CSE 311: Foundations of Computing

Topic 5: More Number Theory

Jooe 2.0t

Fro

A

... 1,306... 1,307...

m&%ﬂ
4@'—@

=

.. 32,767...-32,78...

A7

<4

. ..—325767000 -321766 e

=

GCD

Greatest Common Divisor

GCD(a, b):
Largest integer d suchthatd | aand d | b

. GCD(100, 125)
« GCD(17, 49)
 GCD(11, 66)
. GCD(13, 0)

. GCD(180, 252)

disGCD iff (dla)Aa(dIb)AVx((xla)A(x]|b))—>(x <d))

Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof Idea:
We will show that every number dividing a and b also divides b and a mod b.

l.e., d|a and d|b iff d|b and d|(a mod b).

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.

Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof:
By the Division Theorem, a = gb + (a mod b) for some integer g = a div b.

Suppose d | b and d | (a mod b).

Then b = md and (a mod b) = nd for some integers m and n.
Therefore a = gb + (a mod b) = gmd + nd = (gm + n)d.
Sod | a.

Supposed |aandd | b.
Then a = kd and b = jd for some integers k and j.

Therefore (a mod b) = a-qb = kd -qjd = (k -qj)d.
So, d | (a mod b) also.

Since they have the same common divisors, gcd(a, b) = gcd(b,a mod b). B

Another simple GCD fact

Let a be a positive integer.
We have gcd(a, 0) = a.

Euclid’s Algorithm

gcd(a, b) = ged(b, a mod b) gcd(a, 0) = a

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
if (b == 0) {
return a,;
} else {
return gcd(b, a % b);
}
}

Note: gcd(b, a) = gcd(a, b)

Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) =

Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6

Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that
gcd(a,b) = sa + tb.

(a>0Ab>0)—-3s3t(gcd(ab) =sa + tb)

VavVb((a>0Ab>0)—3s3t(gcd(ab) =sa+ th))

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r a=q*b +r
gcd(35,27) =gcd(27,35mod 27) = gcd(27,8) |35=1*27+8

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r a=q*b +r
gcd(35,27) =gcd(27,35mod 27) = gcd(27,8) |35=1*27+8
=gcd(8,27mod 8) =gcd(8,3) 27=3*8 +3

= gcd(3, 8 mod 3) =gcd(3, 2) 8 =2*3 +2
=gcd(2,3mod2) =gcd(2,1) 3=1*2 {1
=gcd(1, 2 mod 1) =gcd(1, 0)

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-q*b
35=1*27+38 8=35-1%27
27=3*8 +3

8 =2*3 +2

3 =1*2 +1

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-qg*b
35=1%27+8 8=35-1%27
27=3*8 +3 3=27-3%8
8 =2*3 +2 2=8-27%3

3 =1*2 +D D=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):

8=35-1%*27
3=27-3*8
2=8-2%*3

D=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2*3)

= 3-8+2*3 Re-arrange into
3=27-3%*8 :(_1)*8+3*3 3’sand 8's
2=8 -2%3

1=3 -1%*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2*3)
= 3-8+2*3 Re-arrange into

3=27-3%*8 :(_1)*8+3*3 3’sand 8's
Plug in the def of 3

27—8 _2%*3 =(-1)*8+3*(27-3*8)

=(-1)*8+3*27+(-9)*8

= 3%27 +(-10)*8

1=3 -1%*2 Re-arrange into
8’s and 27’s

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2%3)
= 3-8+2*3 Re-arrange into

3=27-3%*8 :(_1)*8+3*3 3’sand 8's
Plug in the def of 3

(-1)*8+4+3*27+(-9)*8
3*27 + (-10) * 8 Re-arrange into
1=3-1%*2 () 8's and 27’s
3*27 +(-10)*(35-1*27)
3*27 +(-10)*35+10*27
13*27 4+ (-10) * 35

Re-arrange into
27’s and 35’s

Multiplicative inverse mod m

Let 0 < a,b < m. Then, b is the multiplicative

inverse of a (modulo m) iff ab

7

1

4

2

1

6 (7 [8 |9

6 (7 |8 |9

2 |9 (6 (3

5

e

=m A1

8

1

2 |3 (4 |5

2 |3 (4 |5

6 (9 (2 |5 |8

1

1

3

0
0j0 O |O0O|O0O|O |0 (O[O |O O

0

0

1

210 (2 (4 |6 |8 |0 (2 (4 |6 |8

3

4101|418 |2 |6 |0 |4 8|2]6
510 |5 |0 |5 |0 |5 (0 (5|0 |5
6|10 (6 |2 |8 |4 |0 |6 |2 |8 |4

