
CSE 311: Foundations of Computing

Topic 5:  More Number Theory



GCD



Greatest Common Divisor

GCD(a, b): 
 Largest integer 𝑑 such that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏

•   GCD(100, 125) = 
•   GCD(17, 49)  = 
•   GCD(11, 66)  =
•   GCD(13, 0)  = 
•   GCD(180, 252) =

𝑑 is GCD  iff  (𝑑 ∣ 𝑎) Ù (𝑑 ∣ 𝑏) Ù ∀𝑥 (((𝑥 ∣ 𝑎)	Ù	(𝑥 ∣ 𝑏))	®	(𝑥 ≤ 𝑑))



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof Idea:
 We will show that every number dividing 𝑎 and 𝑏 also divides 𝑏 and 𝑎	mod	𝑏.
 I.e., 𝑑|𝑎 and 𝑑|𝑏 iff 𝑑|𝑏 and 𝑑|(𝑎	mod	𝑏).

 Hence, their set of common divisors are the same,
 which means that their greatest common divisor is the same.



Useful GCD Fact

Proof:
 By the Division Theorem, 𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏)  for some integer 𝑞 = 𝑎	div	𝑏.  

 Suppose 𝑑	|	𝑏 and 𝑑	|	(𝑎	mod	𝑏).
 Then 𝑏 = 𝑚𝑑 and (𝑎	mod	𝑏) = 𝑛𝑑 for some integers 𝑚 and 𝑛.    
 Therefore  𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏) 	= 𝑞𝑚𝑑 + 	𝑛𝑑 = 𝑞𝑚 + 𝑛 𝑑.
 So 𝑑	|	𝑎.

        Suppose 𝑑	|	𝑎 and 𝑑	|	𝑏.
 Then 𝑎 = 𝑘𝑑 and 𝑏 = 𝑗𝑑 for some integers 𝑘 and 𝑗.
        Therefore (𝑎	mod	𝑏) = 𝑎	– 𝑞𝑏 = 𝑘𝑑	– 𝑞𝑗𝑑 = (𝑘	– 𝑞𝑗)𝑑. 
 So, 𝑑	|	(𝑎	mod	𝑏) also.

 Since they have the same common divisors, gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎	mod	𝑏).

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)



Another simple GCD fact

Let a be a positive integer.
We have gcd(a, 0) = a.



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b)    gcd(a, 0) = a

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
 if (b == 0) {
  return a;
 } else {
  return gcd(b, a % b);
 }
}

Note: gcd(b, a) = gcd(a, b)



Euclid’s Algorithm

gcd(660,126) =

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏  to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.

gcd(660,126) 



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
        = gcd(30, 126 mod 30)     = gcd(30, 6)
        = gcd(6, 30 mod 6)      = gcd(6, 0)
        = 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏  to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.



Bézout’s theorem

If a and b are positive integers, then there exist 
integers s and t such that 

gcd(a,b) = sa + tb.

∀a	∀b	((a	>	0	∧	b	>	0)	→	∃s	∃t	(gcd(a,b)	=	sa	+	tb))

(a	>	0	∧	b	>	0)	→	∃s	∃t	(gcd(a,b)	=	sa	+	tb)



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                         gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                         gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8	
a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                        gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8
=	gcd(8,	27	mod	8)						=	gcd(8,	3)									27	=	3	*	8			+	3
=	gcd(3,	8	mod	3)								=	gcd(3,	2)										8		=	2	*	3			+	2
=	gcd(2,	3	mod	2)									=	gcd(2,	1)										3		=	1	*	2			+	1
=	gcd(1,	2	mod	1)	 =	gcd(1,	0)

a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r  =  a  --  q * b
8	=	35	– 1	*	27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r  =  a  --  q * b
8	=	35	– 1	*	27
3	=	27	– 3	*	8
2	=		8		– 2	*	3
1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

Plug in the def of 2

Re-arrange into
3’s and 8’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

				=	(–1)	*	8	+	3	*	(27	–	3	*	8)
				=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
				=			3	*	27		+	(–10)	*	8

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

				=	(–1)	*	8	+	3	*	(27	–	3	*	8)
				=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
				=			3	*	27		+	(–10)	*	8

				=			3	*	27		+	(–10)	*	(35	–	1	*	27)
				=			3	*	27			+	(–10)	*	35	+	10	*	27
				=			13	*	27	+	(–10)	*	35

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s



Let 0 ≤ 𝑎, 𝑏 < 𝑚. Then, 𝑏 is the multiplicative 
inverse of 𝑎 (modulo 𝑚)  iff  𝑎𝑏 ≡! 1.   

