#### **CSE 311:** Foundations of Computing

#### **Topic 4: Number Theory**



"I *asked* you a question, buddy. ... What's the square root of 5,248?"

#### **Mechanical vs Creative Predicate Logic**

- We've done examples with "meaningless" predicates such as  $\forall x P(x) \rightarrow \exists x P(x)$ 
  - Saw how to (often) mechanically solve by looking at "shape" of the goal.
  - We'll need these skills in all domains!
- When we enter "interesting" domains of discourse, we will use domain knowledge.
  - We will see how to creatively solve goals, especially with rules like Intro ∨, Intro ∃, Elim ∧, Elim ∀.

- Remainder of the course will use predicate logic to prove <u>important</u> properties of <u>interesting</u> objects
  - start with math objects that are widely used in CS
  - eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Domain of Discourse Integers  $\begin{tabular}{l} \hline Predicate Definitions \\ \hline Even(x) \equiv \exists y \ (x = 2 \cdot y) \\ Odd(x) \equiv \exists y \ (x = 2 \cdot y + 1) \end{tabular}$ 

#### **Number Theory**

- Direct relevance to computing
  - everything in a computer is a number

colors on the screen are encoded as numbers

• Many significant applications in CS...

• Memory is an array, so pixel positions must be mapped to array indexes



#### **Pixels in Memory**



stored at index 16 = 12 + 4= 2 · 6 + 4

#### **Pixels in Memory**



Stored at index n. How do we calculate n from i and j?  $n = i \cdot 6 + j$  For a, b with b > 0, we can divide b into a. Suppose that

$$\frac{a}{b} = q$$

The number q is called the *quotient*.

This equation involve fractions. We want to stick to integers! Multiplying both sides by b, this becomes

$$a = qb$$

When there exists some such q, we write " $b \mid a$ ".

#### Divisibility

#### **Definition: "b divides a"**

For *a*, *b* with  $b \neq 0$ :  $b \mid a \coloneqq \exists q \ (a = qb)$ 

Check Your Understanding. Which of the following are true?

### Divisibility

#### Definition: "b divides a"

For *a*, *b* with  $b \neq 0$ :

$$b \mid a \coloneqq \exists q \ (a = qb)$$

Check Your Understanding. Which of the following are true?



For a, b with b > 0, we can divide b into a.

If  $b \nmid a$ , then we end up with a *remainder* r with 0 < r < b. Now,

instead of 
$$\frac{a}{b} = q$$
 we have  $\frac{a}{b} = q + \frac{r}{b}$ 

Multiplying both sides by *b* gives us a = qb + r

For a, b with b > 0, we can divide b into a.

If  $b \mid a$ , then we have a = qb for some q. If  $b \nmid a$ , then we have a = qb + r for some q, r with 0 < r < b.

In general, we have a = qb + r for some q, r with  $0 \le r < b$ , where r = 0 iff  $b \mid a$ .

#### **Division Theorem**

For a, b with b > 0there exist *unique* integers q, r with  $0 \le r < b$ such that a = qb + r.

To put it another way, if we divide *b* into *a*, we get a unique quotient  $q = a \operatorname{div} b$ and non-negative remainder  $r = a \operatorname{mod} b$ 

*a* = (*a* **div** *b*) *b* + (*a* **mod** *b*)

 $\forall a \ \forall b \ (b > 0) \rightarrow (a = (a \ \operatorname{div} b)b + (a \ \operatorname{mod} b))$ 

#### **Pixels in Memory**



Stored at index n. How do we calculate n from i and j?  $n = i \cdot 6 + j$ 

#### **Pixels in Memory**



Stored at index n.i = n div 6How do we calculate i and j from n? $j = n \mod 6$ 

- Direct relevance to computing
  - important toolkit for programmers
- Many significant applications
  - Cryptography & Security
  - Data Structures
  - Distributed Systems

# **Modular Arithmetic**

- Arithmetic over a finite domain
- Almost all computation is over a finite domain

#### I'm ALIVE!

```
public class Test {
   final static int SEC IN YEAR = 365*24*60*60;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC_IN_YEAR * 101 + " seconds."
       );
   }
}
          ----jGRASP exec: java Test
         I will be alive for at least -186619904 seconds.
          ----jGRASP: operation complete.
```





If a = 7q + r, then  $r \ (= a \mod b)$  is where you stop after taking a steps on the clock

## (a + b) mod 7 (a × b) mod 7



| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |

| x | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 2 | 0 | 2 | 4 | 6 | 1 | 3 | 5 |
| 3 | 0 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 0 | 4 | 1 | 5 | 2 | 6 | 3 |
| 5 | 0 | 5 | 3 | 1 | 6 | 4 | 2 |
| 6 | 0 | 6 | 5 | 4 | 3 | 2 | 1 |

Definition: "a is congruent to b modulo m"

For a, b, m with m > 0 $a \equiv_m b \coloneqq m \mid (a - b)$ 

New notion of "sameness" that will help us understand modular arithmetic

Definition: "a is congruent to b modulo m"

For 
$$a, b, m$$
 with  $m > 0$   
 $a \equiv_m b \coloneqq m \mid (a - b)$ 

The standard math notation is

 $a \equiv b \pmod{m}$ 

A chain of equivalences is written

 $a \equiv b \equiv c \equiv d \pmod{m}$ 

Many students find this confusing, so we will use  $\equiv_m$  instead.

