
CSE 311: Foundations of Computing

Topic 4:  Number Theory



Mechanical vs Creative Predicate Logic

• We’ve done examples with “meaningless” 
predicates such as   "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙
– Saw how to (often) mechanically solve by looking at 

“shape” of the goal.
– We’ll need these skills in all domains!

• When we enter “interesting” domains of discourse, 
we will use domain knowledge.
– We will see how to creatively solve goals, especially 

with rules like Intro ∨, Intro $, Elim ∧, Elim ".



Applications of Predicate Logic

• Remainder of the course will use predicate logic to 
prove important properties of interesting objects
– start with math objects that are widely used in CS
– eventually more CS-specific objects

• Encode domain knowledge in predicate definitions
• Then apply predicate logic to infer useful results

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse



Number Theory

• Direct relevance to computing
– everything in a computer is a number

colors on the screen are encoded as numbers

• Many significant applications in CS…



Pixels in Memory

• Memory is an array, so
pixel positions must be mapped to array indexes

6 x 4

24 = 6 x 4



Pixels in Memory

pixel at (2, 4)6 x 4

stored at index 16
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= 12 + 4
= 2 · 6 + 4



Pixels in Memory

pixel at (i, j)6 x 4

Stored at index n.
How do we calculate n from i and j?
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n = i · 6 + j



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎. Suppose that

𝑎
𝑏 = 𝑞

The number 𝑞 is called the quotient.

This equation involve fractions. We want to stick to integers!
Multiplying both sides by 𝑏, this becomes

𝑎 = 𝑞𝑏

When there exists some such 𝑞, we write "𝑏	|	𝑎".

Recall: Elementary School Division



Divisibility

Check Your Understanding.  Which of the following are true?

5 |	1    25 | 5    5 | 0   3 |	2

1 | 5    5 | 25        0 | 5   2 | 3

  For 𝑎, 𝑏 with 𝑏 ≠ 0:
𝑏	|	𝑎	 ≔	∃𝑞	(𝑎 = 𝑞𝑏)

Definition: “b divides a”

Integers
Domain of Discourse



Check Your Understanding.  Which of the following are true?

5 |	1    25 | 5    5 | 0   3 |	2

1 | 5    5 | 25        0 | 5   2 | 3

Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

  For 𝑎, 𝑏 with 𝑏 ≠ 0:
𝑏	|	𝑎	 ≔	∃𝑞	(𝑎 = 𝑞𝑏)

Definition: “b divides a”

Integers
Domain of Discourse



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 ∤ 𝑎, then we end up with a remainder 𝑟 with 0 < 𝑟 < 𝑏.
Now,

 instead of      we have 

Multiplying both sides by 𝑏 gives us   𝑎 = 𝑞𝑏 + 𝑟

Recall: Elementary School Division

𝑎
𝑏 = 𝑞

𝑎
𝑏 = 𝑞 +

𝑟
𝑏



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏	|	𝑎, then we have 𝑎 = 𝑞𝑏 for some 𝑞.
If 𝑏 ∤ 𝑎, then we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 with 0 < r < b.

In general, we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑏,
where 𝑟 = 0 iff 𝑏	|	𝑎.

Recall: Elementary School Division



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div b

 For 𝑎, 𝑏 with 𝑏 > 0
      there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏     

such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

r = a mod b

Integers
Domain of Discourse

a = (a div b) b + (a mod b)

∀𝑎	∀𝑏 𝑏 > 0 → (𝑎 = 𝑎	div	𝑏 𝑏 + 𝑎	mod	𝑏 )



Pixels in Memory

pixel at (i, j)6 x 4

Stored at index n. 
How do we calculate n from i and j?

0     1    2    3     4    5     6    7    8    9    10  11  12  13  14  15  16  17   18  19  20  21  22  23

0
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0     1    2    3     4    5

n = i · 6 + j



Pixels in Memory

pixel at (i, j)6 x 4

Stored at index n.
How do we calculate i and j from n?