Multiplicative inverse mod	𝑚

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

mod 7

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10



Multiplicative inverse mod	𝑚

Suppose gcd 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 is the multiplicative inverse of 𝑎 (modulo 𝑚):
 1 ≡8 𝑠𝑎  since  𝑚	|	1 − 𝑠𝑎  (since 1 − 𝑠𝑎 = 𝑡𝑚)

So… we can compute multiplicative inverses with the 
extended Euclidean algorithm

These inverses let us solve modular equations…



Example: Solve a Modular Equation

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

1	 = 	 	 5	 	 – 	 	2 ∗ (7	– 1 ∗ 5)
 =	(– 2) ∗ 7		 + 	3 ∗ 5
 = –2 ∗ 7		 + 	3 ∗ (26	– 3 ∗ 7)
 =	 −11 ∗ 7	 + 	3 ∗ 26

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

1	 = 	 	 5	 	 – 	 	2 ∗ (7	– 1 ∗ 5)
 =	(– 2) ∗ 7		 + 	3 ∗ 5
 = –2 ∗ 7		 + 	3 ∗ (26	– 3 ∗ 7)
 =	 −11 ∗ 7	 + 	3 ∗ 26

Now (−11)	mod	26	 = 15.   
“the” multiplicative inverse

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26

(−11 is also “a” multiplicative inverse)



Example: Solve a Modular Equation

Find multiplicative inverse of 7 modulo 26… it’s 15.

Multiplying both sides by 15 gives

  15 8 7x ≡;< 15 8 3

Simplify on both sides to get
  x ≡;< 15 8 7x ≡;< 15 8 3 ≡;< 19

So, all solutions of this congruence are
numbers of the form 𝑥 = 19 + 26𝑘 for some 𝑘 ∈ ℤ.

Solve:  7𝑥 ≡"# 3



Adding to both sides easily reversible:

𝑥 ≡8 𝑦

𝑥 + 𝑐 ≡8 𝑦 + 𝑐

The same is not true of multiplication…
unless we have a multiplicative inverse 𝑐𝑑 ≡8 1

𝑥 ≡8 𝑦

𝑐𝑥 ≡8 𝑐𝑦

Multiplicative Inverses and Algebra

+𝑐−𝑐

×𝑐×𝑑



Example: Solve a Modular Equation

7𝑥 ≡;< 3	 ⇒ 	 15 8 7x ≡;< 15 8 3
multiply both sides by 15

x ≡;< 19	 ⇒ 	 7x ≡;< 7 8 19
multiply both sides by 7

⇒ 	 x ≡;< 19
since 15 ? 7 ≡!" 1 and 15 ? 3 ≡!" 19

⇒ 	 7x ≡;< 3
since 7 ? 19 ≡!" 3



Solving Modular Equations

1	 = 	… 	= 	 −11 ∗ 7	 + 	3 ∗ 26

Since (−11)	mod	26	 = 15, the inverse of 7 is 15.

Solve:  7𝑥 ≡"# 3     

Step 1. Find multiplicative inverse of 7 modulo 26

(must be of the form 𝑎 +𝑚𝑘 for all 𝑘 ∈ ℤ	with 0 ≤ 𝑎 < 𝑚)

Multiplying by 15, we get 𝑥 ≡!" 15 O 7𝑥 ≡!" 15 O 3 ≡!" 19.

Step 2. Multiply both sides and simplify

Step 3. State the full set of solutions
So, the solutions are 19 + 26𝑘	for any 𝑘 ∈ ℤ



Examples Not in “Standard Form”

Modular equation like A𝑥 ≡;< 𝐵 for some 𝐴 and 𝐵	
is in “standard form”.

– solve by multiplying both sides by inverse of A

What about equation not in standard form?

Solve:  7(𝑥 − 3) ≡"# 8 + 2𝑥



Examples Not in “Standard Form”

Transform into standard form by adding to both sides

7 𝑥 − 3 ≡;< 8 + 2x 

7 𝑥 − 3 + 21 ≡;< 8 + 2𝑥 + 21 add 21 to both sides

7𝑥 ≡;< 3 + 2𝑥       simplify

7𝑥 − 2𝑥 ≡;< 3 + 2𝑥 − 2𝑥   add −2𝑥 to both sides

5𝑥 ≡;< 3        simplify

Solve:  7 𝑥 − 3 ≡"# 8 + 2𝑥



Induction



Mathematical Induction

Method for proving statements about all natural numbers

– A new logical inference rule!
• It only applies over the natural numbers
• The idea is to use the special structure of the naturals 

to prove things more easily

– Particularly useful for reasoning about programs!
  for (int i=0; i < n; n++) { … }

• Show P(i) holds after i times through the loop



Prove ∀𝑘	((𝑎 ≡! 𝑏) → (𝑎" ≡! 𝑏"))

Let 𝑘 be an arbitrary non-negative integer.
Suppose that 𝑎 ≡8 𝑏.