Definition: "a is congruent to b modulo m"

For a, b, m with m > 0

$$a \equiv_m b \coloneqq m \mid (a - b)$$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv_2 0$ 

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

-1 ≡<sub>5</sub> 19

This statement is true. 19 - (-1) = 20 which is divisible by 5

y ≡<sub>7</sub> 2

This statement is true for y in  $\{ ..., -12, -5, 2, 9, 16, ... \}$ . In other words, all y of the form 2+7k for k an integer.

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

**Proof Plan:** 

1. 
$$(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$$
??2.  $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ ??3.  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b) \land$  $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ 4.  $(a \equiv_m b) \leftrightarrow (a \mod m = b \mod m)$ Intro  $\land$ : 1, 24.  $(a \equiv_m b) \leftrightarrow (a \mod m = b \mod m)$ Equivalent: 3

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

**1.**  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$  ??

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

**1.1.**  $a \mod m = b \mod m$ 

Assumption

1.?  $a \equiv_m b$  ?? 1.  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$  Direct Proof

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

**1.1.**  $a \mod m = b \mod m$ 

Assumption

1.?  $m \mid a - b$ 1.?  $a \equiv_m b$ 1.  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$ 

?? Def of ≡ Direct Proof

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

**1.1.**  $a \mod m = b \mod m$ 

Assumption

1.?  $\exists q \ (a - b = qm)$ 1.?  $m \mid a - b$ 1.?  $a \equiv_m b$ 1.  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$  ?? Def of | Def of ≡ Direct Proof

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

**1.1.**  $a \mod m = b \mod m$ **1.2.**  $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ **1.3.**  $\boldsymbol{b} = (\boldsymbol{b} \operatorname{div} \boldsymbol{m}) \boldsymbol{m} + (\boldsymbol{b} \operatorname{mod} \boldsymbol{m})$  Apply Division

Assumption **Apply Division** 

1.? 
$$\exists q \ (a - b = qm)$$
  
1.?  $m \mid a - b$   
1.?  $a \equiv_m b$   
1.  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$ 

?? Def of | Def of ≡ **Direct Proof** 

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

**1.1.**  $a \mod m = b \mod m$ Assumption **1.2.**  $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ **Apply Division 1.3.**  $b = (b \operatorname{div} m) m + (b \operatorname{mod} m)$ **Apply Division 1.4.**  $a - b = ((a \operatorname{div} m) - (b \operatorname{div} m))m$ Algebra **1.5.**  $\exists q (a - b = qm)$ Intro **∃ 1.6.** *m* ∣ *a* − *b* Def of | 1.7.  $a \equiv_m b$ Def of ≡ **Direct Proof** 

**1.**  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$ 

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

Suppose that  $a \mod m = b \mod m$ .

Assumption

Apply Division Apply Division

Algebra

Intro ∃ Def of | Def of ≡ Direct Proof

Therefore,  $a \equiv_m b$ .

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

Suppose that  $a \mod m = b \mod m$ .

By the Division Theorem, we can write  $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$  and  $b = (b \operatorname{div} m) m + (b \operatorname{mod} m)$ . Assumption

Apply Division Apply Division

Algebra

Intro ∃ Def of | Def of ≡ Direct Proof

Therefore,  $a \equiv_m b$ .

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

Suppose that  $a \mod m = b \mod m$ . By the Division Theorem, we can write  $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$  and  $b = (b \operatorname{div} m) m + (b \operatorname{mod} m).$ Subtracting these we can see that  $a - b = ((a \operatorname{div} m) - (b \operatorname{div} m))m +$  $((a \mod m) - (b \mod m))$  $= ((a \operatorname{div} m) - (b \operatorname{div} m))m$ since  $(a \mod m) - (b \mod m) = 0$ . ...

Assumption

Apply Division Apply Division

Algebra

Intro ∃ Def of | Def of ≡ Direct Proof

Therefore,  $a \equiv_m b$ .
Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

Suppose that  $a \mod m = b \mod m$ . By the Division Theorem, we can write  $a = (a \operatorname{div} m) m + (a \mod m)$  and  $b = (b \operatorname{div} m) m + (b \mod m)$ .