0     1    2    3     4    5     6    7    8    9    10  11  12  13  14  15  16  17   18  19  20  21  22  23

0
1

2

3

0     1    2    3     4    5

i = n div 6
j = n mod 6



Number Theory

• Direct relevance to computing
– important toolkit for programmers

• Many significant applications
– Cryptography & Security
– Data Structures
– Distributed Systems



Modular Arithmetic



Modular Arithmetic

• Arithmetic over a finite domain

• Almost all computation is over a finite domain



I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
  System.out.println(
   “I will be alive for at least ” +
   SEC_IN_YEAR * 101 + “ seconds.”
  );
 }
}



I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
  System.out.println(
   “I will be alive for at least ” +
   SEC_IN_YEAR * 101 + “ seconds.”
  );
 }
}

Prints : “I will be alive for at least -186619904 seconds.”



Ordinary arithmetic

-3 -2 -1 0 1 2 3 4 5 6 7 8

+5

3 + 5 = 8



Arithmetic on a Clock

0
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3 + 5 = 8

15 = 7 · 2 + 1

0
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2

34
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6

If 𝑎 = 7𝑞 + 𝑟, then 𝑟	 (= 𝑎	mod	𝑏) is
where you stop after taking 𝑎 steps on the clock

22 = 7 · 3 + 1

8 = 7 · 1 + 1



Arithmetic, mod 7

(a + b) mod 7
(a ´ b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

0
1

2

34

5

6



Modular Arithmetic

New notion of “sameness” that will help us 
understand modular arithmetic

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ≔ 	 𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

Integers
Domain of Discourse



Modular Arithmetic

The standard math notation is

𝑎 ≡ 𝑏 mod	𝑚

A chain of equivalences is written

𝑎 ≡ 𝑏 ≡ 𝑐 ≡ 𝑑 mod	𝑚

Many students find this confusing,
so we will use ≡! instead.

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ≔ 	 𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

Integers
Domain of Discourse



Modular Arithmetic

Check Your Understanding.  What do each of these mean?
When are they true?

x ≡2 0

-1 ≡5 19

 y ≡7 2

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ≔ 	 𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

This statement is the same as saying “x is even”; so, any x that is 
even (including negative even numbers) will work.

This statement is true.  19 - (-1) = 20 which is divisible by 5

This statement is true for  y in { ..., -12, -5, 2, 9, 16, ...}.  In other 
words, all y of the form 2+7k for k an integer. 

Integers
Domain of Discourse



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Proof Plan:

 1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)	 ??
 2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎) ??
 3. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) ∧
      (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	 Intro Ù: 1, 2
 4. (𝒂 ≡𝒎 𝒃) ↔ (𝒂	mod	𝒎 = 𝒃	mod	𝒎) Equivalent: 3



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  ??



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption

 1.?  𝒂 ≡𝒎 𝒃         ??
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption

 1.? 𝒎 ∣ 𝒂 − 𝒃	        ??
 1.?  𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption

 1.? ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      ??
 1.? 𝒎 ∣ 𝒂 − 𝒃	        Def of ∣
 1.?  𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption
 1.2. 𝒂 = 𝒂	div	𝒎 	𝒎+ (𝒂	mod	𝒎)  Apply Division
 1.3. 𝒃 = 𝒃	div	𝒎 	𝒎+ (𝒃	mod	𝒎)  Apply Division

 1.? ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      ??
 1.? 𝒎 ∣ 𝒂 − 𝒃	        Def of ∣
 1.?  𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption
 1.2. 𝒂 = 𝒂	div	𝒎 	𝒎+ (𝒂	mod	𝒎)  Apply Division
 1.3. 𝒃 = 𝒃	div	𝒎 	𝒎+ (𝒃	mod	𝒎)  Apply Division
 1.4. 𝒂 − 𝒃 = 𝒂	div	𝒎 − 𝒃	div	𝒎 	𝒎 Algebra
 1.5. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      Intro ∃
 1.6. 𝒎 ∣ 𝒂 − 𝒃	        Def of ∣
 1.7. 𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Therefore, 𝑎 ≡! 𝑏.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

   Apply Division
   Apply Division

  Algebra

   Intro ∃
   Def of ∣
   Def of ≡
Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

By the Division Theorem, we can write
𝑎 = 𝑎	div	𝑚 	𝑚 + (𝑎	mod	𝑚) and
𝑏 = 𝑏	div	𝑚 	𝑚 + (𝑏	mod	𝑚).