We know (𝑎 ≡# 𝑏) ∧ (𝑎 ≡# 𝑏) → (𝑎!≡# 𝑏!) by multiplying 
congruences.  So, applying this repeatedly, we have:

(𝑎 ≡# 𝑏) ∧ (𝑎 ≡# 𝑏) → (𝑎! ≡# 𝑏!)
(𝑎!≡# 𝑏!) ∧ (𝑎 ≡# 𝑏) → (𝑎" ≡# 𝑏"	)

…
(𝑎#$% ≡# 𝑏#$%	) ∧ (𝑎 ≡# 𝑏) → (𝑎# ≡# 𝑏#)

The “…”s is a problem!  We don’t have a proof rule that 
allows us to say “do this over and over”.



But there is such a rule for the natural numbers!

Domain: Natural Numbers

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(3)?

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0) → P(1).  
 Since P(0) is true and P(0) → P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1) → P(2).
 Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

1. P(0)

       
       
       

2. "k (P(k) ® P(k+1))                 ??
3. "n P(n)                                    Induction: 1, 2



Using The Induction Rule In A Formal Proof

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

1. P(0)
Let k be an arbitrary integer ≥ 0

        
        
         

2.1 P(k) ®  P(k+1)                         ??
2. "k (P(k) ® P(k+1))                 Intro "
3. "n P(n)                                    Induction: 1, 2



Using The Induction Rule In A Formal Proof

1. P(0)
Let k be an arbitrary integer ≥ 0

        2.1.1. P(k)      Assumption
        2.1.2. ...
         2.1.3. P(k+1)

2.1 P(k) ®  P(k+1)                         Direct Proof
2. "k (P(k) ® P(k+1))                 Intro "
3. "n P(n)                                    Induction: 1, 2

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)



Translating to an English Proof

1. Prove P(0)
 Let k be an arbitrary integer ≥ 0
           2.1.1. Suppose that P(k) is true
           2.1.2.  ...
           2.1.3.  Prove P(k+1) is true

2.1 P(k) ®  P(k+1)                         Direct Proof
2. "k (P(k) ® P(k+1))                Intro "
3. "n P(n)                                   Induction: 1, 2

Base Case
Inductive 
Hypothesis

Inductive 
Step

Conclusion

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)



Translating to an English Proof

[…Define P(n)…]

We will show that 𝑃(𝑛) is true for every 𝑛 ≥ 0 by induction.
Base Case: […proof of 𝑃(0) here…]

Induction Hypothesis: 
 Suppose that 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 0.

Induction Step:
 […proof of 𝑃(𝑘 + 1) here…]
 The proof of 𝑃(𝑘 + 1) must invoke the IH somewhere.

So, the claim is true by induction.

Induction English Proof Template



Inductive Proofs In 5 Easy Steps

Proof: 
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every 
        𝑛 ≥ 0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:
 Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: Result follows by induction”

Basic induction template



What is 1	 + 	2	 + 	4	 +	…	+ 	2𝑛 ?

• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 1
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 3
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 7
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 15
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 31

   

It sure looks like this sum is 2GHI − 1
How can we prove it?
 We could prove it for 𝑛 = 1, 𝑛 = 2, 𝑛 = 3,… but 

that would literally take forever.
     Good that we have induction!



Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2456– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2456– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2456– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
         Goal:  Show P(k+1I.e.,), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2456– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2456– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
   20 + 21 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
   20 + 21 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
 5. Thus P(k) is true for all k ∈ℕ, by induction.  

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2456– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
       We can calculate
         20 + 21 + … + 2k + 2k+1  = (20+21+ … + 2k) + 2k+1 
                                                         = (2k+1 – 1) + 2k+1   by the IH
                 = 2(2k+1) – 1
                 = 2k+2 – 1,
       which is exactly P(k+1).

 5. Thus P(k) is true for all k ∈ℕ, by induction.  

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2456– 	1

Alternative way of writing the inductive step



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
       We can calculate
         20 + 21 + … + 2k + 2k+1  = (20+21+ … + 2k) + 2k+1 
                                                         = (2k+1 – 1) + 2k+1   by the IH
                 = 2(2k+1) – 1
                 = 2k+2 – 1,
       which is exactly P(k+1).
  5. Thus P(n) is true for all n ≥ 0, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2456– 	1



Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2

Summation Notation
 ∑7894 𝑖 = 0 + 1	 + 	2	 + 	3	 +	…	+ 	𝑛



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
  1 + 2 + … + n = n(n+1)/2   by IH
 Adding n+1 to both sides, we get:
  1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
 Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
 So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2

Summation Notation
 ∑7894 𝑖 = 0 + 1	 + 	2	 + 	3	 +	…	+ 	𝑛



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
  1 + 2 + … + n = n(n+1)/2   by IH
 Adding n+1 to both sides, we get:
  1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
 Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
 So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
        
1 + 2 + … + n  n(n+1)/2   by IH
 Adding n+1 to both sides, we get:
  1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
 Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
 So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2

“some” or “an”
not any!