Assumption

Apply Division Apply Division

Subtracting these we can see that

 $a - b = ((a \operatorname{div} m) - (b \operatorname{div} m))m + ((a \operatorname{mod} m) - (b \operatorname{mod} m))) = ((a \operatorname{div} m) - (b \operatorname{div} m))m$ since  $(a \operatorname{mod} m) - (b \operatorname{mod} m) = 0$ . Therefore, by definition,  $m \mid (a - b)$ and so  $a \equiv_m b$ , by definition.

Intro ∃ Def of | Def of ≡ Direct Proof

Algebra

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

**2.**  $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$  ??

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

2.1.  $a \equiv_m b$ 

Assumption

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

2.1.  $a \equiv_m b$ 2.2.  $m \mid a - b$  Assumption Def of |

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

2.1.  $a \equiv_m b$ 2.2.  $m \mid a - b$ 2.3.  $\exists q (a - b = qm)$  Assumption Def of ≡ Def of |

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

2.1. 
$$a \equiv_m b$$
  
2.2.  $m \mid a - b$   
2.3.  $\exists q (a - b = qm)$   
2.4.  $a - b = km$ 

Assumption Def of ≡ Def of | Elim ∃

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

2.1. 
$$a \equiv_m b$$
  
2.2.  $m \mid a - b$   
2.3.  $\exists q \ (a - b = qm)$   
2.4.  $a - b = km$   
2.5.  $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ 

Assumption Def of ≡ Def of | Elim ∃ Apply Division

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

2.1. 
$$a \equiv_m b$$
Assumption2.2.  $m \mid a - b$ Def of  $\equiv$ 2.3.  $\exists q \ (a - b = qm)$ Def of  $\mid$ 2.4.  $a - b = km$ Elim  $\exists$ 2.5.  $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ Apply Division2.6.  $b = (a \operatorname{div} m - k) m + (a \operatorname{mod} m)$ Algebra

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

2.1.  $a \equiv_m b$ Assumption2.2.  $m \mid a - b$ Def of  $\equiv$ 2.3.  $\exists q \ (a - b = qm)$ Def of  $\mid$ 2.4. a - b = kmElim  $\exists$ 2.5.  $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ Apply Division2.6.  $b = (a \operatorname{div} m - k) m + (a \operatorname{mod} m)$ Algebra2.7.  $b \operatorname{div} m = (a \operatorname{div} m - k) \land$ Apply DivUnique $b \operatorname{mod} m = a \operatorname{mod} m$ Apply DivUnique

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

2.1.  $a \equiv_m b$ Assumption 2.2.  $m \mid a - b$ Def of ≡ **2.3.**  $\exists q (a - b = qm)$ Def of | 2.4. a - b = kmElim 3 **2.5.**  $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ **Apply Division 2.6.**  $b = (a \operatorname{div} m - k) m + (a \operatorname{mod} m)$ Algebra **2.7.** *b* div  $m = (a \operatorname{div} m - k) \wedge$ **Apply DivUnique**  $b \mod m = a \mod m$ **2.8.**  $a \mod m = b \mod m$ Elim  $\wedge$ **2.**  $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ **Direct Proof** 

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

Suppose that  $a \equiv_m b$ .

Assumption

Def of ≡ Def of | Elim ∃

**Apply Division** 

Algebra

Apply DivUnique Elim ∃

Therefore,  $a \mod m = b \mod m$ .

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

Suppose that  $a \equiv_m b$ .

Then,  $m \mid (a - b)$  by the definition of congruence. So, a - b = km for some integer k by the definition of divides. Equivalently, a = b + km. Assumption

Def of ≡ Def of ∣ Elim ∃

**Apply Division** 

Algebra

Apply DivUnique Elim ∃

Therefore,  $a \mod m = b \mod m$ .

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

Suppose that  $a \equiv_m b$ .AssumptionThen,  $m \mid (a - b)$  by the definition of congruence.Def of  $\equiv$ So, a - b = km for some integer k by the definition ofDef of  $\equiv$ divides. Equivalently, a = b + km.Def of  $\mid$ By the Division Theorem, we have  $a = (a \operatorname{div} m) m + (a \mod m)$ , with  $0 \leq (a \mod m) < m$ .Assumption

Algebra

Apply DivUnique Elim 3

Therefore,  $a \mod m = b \mod m$ .

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

Suppose that  $a \equiv_m b$ .

Then,  $m \mid (a - b)$  by the definition of congruence. So, a - b = km for some integer k by the definition of divides. Equivalently, a = b + km.

By the Division Theorem, we have  $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ , with  $0 \le (a \operatorname{mod} m) < m$ .

Combining these, we have  $(a \operatorname{div} m)m + (a \mod m) = a = b + km$ . Solving for b gives  $b = (a \operatorname{div} m)m + (a \mod m) - km = ((a \operatorname{div} m) - k)m + (a \mod m)$ .