Therefore, 𝑎 ≡! 𝑏.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

   Apply Division
   Apply Division

  Algebra

   Intro ∃
   Def of ∣
   Def of ≡
Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

By the Division Theorem, we can write
𝑎 = 𝑎	div	𝑚 	𝑚 + (𝑎	mod	𝑚) and
𝑏 = 𝑏	div	𝑚 	𝑚 + (𝑏	mod	𝑚).
Subtracting these we can see that

𝑎 − 𝑏 = 𝑎	div	𝑚 − 𝑏	div	𝑚 𝑚 +
      ( 𝑎	mod	𝑚 − (𝑏	mod	𝑚))
       = 𝑎	div	𝑚 − 𝑏	div	𝑚 	𝑚
since 𝑎	mod	𝑚 − 𝑏	mod	𝑚 = 0.
…
Therefore, 𝑎 ≡! 𝑏.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

   Apply Division
   Apply Division

  Algebra

   Intro ∃
   Def of ∣
   Def of ≡
Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

By the Division Theorem, we can write
𝑎 = 𝑎	div	𝑚 	𝑚 + (𝑎	mod	𝑚) and
𝑏 = 𝑏	div	𝑚 	𝑚 + (𝑏	mod	𝑚).
Subtracting these we can see that

𝑎 − 𝑏 = 𝑎	div	𝑚 − 𝑏	div	𝑚 𝑚 +
      ( 𝑎	mod	𝑚 − (𝑏	mod	𝑚))
       = 𝑎	div	𝑚 − 𝑏	div	𝑚 	𝑚
since 𝑎	mod	𝑚 − 𝑏	mod	𝑚 = 0.

Therefore, by definition, 𝑚	|	(𝑎 − 𝑏)	
and so 𝑎 ≡! 𝑏, by definition.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

   Apply Division
   Apply Division

  Algebra

   Intro ∃
   Def of ∣
   Def of ≡
Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)  ??



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

2.1. 𝒂 ≡𝒎 𝒃         Assumption

 2.? 𝒂	mod	𝒎 = 𝒃	mod	𝒎     ??
2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

2.1. 𝒂 ≡𝒎 𝒃         Assumption
 2.2. 𝒎 ∣ 𝒂 − 𝒃	        Def of ∣

 2.? 𝒂	mod	𝒎 = 𝒃	mod	𝒎     ??
2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

2.1. 𝒂 ≡𝒎 𝒃         Assumption
 2.2. 𝒎 ∣ 𝒂 − 𝒃	        Def of ≡
 2.3. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      Def of ∣

 2.? 𝒂	mod	𝒎 = 𝒃	mod	𝒎     ??
2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

2.1. 𝒂 ≡𝒎 𝒃         Assumption
 2.2. 𝒎 ∣ 𝒂 − 𝒃	        Def of ≡
 2.3. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      Def of ∣
 2.4. 𝒂 − 𝒃 = 𝒌𝒎	        Elim ∃

 2.? 𝒂	mod	𝒎 = 𝒃	mod	𝒎     ??
2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

2.1. 𝒂 ≡𝒎 𝒃         Assumption
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Modular Arithmetic: A Property

Suppose that 𝑎 ≡! 𝑏.
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divides. Equivalently, 𝑎 = 𝑏 + 𝑘𝑚.
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𝑎	mod	𝑚 , with 0 ≤ (𝑎	mod	𝑚) < 𝑚.
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𝑎	mod	𝑚 , with 0 ≤ (𝑎	mod	𝑚) < 𝑚.

Combining these, we have 𝑎	div	𝑚 𝑚 + 𝑎	mod	𝑚 =
𝑎 = 𝑏 + 𝑘𝑚. Solving for b gives b = 𝑎	div	𝑚 	𝑚 −
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don't need it, also 𝑏	div	𝑚 = 𝑎	div	𝑚	 − 𝑘).
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The mod	𝑚 function vs the	≡! predicate

• What we have just shown
– The mod	𝑚 function maps any integer 𝑎 to a 

remainder 𝑎	mod	𝑚 ∈ {0,1, . . , 𝑚 − 1}.
    