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  
        Goal:  Show P(k+1), i.e. show 1 + 2 + …+ k+ (k+1) = (k+1)(k+2)/2
  1 + 2 + … + n = n(n+1)/2   by IH
 Adding n+1 to both sides, we get:
  1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
 Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
 So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  
        1 + 2 + … + k + (k+1) = (1 + 2 + … + k) + (k+1) 
                                                    = k(k+1)/2 + (k+1)  by IH
            = (k+1)(k/2 + 1)
            = (k+1)(k+2)/2
  So, we have shown 1 + 2 + … + k + (k+1) = (k+1)(k+2)/2, 
  which is exactly P(k+1).
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



Induction: Changing the start line 

• What if we want to prove that 𝑃(𝑛) is true 
for all integers 𝑛 ≥ 𝑏 for some integer 𝑏?

• Define predicate 𝑄 𝑘 = 𝑃(𝑘 + 𝑏) for all 𝑘.
– Then ∀𝑛	𝑄 𝑛 ≡ ∀𝑛 ≥ 𝑏	 𝑃(𝑛)

 

• Ordinary induction for 𝑄:  
– Prove	𝑄 0 ≡ 𝑃 𝑏
– Prove                                                        

∀𝑘 𝑄 𝑘 ⟶ 𝑄 𝑘 + 1 ≡ ∀𝑘 ≥ 𝑏 𝑃 𝑘 ⟶ 𝑃 𝑘 + 1



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
      integers 𝑛 ≥ 𝒃 by induction.”
2. “Base Case:” Prove 𝑃(𝒃)
3. “Inductive Hypothesis:
 Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝒃”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝒃”

Template for induction from a different base case



Prove 3𝑛 ≥ 𝑛: + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):  32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Hypothesis:  Suppose that P(k) is true for some                                          

arbitrary integer k ≥ 2.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛: + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 2.
4. Inductive Step:  
          Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛: + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

 arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
          =k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛: + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  

          Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Prove 3𝑛 ≥ 𝑛: + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  

          Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Prove 3𝑛 ≥ 𝑛: + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  
         We can see that
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
     = 3k2+9
                           = k2+2k2+9
         ≥ k2+2k+4 = (k+1)2+3 since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all integers n ≥ 2, by induction.

Prove 3𝑛 ≥ 𝑛: + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  
         We can see that
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+4 = (k+1)2+3 since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all integers n ≥ 2, by induction.

Prove 3𝑛 ≥ 𝑛: + 3 for all 𝑛 ≥ 2



Checkerboard Tiling

• Prove that a 2𝑛	´	2𝑛	checkerboard with one square 
removed can be tiled with:



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some    

              arbitrary integer k≥1



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some    

              arbitrary integer k≥1
4. Inductive Step: Prove P(k+1)

Apply IH to 
each quadrant 
then fill with 
extra tile.



Recall: Induction Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Recall: Induction Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)

We made it harder than we needed to ...
 When we proved 𝑃(2) we knew BOTH 𝑃(0) and 𝑃(1)
      When we proved 𝑃(3) we knew 𝑃(0) and 𝑃(1) and 𝑃 2  
      When we proved 𝑃(4) we knew 𝑃(0),	𝑃(1),	𝑃 2 , 𝑃(3)
      etc.
That’s the essence of the idea of Strong Induction.



Strong Induction

𝑃 0 	 ∀𝑘 ∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗 → 𝑃 𝑘 + 1

∴ ∀𝑛	𝑃(𝑛)



Strong Induction

Strong induction for 𝑃 follows from ordinary induction for 𝑄 
where

𝑄 𝑘 	∷=	∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗

Note that 𝑄 0 = 𝑃(0) and 𝑄(𝑘 + 1) ≡ 𝑄(𝑘) 	∧ 𝑃 𝑘 + 1  
and  ∀𝑛	𝑄 𝑛 ≡ ∀𝑛	𝑃(𝑛) 

𝑃 0 	 ∀𝑘 ∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗 → 𝑃 𝑘 + 1

∴ ∀𝑛	𝑃(𝑛)



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
       integers 𝑛 ≥ 𝑏 by induction.”
2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:
 Assume that for some arbitrary integer 𝑘 ≥ 𝑏,
                    𝑃(𝑘) is true” 
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”

Template for induction from a different base case



Strong Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
       integers 𝑛 ≥ 𝑏 by strong induction.”
2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:
 Assume that for some arbitrary integer 𝑘 ≥ 𝑏,	
  	 𝑃(𝑗) is true for every integer 𝑗	from 𝑏	to 𝑘”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true) 

and point out where you are using it.                           
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Primality

An integer p greater than 1 is called prime if the 
only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not 
prime is called composite.