Assumption

| Def of | ≡ |
|--------|---|
| Def of |   |
| Elim 3 |   |

**Apply Division** 

Algebra

Apply DivUnique Elim 3

Therefore,  $a \mod m = b \mod m$ .

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

Suppose that  $a \equiv_m b$ .

Then,  $m \mid (a - b)$  by the definition of congruence. So, a - b = km for some integer k by the definition of divides. Equivalently, a = b + km.

By the Division Theorem, we have  $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ , with  $0 \le (a \operatorname{mod} m) < m$ .

Combining these, we have  $(a \operatorname{div} m)m + (a \mod m) = a = b + km$ . Solving for b gives  $b = (a \operatorname{div} m)m - km + (a \mod m) = ((a \operatorname{div} m) - k)m + (a \mod m)$ .

By the uniqueness property in the Division Theorem, we must have  $b \mod m = a \mod m$  (and, although we don't need it, also  $b \dim m = a \dim m - k$ ).

#### Assumption

| Def of | ≡ |
|--------|---|
| Def of |   |
| Elim 3 |   |

**Apply Division** 

Algebra

Apply DivUnique Elim ∃

- What we have just shown
  - The mod *m* function maps any integer *a* to a remainder *a* mod  $m \in \{0,1,..,m-1\}$ .
  - Imagine grouping together all integers that have the same value of the mod m function That is, the same remainder in  $\{0,1,..,m-1\}$ .
  - The  $\equiv_m$  predicate compares integers a, b. It is true if and only if the mod m function has the same value on a and on b.

That is, a and b are in the same group.

### **Recall: Familiar Properties of "="**

- If a = b and b = c, then a = c.
  - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
  - since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
  - since c = c is true, we can " $\times c$ " to both sides

These facts allow us to use algebra to solve problems

## **Recall: Properties of "=" Used in Algebra**

| If $a = b$ and $b = c$ , then $a = c$ . | "Transitivity"       |
|-----------------------------------------|----------------------|
| If $a = b$ , then $a + c = b + c$ .     | "Add Equations"      |
| If $a = b$ , then $ac = bc$ .           | "Multiply Equations" |

These are **Theorems** that we use *implicitly* in Algebra

**Example:** given 5x + 4 = 2x + 25, prove that 3x = 21.

Let's see how to do this in **formal** logic...

| If $a = b$ and $b = c$ , then $a = c$ . | "Transitivity"       |
|-----------------------------------------|----------------------|
| If $a = b$ , then $a + c = b + c$ .     | "Add Equations"      |
| If $a = b$ , then $ac = bc$ .           | "Multiply Equations" |

**1.** 
$$5x + 4 = 2x + 25$$
Given**2.**  $-4 = -4$ Algebra**3.**  $5x = 2x + 21$ Add Equations: **1**, **24.**  $-2x = -2x$ Algebra**5.**  $3x = 21$ Add Equations: **3**, **4**

## **Recall: Properties of "=" Used in Algebra**

If 
$$a = b$$
 and  $b = c$ , then  $a = c$ ."Transitivity"If  $a = b$ , then  $a + c = b + c$ ."Add Equations"If  $a = b$ , then  $ac = bc$ ."Multiply Equations"

**1.** 
$$5x + 4 = 2x + 25$$
 Given

...

**5.** 3x = 21 **Transitivity** 

**<u>Careful</u>: proved**  $5x + 4 = 2x + 25 \Rightarrow 3x = 21$ **not**  $3x = 21 \Rightarrow 5x + 4 = 2x + 25$ the second is a "backward" proof

## **Recall: Familiar Properties of "="**

- If a = b and b = c, then a = c.
  - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
  - since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
  - since c = c is true, we can " $\times c$ " to both sides

Same facts apply to "≤" with non-negative numbers

What about " $\equiv_m$ "?

Let a, b, c and m be integers with m > 0. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

Let a, b, c and m be integers with m > 0. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

**1.** 
$$(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$$
 ??

Let a, b, c and m be integers with m > 0. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

**2.1.** 
$$a \equiv_m b \land b \equiv_m c$$

Assumption

2.?. 
$$a \equiv_m c$$
  
1.  $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ 

Let a, b, c and m be integers with m > 0. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

2.1.  $a \equiv_m b \land b \equiv_m c$ Assumption2.2.  $a \equiv_m b$ Elim  $\land$ : 2.12.3.  $b \equiv_m c$ Elim  $\land$ : 2.1

2.?. 
$$a \equiv_m c$$
  
1.  $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ 



2.?. 
$$a \equiv_m c$$
  
1.  $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ 

2.1. 
$$a \equiv_m b \land b \equiv_m c$$
Assumption2.2.  $a \equiv_m b$ Elim  $\land$ : 2.12.3.  $b \equiv_m c$ Elim  $\land$ : 2.12.4.  $m \mid a - b$ Def of  $\equiv$ : 2.22.5.  $m \mid b - c$ Def of  $\equiv$ : 2.32.6.  $\exists q (a - b = qm)$ Def of  $\mid$ : 2.42.7.  $\exists q (b - c = qm)$ Def of  $\mid$ : 2.5

