :: concat(L, R)) def of concat = 1 + len(concat(L, R)) def of len = 1 + len(L) + len(R) IH = len(a :: L) + len(R) def of len

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all $L \in List$.
Let P(L) be "concat(concat(L, R, S)) = concat(concat(L, R), S) for all R, S \in List". We prove P(L) for all $L \in$ List by structural induction. **Claim:** concat(L, concat(R, S)) = concat(concat(L, R), S) for all $L,R,S \in List$

Let P(L) be "concat(concat(L, R), S) = concat(concat(L, R), S) for all R, S \in List". We prove P(L) for all $L \in$ List by structural induction.

Base Case (nil): Let R, S be arbitrary lists. Then, we can see that

concat(concat(nil, R), S)def of concat= concat(R, S)def of concat= concat(concat(nil, R), S)def of concat

which is P(nil).

Concatenation:

```
concat(nil, R) := R
concat(a :: L, R) := a :: concat(L, R)
```

Let P(L) be "concat(concat(L, R), S) = concat(concat(L, R), S) for all R, S \in List". We prove P(L) for all $L \in$ List by structural induction.

Base Case (nil): ...

Inductive Hypothesis: Assume that P(L) is true for an arbitrary $L \in List$, i.e., concat(L, concat(R, S)) = concat(concat(L, R), S) for all R, S.

Inductive Step: Goal: Show that P(a :: L) is true for any $a \in \mathbb{Z}$. Let $a \in \mathbb{Z}$ and $R, S \in List$ be arbitrary. Then, we can calculate

Concatenation:

concat(nil, R) := R
concat(a :: L, R) := a :: concat(L, R)

Let P(L) be "concat(concat(L, R), S) = concat(concat(L, R), S) for all R, S \in List". We prove P(L) for all $L \in List$ by structural induction.

Base Case (nil): Let R, S be arbitrary lists. Then, we can see that concat(nil, concat(R, S)) = concat(R, S) = concat(concat(nil, R), S), bythe definition of concat. This is P(nil).

Inductive Hypothesis: Assume that P(L) is true for an arbitrary $L \in List$, i.e., concat(L, concat(R, S)) = concat(concat(L, R), S) for all R, S.

Inductive Step: Goal: Show that P(a :: L) is true for any $a \in \mathbb{Z}$. Let $a \in \mathbb{Z}$ and R, $S \in List$ be arbitrary. Then, we can calculate concat(a :: L, concat(R, S)) = a :: concat(L, concat(R, S)) def of concat = a :: concat(concat(L, R), S) IH = concat(a :: concat(L, R), S) def of concat def of concat

= concat(concat(a :: L, R), S)

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all $L \in List$.

• **Basis:** • is a rooted binary tree

Rooted Binary Trees

- Basis: is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size(•) ::= 1

• size
$$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right)$$
 ::= 1 + size (\mathbf{T}_1) + size (\mathbf{T}_2)

• height(•) ::= 0

• height
$$\left(\begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Conclude that $\forall x \in S, P(x)$

1. Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and $2^{0+1}-1=2^1-1=1$ so P(•) is true.

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size(T_k) $\leq 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step:

Goal: Prove P(

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.

Goal: Prove P(

- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size(T_k) $\leq 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step:

$$\begin{array}{l} \text{height}(\cdot) \coloneqq 0 \\ \text{height}\left(\overbrace{T_1}, \overbrace{T_2}\right) \coloneqq 1 + \max\{\text{height}(T_1), \text{height}(T_2)\} \\ \leq 2^{\text{height}}\left(\overbrace{T_1}, \overbrace{T_2}\right) + 1 - 1 \end{array}$$

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0, and 2⁰⁺¹-1=2¹-1=1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 , i.e., size $(T_k) \le 2^{height(T_k) + 1} 1$ for k=1,2
- 4. Inductive Step: By def, size(T_1 , T_2) $= 1+size(T_1)+size(T_2)$ $\leq 1+2^{height(T_1)+1}-1+2^{height(T_2)+1}-1$ by IH for T_1 and T_2 $= 2^{height(T_1)+1}+2^{height(T_2)+1}-1$ $\leq 2(2^{max(height(T_1),height(T_2))+1})-1$ $= 2(2^{height(A)}) - 1 = 2^{height(A)}+1 - 1$ which is what we wanted to show.

5. So, the P(T) is true for all rooted binary trees by structural induction.

- An alphabet Σ is any finite set of characters
- The set Σ^* of strings over the alphabet Σ
 - example: {0,1}* is the set of binary strings
 0, 1, 00, 01, 10, 11, 000, 001, ... and ""
- Σ^* is defined recursively by
 - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string, i.e., "")
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Last time: Structural Induction How to prove $\forall x \in S, P(x)$ is true: Basis: $\varepsilon \in \Sigma^*$ Recursive Steps: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$ Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Functions on Recursively Defined Sets (on Σ^*)

```
Length:

len(\epsilon) := 0

len(wa) := len(w) + 1 for w \in \Sigma^*, a \in \Sigma
```

Concatenation:

 $\begin{array}{ll} x \bullet \varepsilon & := x \text{ for } x \in \Sigma^* \\ x \bullet \text{ wa } := (x \bullet \text{ w}) \text{ a for } x \in \Sigma^*, \text{ a } \in \Sigma \end{array}$

Reversal:

 ε^{R} := ε (wa)^R := ε a • w^R for w $\in \Sigma^{*}$, a $\in \Sigma$

Number of c's in a string:

$$\begin{array}{ll} \#_{c}(\varepsilon) & := 0 & \text{separate cases for} \\ \#_{c}(wc) & := \#_{c}(w) + 1 \text{ for } w \in \Sigma^{*} & \text{c vs } a \neq c \\ \#_{c}(wa) & := \#_{c}(w) \text{ for } w \in \Sigma^{*}, a \in \Sigma, a \neq c \end{array}$$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then,

$$len(x \bullet \varepsilon) = len(x) \qquad def of \bullet$$
$$= len(x) + 0$$
$$= len(x) + len(\varepsilon) \qquad def of len$$

Since x was arbitrary, $P(\varepsilon)$ holds.

$$len(\varepsilon) := 0$$
$$len(wa) := len(w) + 1$$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all x

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all x **Inductive Step:** Goal: Show that P(wa) is true for every $a \in \Sigma$ Let $a \in \Sigma$ and $x \in \Sigma^*$. Then,

$$len(\varepsilon) := 0$$
$$len(wa) := len(w) + 1$$

Let $P(y)$ be "len $(x \bullet y) = len(x) + len(y)$ for all $x \in$ We prove $P(y)$ for all $y \in \Sigma^*$ by structural indu		Does this look familiar?	
Base Case $(y = \varepsilon)$: Let $x \in \Sigma^*$ be arbitrary. Then, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Since x was arbitrary, $P(\varepsilon)$ holds.			
Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^*$, i.e., $len(x \bullet w) = len(x) + len(w)$ for all xInductive Step:Goal: Show that $P(wa)$ is true for every $a \in \Sigma$			
Let $a \in \Sigma$ and $x \in \Sigma$	E Σ*. Then len(x•wa) = len((x• = len(x•v = len(x)+ = len(x)+	w)a) def of • w)+1 def of len len(w)+1 IH len(wa) def of len	

Therefore, $len(x \bullet wa) = len(x) + len(wa)$ for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

Let P(L) be "len(concat(L, R)) = len(L) + len(R) for all $R \in List$ ". We prove P(L) for all $L \in List$ by structural induction.

Base Case (nil): Let $a \in \mathbb{Z}$ be arbitrary. Then, len(concat(nil, R)) = len(R) = len(nil) + len(R). Since a was arbitrary, P(nil) holds.

Inductive Hypothesis: Assume that P(L) is true for some arbitrary $L \in List$, i.e., len(concat(L, R)) = len(L) + len(R) for all $R \in List$.

Inductive Step: Goal: Show that P(a :: L) is true for any $a \in \mathbb{Z}$.

Let $a \in \mathbb{Z}$ and $R \in List$ be arbitrary. Then, we can calculatelen(concat(a :: L, R)) = len(a :: concat(L, R))def of concat= 1 + len(concat(L, R))def of len= 1 + len(L) + len(R)IH= len(a :: L) + len(R)def of len

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all $L \in List$.

• Our strings are basically lists except that we draw them backward

[1, 2, 3] 1:: 2:: 3:: nil $1 \rightarrow 2 \rightarrow 3$

"abc"	εabc	a b c

- would be represented the same way in memory
- but we think of head as the right-most not left-most

Let P(x) be "len $(x^R) = len(x)$ ". We will prove P(x) for all $x \in \Sigma^*$ by structural induction.

Length: $len(\varepsilon) ::= 0$ len(wa) ::= len(w) + 1 for $w \in \Sigma^*$, $a \in \Sigma$

Reversal:

ε^R ::= ε

 $(wa)^{R} ::= \epsilon a \bullet w^{R} for w \in \Sigma^{*}$, $a \in \Sigma$

Let P(x) be "len $(x^R) = len(x)$ ". We will prove P(x) for all $x \in \Sigma^*$ by structural induction. Base Case $(x = \varepsilon)$: Then, $len(\varepsilon^R) = len(\varepsilon)$ by def of string reverse. Let P(x) be "len $(x^R) = len(x)$ ".

We will prove P(x) for all $x \in \Sigma^*$ by structural induction.

Base Case ($x = \varepsilon$): Then, len(ε^R) = len(ε) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(w^R) = len(w)$.

Inductive Step: Goal: Show that len((wa)^R) = len(wa) for every a

Length:

len(ϵ) ::= 0 len(wa) ::= len(w) + 1 for w $\in \Sigma^*$, a $\in \Sigma$ Reversal: $\varepsilon^{R} ::= \varepsilon$ (wa)^R ::= ε a • w^{R} for $w \in \Sigma^{*}$, $a \in \Sigma$ Let P(x) be "len $(x^R) = len(x)$ ".

We will prove P(x) for all $x \in \Sigma^*$ by structural induction.

Base Case ($x = \varepsilon$): Then, $len(\varepsilon^R) = len(\varepsilon)$ by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$, i.e., $len(w^R) = len(w)$.

Inductive Step: Goal: Show that len((wa)^R) = len(wa) for every a

Let $a \in \Sigma$. Then, $len((wa)^R) = len(\epsilon a \bullet w^R)$ def of reverse $= len(\epsilon a) + len(w^R)$ by previous result $= len(\epsilon a) + len(w)$ IH = 1 + len(w) def of len (twice) = len(wa) def of len

Therefore, len((wa)^R)= len(wa), **so** P(wa) **is true for every** $a \in \Sigma$.

So, we have shown $len(x^R) = len(x)$ for all $x \in \Sigma^*$ by induction.

Structural induction is the tool used to prove many more interesting theorems

- General associativity follows from our one rule
 - likewise for generalized De Morgan's laws
- Okay to substitute y for x everywhere in a modular equation when we know that $x \equiv_m y$
- More coming shortly...