𝑝	>	1	 Ù	 ∀x	((𝑥	|	𝑝)	®	((𝑥 = 1) ∨ (𝑥 = 𝑝)))

𝑝	>	1	 Ù	 ∃x	((𝑥	|	𝑝)	Ù	(𝑥 ≠ 1)	Ù	(𝑥 ≠ 𝑝))



Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime 
factorization

48 =  2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.



Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of some list of primes”.  We will show that 
P(n) is true for all integers n ≥	2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of primes.  
    Therefore P(2) is true.

3. Inductive :  Suppose that for some arbitrary integer k ≥ 2, 
 P(j) is true for every integer j between 2 and k

4. Inductive Step:
              Goal:  Show P(k+1); i.e. k+1 is a product of primes
    Case: k+1 is prime:  Then by definition k+1 is a product of primes
    Case: k+1 is composite: Then k+1=ab for some integers a and b      

 where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have      
             a = p1p2 ⋯	pm and  b = q1q2 ⋯                                                              
   for some primes p1,p2,...,	pm, q1,q2,..., qn.

         Thus, k+1 = ab = p1p2 ⋯ pmq1q2 ⋯	qn which is a product of primes. 
  Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 

5. Thus P(n) is true for all integers n ≥	2, by induction.

Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of some list of primes”.  We will show that 
P(n) is true for all integers n ≥	2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of (one) prime. 
     Therefore P(2) is true.

3. Inductive :  Suppose that for some arbitrary integer k ≥ 2, 
 P(j) is true for every integer j between 2 and k

4. Inductive Step:
              Goal:  Show P(k+1); i.e. k+1 is a product of primes
    Case: k+1 is prime:  Then by definition k+1 is a product of primes
    Case: k+1 is composite: Then k+1=ab for some integers a and b      

 where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have      
             a = p1p2 ⋯	pm and  b = q1q2 ⋯                                                              
   for some primes p1,p2,...,	pm, q1,q2,..., qn.

         Thus, k+1 = ab = p1p2 ⋯ pmq1q2 ⋯	qn which is a product of primes. 
  Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 

5. Thus P(n) is true for all integers n ≥	2, by induction.

Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of some list of primes”.  We will show that 
P(n) is true for all integers n ≥	2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of (one) prime. 
     Therefore P(2) is true.

3. Inductive Hyp:  Suppose that for some arbitrary integer k ≥ 2, 
 P(j) is true for every integer j between 2 and k

4. Inductive Step:
              Goal:  Show P(k+1); i.e. k+1 is a product of primes
  Case: k+1 is prime:  Then by definition k+1 is a product of primes
    Case: k+1 is composite: Then k+1=ab for some integers a and b      

 where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have      
             a = p1p2 ⋯	pm and  b = q1q2 ⋯	qn                                                                 
   for some primes p1,p2,...,	pm, q1,q2,..., qn.

         Thus, k+1 = ab = p1p2 ⋯ pmq1q2 ⋯	qn which is a product of primes. 
  Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 

5. Thus P(n) is true for all integers n ≥	2, by induction.

Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of some list of primes”.  We will show that 
P(n) is true for all integers n ≥	2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of (one) prime. 
     Therefore P(2) is true.

3. Inductive Hyp:  Suppose that for some arbitrary integer k ≥ 2, 
 P(j) is true for every integer j between 2 and k

4. Inductive Step:
              Goal:  Show P(k+1); i.e. k+1 is a product of primes
    Case: k+1 is prime:  Then by definition k+1 is a product of primes
    Case: k+1 is composite: Then k+1=ab for some integers a and b      

 where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have      
             a = p1p2 ⋯	pm and  b = q1q2 ⋯	qn                                                                 
   for some primes p1,p2,...,	pm, q1,q2,..., qn.

         Thus, k+1 = ab = p1p2 ⋯ pmq1q2 ⋯	qn which is a product of primes. 
  Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 

5. Thus P(n) is true for all integers n ≥	2, by induction.

Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of some list of primes”.  We will show that 
P(n) is true for all integers n ≥	2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of (one) prime. 
     Therefore P(2) is true.