2.?. 
$$a \equiv_m c$$
  
1.  $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ 

?? **Direct Proof** 

2.1

2.1

2.1. 
$$a \equiv_{m} b \land b \equiv_{m} c$$
  
2.2.  $a \equiv_{m} b$   
2.3.  $b \equiv_{m} c$   
2.4.  $m \mid a - b$   
2.5.  $m \mid b - c$   
2.6.  $\exists q (a - b = qm)$   
2.7.  $\exists q (b - c = qm)$   
2.8.  $a - b = km$   
2.9.  $b - c = jm$ 

Assumption Elim  $\land$ : 2.1 Elim  $\land$ : 2.1 Def of  $\equiv$ : 2.2 Def of  $\equiv$ : 2.3 Def of  $\mid$ : 2.3 Def of  $\mid$ : 2.4 Def of  $\mid$ : 2.5 Elim  $\exists$ : 2.6 Elim  $\exists$ : 2.7

**2.?.**  $a \equiv_m c$ **1.**  $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ 

Let a, b, c and m be integers with m > 0. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

| <b>2.1.</b> $a \equiv_m b \land b \equiv_m c$ | Assumption  |
|-----------------------------------------------|-------------|
| •••                                           |             |
| <b>2.8.</b> $a - b = km$                      | Elim ∃: 2.6 |
| 2.9. $b - c = jm$                             | Elim ∃: 2.7 |

2.?. 
$$a \equiv_m c$$
  
1.  $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ 

Let a, b, c and m be integers with m > 0. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

| Assumption  |
|-------------|
|             |
| Elim ∃: 2.6 |
| Elim ∃: 2.7 |
|             |

2.?. 
$$m \mid a - b$$
 ??  
2.?.  $a \equiv_m c$  Def of  $\equiv$   
1.  $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$  Direct Proof

Let a, b, c and m be integers with m > 0. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

| Assumption  |
|-------------|
|             |
| Elim ∃: 2.6 |
| Elim ∃: 2.7 |
|             |

2.?. 
$$\exists q \ (a - c = qm)$$
??2.?.  $m \mid a - c$ Def of |2.?.  $a \equiv_m c$ Def of  $\equiv$ 1.  $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ Direct Proof

**2.1.**  $a \equiv_m b \land b \equiv_m c$ Assumption 2.8. a - b = kmElim ∃: 2.6 2.9. b - c = jmElim ∃: 2.7 2.10. a - c = (k + j)mAlgebra **2.11.**  $\exists q (a - c = qm)$ Intro ∃: 2.10 2.12.  $m \mid a - c$ Def of |: 2.11 2.13.  $a \equiv_m c$ Def of ≡: 2.12 **1.**  $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ **Direct Proof** 

Let a, b, c and m be integers with m > 0. If  $a \equiv_m b$  and  $b \equiv_m c$ , then  $a \equiv_m c$ .

Suppose that  $a \equiv_m b$  and  $b \equiv_m c$ .

Assumption

Def of ≡

Def of |

Elim 3

Algebra

Intro ∃ Def of ∣

Def of ≡

**Direct Proof** 

Therefore,  $a \equiv_m c$ .

Suppose that  $a \equiv_m b$  and  $b \equiv_m c$ .

By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (b - c)$ . By the definition of divides, we know that a - b = km and b - c = jm for some integers k and j.

Assumption

Elim ∧ Def of ≡ Def of | Elim ∃ Algebra Intro ∃ Def of | Def of ≡ Direct Proof

Therefore,  $a \equiv_m c$ .

Suppose that  $a \equiv_m b$  and  $b \equiv_m c$ .

By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (b - c)$ . By the definition of divides, we know that a - b = km and b - c = jm for some integers k and j.

Adding these, gives a - c = km + jm = (k + j)m.

Algebra Intro ∃ Def of | Def of ≡ Direct Proof

Therefore,  $a \equiv_m c$ .

Assumption

Elim A

Def of ≡

Def of |

Elim 7

Suppose that  $a \equiv_m b$  and  $b \equiv_m c$ .

By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (b - c)$ . By the definition of divides, we know that a - b = km and b - c = jm for some integers k and j.

Assumption

Elim ∧ Def of ≡ Def of | Elim ∃ Algebra Intro ∃ Def of | Def of ≡

Direct Proof

Adding these, gives a - c = km + jm = (k + j)m.