710 |7 |4

810 |8 |6 |4 |2 |0 (8 (6 |4]2

910 |9 |8 |7 |6 |5 (4 |3

O |0 |0 |0 |O

0

0

mod 7

mod 10

Multiplicative inverse mod m

Suppose gcd(a,m) =1

By Bézout's Theorem, there exist integers s and t
such that sa + tm = 1.

s is the multiplicative inverse of a (modulo m):
1=, sa since m|1—sa (sincel —sa=1tm)

So... we can compute multiplicative inverses with the
extended Euclidean algorithm

These inverses let us solve modular equations...

Example: Solve a Modular Equation

SOlve: 7X EZ6 3 Find multiplicative inverse of 7 modulo 26

Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5
7 =1%5 4+ 2
5 =2%2 4+ 1

Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3%7
7 =1x5 + 2 2=7-1%5
5 =2%x2+1 1=5- 2%2

Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3%7
7 =1x5 + 2 2=7-1%5
5 =2%x2+1 1=5- 2%2

= 5 - 2x(7-1%5)
(-2)«*7 4+ 3%*5
(-2)*x7 4+ 3%x(26-3%7)
(—=11)*7 + 3 %26

Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3x%7
7 =1%5 4+ 2 2=7-1%x5
5 =2%x2 4+ 1 1=5- 2%2

1 = 5 - 2% (7-1%05)
(-2)x7 + 3x%5
(-2)*7 + 3%(26-3x%7)
(—11)*7 + 326
/ “the” multiplicative inverse
Now (—11) mod 26 = 15. (—11 is also “a” multiplicative inverse)

Example: Solve a Modular Equation

Solve: 7x =, 3

Find multiplicative inverse of 7 modulo 26... it’s 15.
Multiplying both sides by 15 gives

Simplify on both sides to get

So, all solutions of this congruence are
humbers of the form x = 19 4+ 26k for some k € Z.

Multiplicative Inverses and Algebra

Adding to both sides easily reversible:

X=nYy

xt+c=,y+cC

The same is not true of multiplication...
unless we have a multiplicative inverse cd =,,, 1

X=nYy

X =,, CY

Example: Solve a Modular Equation

7 =963 = 15:-7x=,,15-3
multiply both sides by 15
= X =, 19
since 15:-7 =, 1and 15-3 =,, 19

multiply both sides by 7
= 7X =563

since 7 - 19 =5, 3

Solving Modular Equations

Solve: 7x =, 3

Step 1. Find multiplicative inverse of 7 modulo 26
1 =..= (=11)%7 + 3%26
Since (—11) mod 26 = 15, the inverse of 7 is 15.
Step 2. Multiply both sides and simplify
Multiplying by 15, we get x =, 15 7x =545 153 =54 19.

Step 3. State the full set of solutions

So, the solutions are 19 + 26k forany k € Z
(must be of the form a + mk for all k € Z with 0 < a < m)

Examples Not in “Standard Form”

Solve: 7(x —3) =, 8 + 2x

Modular equation like Ax =,. B for some A and B
is in “standard form”.

— solve by multiplying both sides by inverse of A

What about equation not in standard form?

Examples Not in “Standard Form”

Solve: 7(x — 3) =, 8 + 2x

Transform into standard form by adding to both sides

7(x —3)+ 21 =,, 8+ 2x + 21 add 21 to both sides
7X =56 3+ 2 simplify

7X — 2X =96 3+ 2Xx — 2X add —2x to both sides
5x =54 3 simplify

Induction

Mathematical Induction

Method for proving statements about all natural numbers

— A new logical inference rule!
* It only applies over the natural numbers

 The idea is to use the special structure of the naturals
to prove things more easily

— Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) { .. }
* Show P(i) holds after i times through the loop

Prove vk ((a =,, b) - (a* =, b¥))

Let k be an arbitrary non-negative integer.
Suppose that a =,,, b.

We know ((a =, b) A (a =, b)) — (a?=,, b?) by multiplying
congruences. So, applying this repeatedly, we have:

((@=m b)A(a=p b)) - (a m b?)
((a =m bz) Aa=nm b)) a =m b*)

(@ =m 1) A (a =m b)) - m b")

The “...”s is a problem! We don’t have a proof rule that
allows us to say “do this over and over”.