3. Inductive Hyp:  Suppose that for some arbitrary integer k ≥ 2, 
 P(j) is true for every integer j between 2 and k

4. Inductive Step:
              Goal:  Show P(k+1); i.e. k+1 is a product of primes
    Case: k+1 is prime:  Then by definition k+1 is a product of primes
    Case: k+1 is composite: Then k+1=ab for some integers a and b      

 where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have      
             a = p1p2 ⋯	pm and  b = q1q2 ⋯	    for some primes 

p1,p2,...,	pm, q1,q2,..., qn.
         Thus, k+1 = ab = p1p2 ⋯ pmq1q2 ⋯	qn which is a product of primes. 

  Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 
5. Thus P(n) is true for all integers n ≥	2, by induction.

Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of some list of primes”.  We will show that 
P(n) is true for all integers n ≥	2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of (one) prime. 
     Therefore P(2) is true.

3. Inductive Hyp:  Suppose that for some arbitrary integer k ≥ 2, 
 P(j) is true for every integer j between 2 and k

4. Inductive Step:
              Goal:  Show P(k+1); i.e. k+1 is a product of primes
    Case: k+1 is prime:  Then by definition k+1 is a product of primes
    Case: k+1 is composite: Then k+1=ab for some integers a and b      

 where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have      
             a = p1p2 ⋯	pm and  b = q1q2 ⋯	qn                                         

           for some primes p1,p2,...,	pm, q1,q2,..., qn.
         Thus, k+1 = ab = p1p2 ⋯ pmq1q2 ⋯	qn which is a product of primes. 

  Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 
5. Thus P(n) is true for all integers n ≥	2, by induction.

Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of some list of primes”.  We will show that 
P(n) is true for all integers n ≥	2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of (one) prime. 
     Therefore P(2) is true.

3. Inductive Hyp:  Suppose that for some arbitrary integer k ≥ 2, 
 P(j) is true for every integer j between 2 and k

4. Inductive Step:
              Goal:  Show P(k+1); i.e. k+1 is a product of primes
    Case: k+1 is prime:  Then by definition k+1 is a product of primes
    Case: k+1 is composite: Then k+1=ab for some integers a and b      

 where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have      
             a = p1p2 ⋯	pr and  b = q1q2 ⋯	qs                                         

           for some primes p1,p2,...,	pr, q1,q2,..., qs.
         Thus, k+1 = ab = p1p2 ⋯ prq1q2 ⋯	qs which is a product of primes. 

  Since k ≥ 2, one of these cases must happen and so P(k+1) is true. 
5. Thus P(n) is true for all integers n ≥	2, by induction.

Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of some list of primes”.  We will show that 
P(n) is true for all integers n ≥	2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of (one) prime. 
     Therefore P(2) is true.

3. Inductive Hyp:  Suppose that for some arbitrary integer k ≥ 2, 
 P(j) is true for every integer j between 2 and k

4. Inductive Step:
              Goal:  Show P(k+1); i.e. k+1 is a product of primes
    Case: k+1 is prime:  Then by definition k+1 is a product of primes
    Case: k+1 is composite: Then k+1=ab for some integers a and b      

 where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have      
             a = p1p2 ⋯	pr and  b = q1q2 ⋯	qs                                                                 
   for some primes p1,p2,...,	pr, q1,q2,..., qs.

         Thus, k+1 = ab = p1p2 ⋯ prq1q2 ⋯	qs which is a product of primes. 
  Since k ≥ 2, one of these cases must happen and so P(k+1) is true. 

5. Thus P(n) is true for all integers n ≥	2, by strong induction.

Every integer ≥ 2 is a product of (one or more) primes.



Applications



Algorithmic Problems

• Multiplication
– Given primes 𝑝I, 𝑝;, …, 𝑝J, calculate their 

product 𝑝I𝑝;…𝑝J
• Factoring

– Given an integer 𝑛, determine the prime 
factorization of 𝑛



Factoring

Factor the following 232 digit number [RSA768]:

 123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917



Famous Algorithmic Problems

• Factoring
– Given an integer 𝑛, determine the prime 

factorization of 𝑛
• Primality Testing

– Given an integer 𝑛, determine if 𝑛 is prime

• Factoring is hard
– (on a classical computer)

• Primality Testing is easy



GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is hard

Yet, we can compute GCD(a,b) without factoring!