Therefore, by the definition of divides, we have shown that  $m \mid (a - c)$ , and then,  $a \equiv_m c$  by the definition of congruence.
Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

**1.**  $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$  ??

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

**2.1.**  $a \equiv_m b \land c \equiv_m d$  Assumption

2.?. 
$$a + c \equiv_m b + d$$
 ??  
1.  $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$  Direct Proof

| 2.1. $a \equiv_m b \land c \equiv_m d$ | Assumption         |
|----------------------------------------|--------------------|
| $2.2. a \equiv_m b$                    | Elim ^: <b>2.1</b> |
| $2.3. c \equiv_m d$                    | Elim ^: <b>2.1</b> |

2.?. 
$$a + c \equiv_m b + d$$
 ??  
1.  $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$  Direct Proof

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

2.1.  $a \equiv_m b \land c \equiv_m d$ Assumption2.2.  $a \equiv_m b$ Elim  $\land$ : 2.12.3.  $c \equiv_m d$ Elim  $\land$ : 2.12.4.  $m \mid a - b$ Def of  $\equiv$ : 2.22.5.  $m \mid c - d$ Def of  $\equiv$ : 2.3

2.?.  $a + c \equiv_m b + d$  ?? 1.  $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$  Direct Proof

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

| <b>2.1.</b> $a \equiv_m b \land c \equiv_m d$ | Assumption         |
|-----------------------------------------------|--------------------|
| 2.2. $a \equiv_m b$                           | Elim ^: <b>2.1</b> |
| 2.3. $c \equiv_m d$                           | Elim ^: <b>2.1</b> |
| 2.4. $m \mid a - b$                           | Def of ≡: 2.2      |
| 2.5. $m \mid c - d$                           | Def of ≡: 2.3      |
| <b>2.6.</b> $\exists q \ (a - b = qm)$        | Def of  : 2.4      |
| <b>2.7.</b> $\exists q \ (c - d = qm)$        | Def of  : 2.5      |
|                                               |                    |

2.?.  $a + c \equiv_m b + d$  ?? 1.  $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$  Direct Proof

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

2.1. 
$$a \equiv_m b \land c \equiv_m d$$
Assumption2.2.  $a \equiv_m b$ Elim  $\land$ : 2.12.3.  $c \equiv_m d$ Elim  $\land$ : 2.12.4.  $m \mid a - b$ Def of  $\equiv$ : 2.22.5.  $m \mid c - d$ Def of  $\equiv$ : 2.32.6.  $\exists q (a - b = qm)$ Def of  $\mid$ : 2.42.7.  $\exists q (c - d = qm)$ Def of  $\mid$ : 2.52.8.  $a - b = km$ Elim  $\exists$ : 2.62.9.  $c - d = jm$ Elim  $\exists$ : 2.7

2.?.  $a + c \equiv_m b + d$  ?? 1.  $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$  Direct Proof

| <b>2.1.</b> $a \equiv_m b \land c \equiv_m d$ | Assumption  |
|-----------------------------------------------|-------------|
| •••                                           |             |
| <b>2.8.</b> $a - b = km$                      | Elim ∃: 2.6 |
| 2.9. $c - d = jm$                             | Elim ∃: 2.7 |

2.?. 
$$m \mid (a + c) - (b + d)$$
 ??  
2.?.  $a + c \equiv_m b + d$  Def of  $\equiv$   
1.  $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$  Direct Proof

| 2.1. $a \equiv_m b \land c \equiv_m d$ | Assumption  |
|----------------------------------------|-------------|
| •••                                    |             |
| 2.8. $a - b = km$                      | Elim ∃: 2.6 |
| 2.9. $c - d = jm$                      | Elim ∃: 2.7 |

2.?. 
$$\exists q ((a + c) - (b + d) = qm)$$
 ??  
2.?.  $m \mid (a + c) - (b + d)$  Def of  $\mid$   
2.?.  $a + c \equiv_m b + d$  Def of  $\equiv$   
1.  $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$  Direct Proof

2.1. 
$$a \equiv_m b \land c \equiv_m d$$
Assumption...2.8.  $a - b = km$ Elim  $\exists : 2.6$ 2.9.  $c - d = jm$ Elim  $\exists : 2.7$ 2.10.  $(a + c) - (b + d) = (k + j)m$ Algebra2.11.  $\exists q ((a + c) - (b + d) = qm))$ Intro  $\exists : 2.10$ 2.12.  $m \mid (a + c) - (b + d)$ Def of  $\mid : 2.11$ 2.13.  $a + c \equiv_m b + d$ Def of  $\equiv : 2.12$ 1.  $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$ Direct Proof

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

Assumption

Def of ≡

Def of ∣ Elim ∃

Algebra

Intro ∃ Def of | Def of ≡ Direct Proof

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ .

Assumption

Def of ≡ Def of |

Elim 3

Algebra

Intro ∃ Def of | Def of ≡

Therefore,  $a + c \equiv_m b + d$ .

**Direct Proof** 

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ .

By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (c - d)$ . By the definition of divides, we know that a - b = km and c - d = jm for some integers k and j.

Assumption

Elim ∧ Def of ≡ Def of |

Elim 3

Algebra

Intro ∃ Def of |

Def of ≡

**Direct Proof** 

Therefore,  $a + c \equiv_m b + d$ .

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ .

By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (c - d)$ . By the definition of divides, we know that a - b = km and c - d = jm for some integers k and j.

Assumption

Elim ∧ Def of ≡ Def of ∣ Elim ∃

Adding these, gives 
$$(a + c) - (b + d) =$$
 Algebra  
 $(a - b) + (c - d) = km + jm = (k + j)m$ .

Intro ∃ Def of | Def of ≡

**Direct Proof** 

Therefore,  $a + c \equiv_m b + d$ .

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ .

By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (c - d)$ . By the definition of divides, we know that a - b = km and c - d = jm for some integers k and j.

Assumption

Elim ∧ Def of ≡ Def of ∣ Elim ∃

Adding these, gives 
$$(a + c) - (b + d) =$$
 Algebra  
 $(a - b) + (c - d) = km + jm = (k + j)m$ .

Therefore, by the definition of divides, we have shown  $m \mid (a + c) - (b + d)$ , and then, we have  $a + c \equiv_m b + d$  by the definition of congruence. Intro ∃ Def of ∣

Def of ≡

**Direct Proof** 

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ . Assumption

Therefore,  $ac \equiv_m bd$ .

?? Direct Proof

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ . Assumption

By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (c - d)$ . Def of  $\equiv$ 

Therefore,  $ac \equiv_m bd$ .

?? Direct Proof

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ . Assumption By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (c - d)$ . By the definition of Def of  $\equiv$ 

divides, we know that a - b = jm and c - d = kmfor some integers j and k. Def of ≡ Def of | Elim ∃

Therefore,  $ac \equiv_m bd$ .

?? Direct Proof

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ . Assumption By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (c - d)$ . By the definition of Def of ≡ Def of | divides, we know that a - b = jm and c - d = km

for some integers  $\mathbf{i}$  and  $\mathbf{k}$ .

Elim 7

Therefore,  $m \mid ac - bd$ , so  $ac \equiv_m bd$  by the Def of ≡ definition of congruence.

**Direct Proof** 

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ . Assumption By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (c - d)$ . By the definition of divides, we know that a - b = jm and c - d = kmfor some integers j and k.

Show:  $\exists k (ac - bd = km)$ Therefore,  $m \mid ac - bd$  by the definition of divides,  $Def of \models$ so  $ac \equiv_m bd$  by the definition of congruence. Direct Proof

Let *m* be a positive integer. If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Suppose that  $a \equiv_m b$  and  $c \equiv_m d$ . Assumption By the definition of congruence, we know that  $m \mid (a - b)$  and  $m \mid (c - d)$ . By the definition of Def of ≡ divides, we know that a - b = jm and c - d = kmDef of | Elim 3 for some integers  $\mathbf{i}$  and  $\mathbf{k}$ . Equivalently, a = b + jm and c = d + km. Algebra Multiplying these gives ac = (b + jm)(d + km) =bd + bkm + djm + jkm = bd + (bk + dj + jk)m, Intro 7 so ac - bd = (bk + dj + jk)m. Def of | Def of ≡ Therefore,  $m \mid ac - bd$  by the definition of divides, so  $ac \equiv_m bd$  by the definition of congruence. **Direct Proof** 

If 
$$a \equiv_m b$$
 and  $b \equiv_m c$ , then  $a \equiv_m c$ .

If 
$$a \equiv_m b$$
 and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$ .

Corollary: If  $a \equiv_m b$ , then  $a + c \equiv_m b + c$ .

If 
$$a \equiv_m b$$
 and  $c \equiv_m d$ , then  $ac \equiv_m bd$ .

Corollary: If  $a \equiv_m b$ , then  $ac \equiv_m bc$ .

If 
$$a \equiv_m b$$
 and  $b \equiv_m c$ , then  $a \equiv_m c$ .

If 
$$a \equiv_m b$$
, then  $a + c \equiv_m b + c$ .

If 
$$a \equiv_m b$$
, then  $ac \equiv_m bc$ .

" $\equiv_m$ " allows us to solve problems in modular arithmetic, e.g.