But there is such a rule for the natural numbers!

Domain: Natural Numbers

P(0) Vk(P(k) — P(k+ 1))
. Vn P(n)

Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(3)?

Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PM#) P(®5)

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.

Using The Induction Rule In A Formal Proof

P(0) Vk(P(k) — P(k+ 1))
. Vn P(n)

Using The Induction Rule In A Formal Proof

P(0) Vk(P(k) — P(k+ 1))
. Vn P(n)

1. P(0)

2. Vk(P(k) > P(k+1)) ?7?
3. VnP(n) Induction: 1, 2

Using The Induction Rule In A Formal Proof

P(0) Vk(P(k) — P(k+ 1))
. Vn P(n)

1. P(0)
Let k be an arbitrary integer >0

2.1 P(k) > P(k+1) 27
2. Vk(P(k) > P(k+1)) Intro V
3. VnP(n) Induction: 1, 2

Using The Induction Rule In A Formal Proof

P(0) Vk (P(k) — P(k + 1))

. Vn P(n)
1. P(0)
Let k be an arbitrary integer >0
2.1.1. P(k) Assumption
2.1.2. ..
2.1.3. P(k+1)
2.1 P(k) > P(k+1) Direct Proof
2. Vk(P(k) > P(k+1)) Intro V

3. VnP(n) Induction: 1, 2

Translating to an English Proof

P(0) Vk (P(k) — P(k + 1))

. Vn P(n)

1. Prove P(0) Base Case

Let k be an arbitrary integer >0 | Inductive
2.1.1. Suppose that P(k) is true | Hypothesis

2.1.2. ... Inductive
2.1.3. Prove P(k+1) is true Step
2.1 P(k) > P(k+1) Direct Proof
2. Vk (P(k) > P(k+1)) Intro V

3. Vn P(n) Induction: 1, 2

Translating to an English Proof

1. Prove P(0) Base Case
Let k be an arbitrary integer >0 | Inductive
2.1.1. Suppose that P(k) is true | Hypothesis

2.1.2. ... Inductive
2.1.3. Prove P(k+1) is true Step
2.1 P(k) > P(k+1) Direct Proof
. . 2. Vk (P(k) > P(k+1)) Intro V
Induction English Proof Template (3. vnrn) Induction: 1, 2

[...Define P(n)...]
We will show that P(n) is true for every n > 0 by induction.
Base Case: [...proof of P(0) here...]

Induction Hypothesis:
Suppose that P(k) is true for an arbitrary k > 0.

Induction Step:
[...proof of P(k + 1) here...]
The proof of P(k + 1) must invoke the IH somewhere.

So, the claim is true by induction.

Inductive Proofs In 5 Easy Steps

Basic induction template
Proof:

1. “Let P(n) be... . We will show that P(n) is true for every
n = 0 by Induction.”

2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:
Suppose P (k) is true for an arbitrary integer k > 0”
4. “Inductive Step:” Prove that P(k + 1) is true.
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !))
5. “Conclusion: Result follows by induction”

Whatis1 + 2 + 4 + ... + 2™?

.« 1 = 1
¢ 1+ 2 = 3
1 +2+4 = 7
c14+24+4+48 = 15

*1+2+ 4+ 38+ 16 31

It sure looks like this sum is 21 — 1
How can we prove it?

We could prove itforn =1,n=2,n =3, ... but
that would literally take forever.

Good that we have induction!

Provel + 2 + 4 + ... + 2n =2n+l_1

Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.

Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.

2. Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.

Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.
2. Base Case (n=0): 2°=1=2-1=2%1-1s0 P(0)is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that|2° + 21 + ... + 2k = 2k+1 — 1,

Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
Goal: Show P(k+1), i.e. show 20 + 21 + ... + 2k 4 2k+1 = Jk+2 _ 1

Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
204214+ | +2k=2k1_-1 pylH
Adding 21 to both sides, we get:
20+ 21+ + 2k 4 2k+l = Dkt 4 D+l _q
Note that 2k+1 + 2k+1 = 2(2k+1) = Qk+2,
So, we have 20 + 21 + . + 2k + 2k+1 = Jk+2 _ 1 which is
exactly P(k+1).

Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’
which is exactly P(k+1).

Alternative way of writing the inductive step

Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.
Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’
which is exactly P(k+1).