Will shortly see another operation that
can be implemented surprisingly quickly…



Basic Applications of mod

• Two’s Complement
• Hashing 
• Pseudo random number generation



• Represent integer 𝑥 as sum of powers of 2:

    99  = 64 + 32 + 2 + 1  = 26 + 25 + 21 + 20

     18  = 16 + 2    = 24 + 21

• Binary representation shows which powers are used:

       99:    0110 0011
       18:    0001  0010

n-bit Unsigned Integer Representation



• Suppose we write numbers with 4 bits:

    14  = 8 + 4 + 2   = 23 + 22 + 21   = 1110
     11  = 8 + 2 + 1   = 23 + 21 + 20   = 1011

• Largest number we can write in 4 bits is:

 15  = 8 + 4 + 2 + 1 = 23 + 22 + 21 + 20 = 1111

• Note that 15 = 16 – 1 = 24 - 1
– we proved this before!

n-bit Unsigned Integer Representation



• Suppose we write numbers with 4 bits (0 .. 15):

    14  = 8 + 4 + 2  = 23 + 22 + 21  = 1110
     11  = 8 + 2 + 1  = 23 + 21 + 20  = 1011

• Adding these numbers gives us 25 with 5 bits:

 25  = 16 + 8 + 1 = 24 + 23 + 20  = 11001

• If we drop the highest bit, we have

 9  = 8 + 1   = 23 + 20   = 1001

n-bit Unsigned Integer Representation



 25  = 16 + 8 + 1 = 24 + 23 + 20  = 11001
 9  = 8 + 1   = 23 + 20   = 1001

• Note that 9 ≡16 25 since 25 – 9 = 16
– dropping 24 bit subtracts 16
– dropping 25 bit subtracts 32 = 2·16
– dropping 26 bit subtracts 64 = 4·16

• Throwing away all but 4 bits is arithmetic mod 16
– easier to implement normal arithmetic!

n-bit Unsigned Integer Representation



n-bit Unsigned Integer Representation

• Largest representable number is 24 − 1

        2n = 100…000   (n+1 bits)
  2n – 1 =   11…111   (n bits)

32 bits
1 = $0.0001
$429,496.7295 max



Sign-Magnitude Integer Representation

𝑛-bit signed integers
Suppose that −2GKI < 𝑥 < 2GKI
First bit as the sign, 𝑛 − 1 bits for the value

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
   99:    0110 0011
   -18:   1001  0010

Problem: this has both +0 and -0 (annoying)



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2&$%                    
 𝑥 is represented by the binary representation of 𝑥
Suppose that −2&$%≤ 𝑥 < 0
 𝑥 is represented by the binary representation of 𝑥 + 2&
 result is in the range 2#$% ≤ 𝑥 < 2#

2#$%0−1−2#$% 2#

+2&

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2&$%                    
 𝑥 is represented by the binary representation of 𝑥
Suppose that −2&$%≤ 𝑥 < 0
 𝑥 is represented by the binary representation of 𝑥 + 2&
 result is in the range 2#$% ≤ 𝑥 < 2#
 

   99 = 64 + 32 + 2 + 1
   18 = 16 + 2

For n = 8:
    99:    0110 0011
   -18:    1110 1110   (-18 + 256 = 238)

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2&$%                    
 𝑥 is represented by the binary representation of 𝑥
Suppose that −2&$%≤ 𝑥 < 0
 𝑥 is represented by the binary representation of 𝑥 + 2&
 result is in the range 2#$% ≤ 𝑥 < 2#
 

Key property: Twos complement representation of any number 𝒚 
                         is equivalent to 𝒚	𝐦𝐨𝐝	𝟐𝒏 so arithmetic works 𝐦𝐨𝐝	𝟐𝒏

Key property: First bit is still the sign bit!

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

𝑦 + 2& ≡!! 𝑦



I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
  System.out.println(
   “I will be alive for at least ” +
   SEC_IN_YEAR * 101 + “ seconds.”
  );
 }
}

Prints : “I will be alive for at least -186619904 seconds.”



Two’s Complement Representation

• For                         ,  −𝑥 is represented by the 
binary representation of −𝑥 + 2,
– How do we calculate –x from x?
– E.g., what happens for “return –x;” in Java?

• To compute this, flip the bits of 𝑥 then add 1!
Flip the bits of 𝑥 means replace 𝑥 by 2G − 1 − 𝑥
Then add 1 to get −𝑥 + 2G

−𝑥 + 2& = 2& − 1 − x + 1



Exponentiation

• Compute 7836581453

• Compute 7836581453 mod 104729

• Output is small
– need to keep intermediate results small



Small Multiplications

Since 𝑏 = 𝑞𝑚 + (𝑏	mod	𝑚), we have 𝑏	mod	𝑚 ≡8 𝑏.

And since 𝑐 = 𝑡𝑚 + (𝑐	mod	𝑚), we have 𝑐	mod	𝑚 ≡8 𝑐.

Multiplying these gives (𝑏	mod	𝑚)(𝑐	mod	𝑚) ≡8 𝑏𝑐.

By the Lemma from a few lectures ago, this tells us 
𝑏𝑐	mod	𝑚 = 𝑏	mod	𝑚 𝑐	mod	𝑚 	mod	𝑚.