- add / subtract numbers from both sides of equations
- chains of " $\equiv_m$ " values shows first and last are " $\equiv_m$ "
- substitute " $\equiv_m$ " values in equations (not proven yet)

# Properties of " $\equiv_m$ " Used in Algebra

| If $a \equiv_m b$ and $b \equiv_m c$ , then $a \equiv_m c$         | "Transitivity"     |
|--------------------------------------------------------------------|--------------------|
| If $a \equiv_m b$ and $c \equiv_m d$ , then $a + c \equiv_m b + d$ | "Add Equations"    |
| If $a \equiv_m b$ and $c \equiv_m d$ , then $ac \equiv_m bd$ "Mu   | ultiply Equations" |

These are **Theorems** that we use *implicitly* in Algebra

**Example:** given that  $5x + 4 \equiv_m 2x + 25$ , prove that  $3x \equiv_m 21$ 

## Properties of " $\equiv_m$ " Used in Algebra

If 
$$a \equiv_m b$$
 and  $b \equiv_m c$ , then  $a \equiv_m c$  "Transitivity"  
If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$  "Add Equations"  
If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$  "Multiply Equations"

**1.** 
$$5x + 4 \equiv_m 2x + 25$$
 Given

 **2.**  $-4 = -4$ 
 Algebra

 **3.**  $5x \equiv_m 2x + 21$ 
 Add Equations: **2**, **1**?

Line 2 says "=" not " $\equiv_m$ "

But "=" implies " $\equiv_m$ " ! (equality is a special case)

### Properties of " $\equiv_m$ " Used in Algebra

If 
$$a \equiv_m b$$
 and  $b \equiv_m c$ , then  $a \equiv_m c$  "Transitivity"  
If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $a + c \equiv_m b + d$  "Add Equations"  
If  $a \equiv_m b$  and  $c \equiv_m d$ , then  $ac \equiv_m bd$  "Multiply Equations"

**1.** 
$$5x + 4 \equiv_m 2x + 25$$
  
**2.**  $-4 = -4$   
**3.**  $-4 \equiv_m -4$   
**4.**  $5x \equiv_m 2x + 21$   
**5.**  $-2x = -2x$   
**6.**  $-2x \equiv_m -2x$   
**7.**  $3x \equiv_m 21$ 

Given Algebra To Modular: 2 Add Equations: 3, 1 Algebra To Modular Add Equations: 4, 6

### Another Property of "=" Used in Algebra

| If $a \equiv_m b$ and $b \equiv_m c$ , then $a \equiv_m c$         | "Transitivity"           |
|--------------------------------------------------------------------|--------------------------|
| If $a \equiv_m b$ and $c \equiv_m d$ , then $a + c \equiv_m b + c$ | <i>d</i> "Add Equations" |
| If $a \equiv_m b$ and $c \equiv_m d$ , then $ac \equiv_m bd$       | "Multiply Equations"     |
| If $a = b$ , then $a \equiv_m b$ .                                 | "To Modular"             |

Can "plug in" (a.k.a. substitute) the known value of a variable

**Example:** given 2y + 3x = 25 and x = 7, prove that 2y + 21 = 25.

> This is <u>also</u> true of congruences! (We just don't have the tools to prove it yet.)

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

What numbers a and b did we **prove** this for?

We don't know anything about these numbers. I.e., they were **arbitrary**.

That means our proof could be changed...

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

**1.1.**  $a \mod m = b \mod m$ Assumption 1.7.  $a \equiv_m b$ Def of ≡ **1.**  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$ **Direct Proof** 2.1.  $a \equiv_m b$ Assumption **2.8.**  $a \mod m = b \mod m$ Elim  $\land$ **Direct Proof 2.**  $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ **3.**  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b) \land$  $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ Intro  $\land$ **4.**  $(a \equiv_m b) \leftrightarrow (a \mod m = b \mod m)$ Equivalent

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

Let *a* and *b* be arbitrary integers. **1.1.1.**  $a \mod m = b \mod m$ Assumption 1.1.7.  $a \equiv_m b$ Def of ≡ **1.1.**  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$ **Direct Proof 1.2.1.**  $a \equiv_m b$ Assumption **1.2.8.**  $a \mod m = b \mod m$ Elim  $\land$ **1.2.**  $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ **Direct Proof 1.3.**  $(a \mod m = b \mod m) \rightarrow (a \equiv_m b) \land$  $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ Intro  $\land$ **1.4.**  $(a \equiv_m b) \leftrightarrow (a \mod m = b \mod m)$ Equivalent **1.**  $\forall a \forall b ((a \equiv_m b) \leftrightarrow (a \mod m = b \mod m))$ Intro ∀

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

> This is stated as  $(a \equiv_m b) \leftrightarrow (a \mod m = b \mod m)$ but it is **really**  $\forall a \forall b ((a \equiv_m b) \leftrightarrow (a \mod m = b \mod m))$

> > This is a fact we can apply to <u>any</u> integers a and b (and m > 0).

<u>Rule</u>: unquantified variables are *implicitly* ∀-quantified (will see one exception later...)

Let a, b, m be integers with m > 0. Then,  $a \equiv_m b$  if and only if  $a \mod m = b \mod m$ .

But the proof **stays** as is!

<u>Rule</u>: structure of the proof follows the structure of the claim