5. Thus P(n) is true for all n 2 O, by induction.

Prove 1 +2 +3 4+ ..+ n=nn+1)/2

Prove 1 +2 +3 4+ ..+ n=nn+1)/2

Summation Notation
toli=0+1+2+3+ ...+ n

Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

Summation Notation
Poi=04+1+2+3+ ..+n

Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

2.
3.

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k F k(k+1)/2

“some” or “an”
not any!

Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

N

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k = k(k+1)/2

Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ...+ k+ (k+1) = (k+1)(k+2)/2

Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

N

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k = k(k+1)/2

Induction Step:
1+2+ ... +k+(k+t1)=(1+2+..+k)+ (k+1)
= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2
So, we have shown 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2,
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.

Induction: Changing the start line

* What if we want to prove that P(n) is true
for all integers n = b for some integer b?

 Define predicate Q(k) = P(k + b) for all k.
—Then VnQ(n) =vn=b P(n)

* Ordinary induction for Q:
— Prove Q(0) = P(b)

— Prove
vk (Q(k) — Q(k+ 1)) =Vk > b(P(k) — P(k + 1))

Inductive Proofs In 5 Easy Steps

Template for induction from a different base case

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer k > b”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))
5. “Conclusion: P(n) is true for all integers n > b”

Prove 3" > n? + 3 foralln > 2

Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+3=2%+3s0 P(2)is true.

Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+3=2%+3s0 P(2)is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3k> k2+3.

Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:

Goal: Show P(k+1), i.e. show 31> (k+1)2+3

Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:

Goal: Show P(k+1), i.e. show 31> (k+1)2+3=k2+2k+4

Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
We can see that
Jk+l = 3(3k)
> 3(k?+3) by the IH
= 3k?+9
= k2+2k?+9
> k2+2k+4 = (k+1)?+3 since k > 1.
Therefore P(k+1) is true.

Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
We can see that
Jk+l = 3(3k)
> 3(k?+3) by the IH
= k2+2k?+9
> k2+2k+4 = (k+1)%+3 since k > 1.
Therefore P(k+1) is true.

5. Thus P(n) is true for all integers n > 2, by induction.

Checkerboard Tiling

* Prove that a 2" x 2" checkerboard with one square
removed can be tiled with:

Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

2. Base Case: n=1

Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

2. Base Case: n=1

3. Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1

Checkerboard Tiling

1.

Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

Base Case: n=1

Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1

Inductive Step: Prove P(k+1)

Apply IH to
each quadrant
| then fill with
extra tile.

Recall: Induction Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PMA) P(5)

Recall: Induction Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)-P(5)

TN T N TN TN N
P(0) P() P2 PGB P@H PO)

We made it harder than we needed to ...
When we proved P(2) we knew BOTH P(0) and P(1)
When we proved P(3) we knew P(0) and P(1) and P(2)
When we proved P(4) we knew P(0), P(1), P(2),P(3)
etc.

That’s the essence of the idea of Strong Induction.

Strong Induction

P(0) vk (Vi (0<j<k-P(3)) - Plk+1))

~VnP(n)

Strong Induction

P(0) vk (Vi (0<j<k-P()) - Plk+1))

~VnP(n)

Strong induction for P follows from ordinary induction for
where

Q(k) == vj(0<j<k-P())

Note that Q(0) = P(0)and Q(k+1) =Q(k) AP(k+ 1)
and vn Q(n) = vn P(n)

Inductive Proofs In 5 Easy Steps

Template for induction from a different base case

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(k) is true”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))

5. “Conclusion: P(n) is true for all integers n > b”

Strong Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using LH. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) 1)

5. “Conclusion: P(n) is true for all integers n = b”

Primality

An integer p greater than 1 is called prime if the
only positive factors of p are 1 and p.

p>1AVx((x|p)>((x=1)V(x=p)))

A positive integer that is greater than 1 and is not
prime is called composite.

p>1 AAx((x|p)A(x#1)A(x #Dp))

Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime
factorization

48 = 2¢222+3

591 =3« 197

45,523 = 45,523

321,950 =25+5°47 137
1,234,567,890 =233+ 5+ 3,607 « 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.

Every integer = 2 is a product of (one or more) primes.

Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

2. Base Case (n=2): 2is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.
2. Base Case (n=2): 2is prime, so it is a product of (one) prime.
Therefore P(2) is true.

3. Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.
Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k
Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes
Case: k+1 is prime: Then by definition k+1 is a product of primes

Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that

P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b

where 2 <a, b <k.

Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that

P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 < a, b < k. By our IH, P(a) and P(b) are true so we have

a=pipz - prand b=qiq; - qs
for some primes py,p,,..., P, d1,92,--+) Q-
Thus, k+1 =ab =p;p, :*- p,919, *** q; which is a product of primes.
Since k > 2, one of these cases must happen and so P(k+1) is true.

Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that

P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 < a, b < k. By our IH, P(a) and P(b) are true so we have

a=pipz - prand b=qiq; - qs
for some primes py,p,,..., P, d1,92,--+) Q-
Thus, k+1 =ab =p;p, :*- p,919, *** q; which is a product of primes.
Since k > 2, one of these cases must happen and so P(k+1) is true.

5. Thus P(n) is true for all integers n = 2, by strong induction.

Applications

Algorithmic Problems

* Multiplication

— Given primes p4, p,, ..., Pi, calculate their
product p;p, ... px
* Factoring

— Given an integer n, determine the prime
factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514

19597459856902143413

| I
——

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317

43087737814467999489

A4

N

3674604366679959042824463379962795263227/91581643
430876426760322838157396665112792333734171433968

10270092798736308917

Famous Algorithmic Problems

* Factoring

— Given an integer n, determine the prime
factorization of n

* Primality Testing
— Given an integer n, determine if n is prime

* Factoring is hard
— (on a classical computer)

* Primality Testing is easy

GCD and Factoring

a=2%+352+7+11=46,200
b=2¢32+537+13=204,750

GCD(a, b) = 2min(3,1) ¢ 3min(1,2) ¢ §MIin(2,3) ¢ 7min(1,1) ¢ 14 Min(1,0) ¢ 4 3min(0,1)

Factoring is hard

Yet, we can compute GCD(a,b) without factoring!

Will shortly see another operation that
can be implemented surprisingly quickly...

Basic Applications of mod

 Two’s Complement
* Hashing
* Pseudo random number generation

n-bit Unsighed Integer Representation

* Represent integer x as sum of powers of 2:

99 =64+32+2+1 =26425421420
18 =16+ 2 =24+21

* Binary representation shows which powers are used:

99: 0110 0011
18: 0001 0010

n-bit Unsighed Integer Representation

e Suppose we write numbers with 4 bits:

14 =8+4+2 =23+22421 =1110
11 =8+2+1 =23+21 420 = 1011

e Largest number we can write in 4 bits is:
15 =8+4+2+1 =23+22+21+20 =1111

* Notethat15=16-1=2%-1

— we proved this before!

n-bit Unsighed Integer Representation

e Suppose we write numbers with 4 bits (0 .. 15):

14 =8+4+2 =23+22421 =1110
11 =8+2+1 =23+21420 =1011

* Adding these numbers gives us 25 with 5 bits:
25 =16+8+1 =2%+23+2° =11001
* If we drop the highest bit, we have

9 =8+1 =23+ 20 = 1001

n-bit Unsighed Integer Representation

25 =16+8+1 =24+23+2° =11001
9 =8+1 =23+20 = 1001

* Note that9 =, 25since 25-9=16

— dropping 2% bit subtracts 16
— dropping 2~ bit subtracts 32 = 2-16

— dropping 2° bit subtracts 64 = 4-16

* Throwing away all but 4 bits is arithmetic mod 16
— easier to implement normal arithmetic!

n-bit Unsighed Integer Representation

* Largest representable numberis 2™ — 1

2" =100...000 (n+1 bits)
2"—-1= 11..111 (n bits)

f_ THE WALL STREET JOURMA |
Berkshire Hathaway’s Stock Price Is Too

Much for Computers

32 bits Berkshire Hathaway Inc. (BRK-A)

1 =$0.0001 436,401.00 +679.50 (+0.16%)

$429,496.7295 max scoiom

Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that —2""1 < x < 2n1
First bit as the sign, n — 1 bits for the value

99=64+32+2+1
18=16+2

Forn = 8:

99: 0110 0011
-18: 1001 0010

Problem: this has both +0 and -0 (annoying)

Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

—2n-1 -1 0 2n-1 2"

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2

0000 0001 o0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

9=64+32+2+1
18 =16 +2

Forn = 8:
99: 0110 0011
-18: 1110 1110 (-18 + 256 = 238)

1111

Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Key property: First bit is still the sign bit!