Okay to mod 𝑏 and 𝑐 by 𝑚	before multiplying if we are 
planning to mod the result by 𝑚



Repeated Squaring – small and fast

Since 𝑏	mod	𝑚 ≡8 𝑏	and 𝑐	mod	𝑚 ≡8 𝑐
we have 𝑏𝑐	mod	𝑚 = 𝑏	mod	𝑚 𝑐	mod	𝑚 	mod	𝑚

So            𝑎2	mod	𝑚	 = 	 𝑎	mod	𝑚 ;	mod	𝑚
and          𝑎4	mod	𝑚	 = 𝑎2	mod	𝑚 ;	mod	𝑚
and          𝑎8	mod	𝑚	 = 𝑎4	mod	𝑚 ;	mod	𝑚
and          𝑎16	mod	𝑚	 = 𝑎8	mod	𝑚 ;	mod	𝑚
and          𝑎32	mod	𝑚	 = 𝑎16	mod	𝑚 ;	mod	𝑚

Can compute 𝑎𝑘	mod	𝑚 for 𝑘 = 2𝑖 in only 𝑖 steps
What if 𝑘 is not a power of 2?



Fast Exponentiation Algorithm 
81453 in binary is 10011111000101101
81453 = 216 + 213 + 212 + 211 + 210 + 29 + 25 + 23 + 22 + 20

The fast exponentiation algorithm computes 
𝑎J 	mod	𝑚	using ≤ 2log 𝑘 multiplications mod	𝑚	

a81453 = a216 · a213 · a212 · a211 · a210 · a29 · a25 · a23 · a22 · a20

a81453 mod m= 
(…(((((a216 mod m ·
       a213 mod m ) mod m · 
    a212 mod m) mod m · 
       a211 mod m) mod m · 
          a210 mod m) mod m · 
        a29 mod m) mod m · 
            a25 mod m) mod m · 
           a23 mod m) mod m · 
          a22 mod m) mod m · 
              a20 mod m)  mod m 

Uses only 16 + 9 = 25 
multiplications



Using Fast Modular Exponentiation

• Your e-commerce web transactions use SSL 
(Secure Socket Layer) based on RSA encryption

• RSA
– Vendor chooses random 512-bit or 1024-bit primes 𝒑, 𝒒 

and 512/1024-bit exponent 𝒆.  Computes 𝒎 = 𝒑 ⋅ 𝒒
– Vendor broadcasts (𝒎, 𝒆)
– To send 𝒂 to vendor, you compute 𝑪 = 𝒂𝒆	mod	𝒎 using 

fast modular exponentiation and send 𝑪 to the vendor.
– Using secret 𝒑, 𝒒 the vendor computes 𝒅 that is the 

multiplicative inverse of 𝒆 mod (𝒑 − 𝟏)(𝒒 − 𝟏).
– Vendor computes 𝑪𝒅	mod	𝒎 using fast modular 

exponentiation.
– Fact:   𝒂 = 𝑪𝒅	mod	𝒎 for 𝟎 < 𝒂 < 𝒎 unless 𝒑|𝒂 or 𝒒|𝒂



Hashing

Scenario:  
Map a small number of data values from a large 
domain 0, 1,… ,𝑀 − 1  ...
...into a small set of locations 0, 1,… , 𝑛 − 1  so 
one can quickly check if some value is present

      

•  hash 𝑥 = 𝑥	mod	𝑝 for 𝑝 a prime close to 𝑛
– or hash 𝑥 = (𝑎𝑥 + 𝑐)	mod	𝑝

    

• Latter depends on all the bits of the data 
–  hash 𝑥  and hash 𝑥 + 1  can be very far apart



Hashing

•  hash 𝑥 = (𝑎𝑥 + 𝑐)	mod	𝑝 for prime 𝑝
– deterministic function with random-ish behavior

• Suppose that hash 𝑥 = hash 𝑦 …

ax + c ≡1 ay + c
ax ≡1 ay     add −c to both sides
x ≡1 y      multiply both sides by s
       where as ≡1 1

• Output as evenly spread as hash 𝑥 = 𝑥	mod	𝑝



Hashing

•  hash 𝑥 = (𝑎𝑥 + 𝑐)	mod	𝑝 for prime 𝑝
– deterministic function with random-ish behavior

• Applications
– map integer to location in array (hash tables)
– map user ID or IP address to machine

requests from the same user / IP address go to the same machine
requests from different users / IP addresses spread randomly



Pseudo-Random Number Generation

Linear Congruential method

𝑥,-. = 𝑎	𝑥, + 𝑐 	mod	𝑚

Choose random	𝑥T, 𝑎, 𝑐, 𝑚 and produce
a long sequence of 𝑥G’s