Key property: Twos complement representation of any number y
IS equivalent to y mod 2™ so arithmetic works mod 2™

y+2t =,y

I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 365*24*60*60;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)s

----JjGRASP exec: java Test
I will be alive for at least -186619904 seconds.

----JGRASP: operation complete.

Two’s Complement Representation

e For 0 <x <2™1, —xisrepresented by the
binary representation of —x + 2"

— How do we calculate —x from x?
— E.g., what happens for “return -x;” in Java?

—x+2"=(2"-1)—x+1
* To compute this, flip the bits of x then add 1!

Flip the bits of x means replace x by 2™ — 1 — x
Then add 1 to get —x + 2™

Exponentiation

* Compute 783658143

 Compute 78365814>3 mod 104729

* Qutput is small
— need to keep intermediate results small

Small Multiplications

Since b = gm + (b mod m), we have b mod m =,,, b.

And since ¢ = tm + (¢ mod m), we have c mod m =,,, c.
Multiplying these gives (b mod m)(c mod m) =,,, bc.

By the Lemma from a few lectures ago, this tells us
bc mod m = (b mod m)(c mod m) mod m.

Okay to mod b and ¢ by m before multiplying if we are
planning to mod the result by m

Repeated Squaring - small and fast

Sincebmodm =,, bandcmodm =,,, ¢

we have bc mod m = (b mod m)(c mod m) mod m

So

and
and
and
and

a?modm = (a modm)? modm
a*modm = (a2 mod m)? mod m
a8 modm = (a* mod m)? modm
at®* mod m = (a® mod m)? mod m

a32mod m = (a'®* mod m)? mod m

Can compute a* mod m for k = 2t in only i steps
What if k is not a power of 2?

Fast Exponentiation Algorithm

81453 in binary is 10011111000101101
81453 =210 + 213 + 212 + 211 + 210 + 29+ 25+ 23 + 22 + 20

16 13 12 11 10 9 5 3 2 0
a81453 - a2 . a2 . a2 . a2 . a2 . a2 . a2 . a2 . a2 . a2

gs814s3 mod m=
(--((((2%"> mod m -

13
a2 Jnod m) mod m -
a2"’ 1r1n0d m) mod m - Uses only 16 + 9 = 25
a2’ mod m) mod m - multiplications

a2" mod m) mod m -
a2’ mod m) mod m -
a2’ mod m) mod m -
a2’ mod m) mod m -
a2 mod m) mod m -
a2’ mod m) mod m

The fast exponentiation algorithm computes
a® mod m using < 2log k multiplications mod m

Using Fast Modular Exponentiation

* Your e-commerce web transactions use SSL
(Secure Socket Layer) based on RSA encryption

 RSA

— Vendor chooses random 512-bit or 1024-bit primes p, q
and 512/1024-bit exponent e. Computes m = p - q

— Vendor broadcasts (m, e)

— To send a to vendor, you compute C = a® mod m using
fast modular exponentiation and send C to the vendor.

— Using secret p, q the vendor computes d that is the
multiplicative inverse of e mod (p — 1)(q — 1).

— Vendor computes €% mod m using fast modular
exponentiation.

— Fact: a = C%modmfor0 < a < munless p|aor g|a

Hashing

Scenario:
Map a small number of data values from a large
domain {0,1,..., M — 1} ...
...into a small set of locations {0,1,...,n — 1} so
one can quickly check if some value is present

* hash(x) = x mod p for p a prime close to n
—or hash(x) = (ax + ¢) mod p

* Latter depends on all the bits of the data
— hash(x) and hash(x + 1) can be very far apart

Hashing

* hash(x) = (ax + ¢) mod p for prime p
— deterministic function with random-ish behavior

* Suppose that hash(x) = hash(y)...

ax +C=pay +¢
ax =, ay add —c to both sides

X=p,y multiply both sides by s
where as =), 1

* Qutput as evenly spread as hash(x) = x mod p

Hashing

* hash(x) = (ax + ¢) mod p for prime p
— deterministic function with random-ish behavior

* Applications
— map integer to location in array (hash tables)

— map user ID or IP address to machine
requests from the same user / IP address go to the same machine
requests from different users / IP addresses spread randomly

Pseudo-Random Number Generation

Linear Congruential method

Xn+q1 = (a x,, + c) mod m

Choose random x,, a, ¢, m and produce
a long sequence of x,,’s