– Imagine grouping together all integers that have 
the same value of the mod	𝑚	function

That is, the same remainder in 0,1, . . , 𝑚 − 1 .
 

– The ≡8 predicate compares integers 𝑎, 𝑏.   It is 
true if and only if the mod	𝑚 function has the 
same value on 𝑎 and on 𝑏. 

That is, 𝑎 and 𝑏 are in the same group.



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− since 𝑐 = 𝑐 is true, we can “+	𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− since 𝑐 = 𝑐 is true, we can “×	𝑐” to both sides

Recall: Familiar Properties of “=”

These facts allow us to use
algebra to solve problems



Recall: Properties of “=” Used in Algebra

Example: given 5𝑥 + 4 = 2𝑥 + 25,
    prove that 3𝑥 = 21.

These are Theorems that
we use implicitly in Algebra

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄.  “Transitivity”
If 𝒂 = 𝒃, then 𝒂 + 𝒄 = 𝒃 + 𝒄.  “Add Equations”
If 𝒂 = 𝒃, then 𝒂𝒄 = 𝒃𝒄.    “Multiply Equations”

Let’s see how to do this in formal logic…



Recall: Properties of “=” Used in Algebra

1. 5𝑥 + 4 = 2𝑥 + 25   Given
2. −4 = −4      Algebra
3. 5𝑥 = 2𝑥 + 21    Add Equations: 1, 2
4. −2𝑥 = −2𝑥     Algebra
5. 3𝑥 = 21      Add Equations: 3, 4

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄.  “Transitivity”
If 𝒂 = 𝒃, then 𝒂 + 𝒄 = 𝒃 + 𝒄.  “Add Equations”
If 𝒂 = 𝒃, then 𝒂𝒄 = 𝒃𝒄.    “Multiply Equations”



Recall: Properties of “=” Used in Algebra

1. 5𝑥 + 4 = 2𝑥 + 25   Given
…
5. 3𝑥 = 21      Transitivity

Careful: proved 5𝑥 + 4 = 2𝑥 + 25	 ⇒ 	3𝑥 = 21
                      not  3𝑥 = 21	 ⇒ 	5𝑥 + 4 = 2𝑥 + 25

the second is a “backward” proof

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄.  “Transitivity”
If 𝒂 = 𝒃, then 𝒂 + 𝒄 = 𝒃 + 𝒄.  “Add Equations”
If 𝒂 = 𝒃, then 𝒂𝒄 = 𝒃𝒄.    “Multiply Equations”



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− since 𝑐 = 𝑐 is true, we can “+	𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− since 𝑐 = 𝑐 is true, we can “×	𝑐” to both sides

Recall: Familiar Properties of “=”

Same facts apply to “≤”
with non-negative numbers What about “≡𝒎”?



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	   ??



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄      Assumption

 2.?. 𝒂 ≡𝒎 𝒄        ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof
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2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄      Assumption
 2.2. 𝒂 ≡𝒎 𝒃        Elim Ù : 2.1 
 2.3. 𝒃 ≡𝒎 𝒄        Elim Ù : 2.1
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2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄      Assumption
 2.2. 𝒂 ≡𝒎 𝒃        Elim Ù : 2.1 
 2.3. 𝒃 ≡𝒎 𝒄        Elim Ù : 2.1
 2.4. 𝒎 ∣ 𝒂 − 𝒃	        Def of ≡ : 2.2
 2.5. 𝒎 ∣ 𝒃 − 𝒄	        Def of ≡ : 2.3
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 2.4. 𝒎 ∣ 𝒂 − 𝒃	        Def of ≡ : 2.2
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 2.9. 𝒃 − 𝒄 = 𝒋𝒎       Elim ∃ : 2.7
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1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof
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 2.8. 𝒂 − 𝒃 = 𝒌𝒎       Elim ∃ : 2.6
 2.9. 𝒃 − 𝒄 = 𝒋𝒎       Elim ∃ : 2.7

 2.?. ∃𝒒	(𝒂 − 𝒄 = 𝒒𝒎)	      ??
 2.?. 𝒎 ∣ 𝒂 − 𝒄	        Def of ∣
 2.?. 𝒂 ≡𝒎 𝒄        Def of ≡
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof
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Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
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 …
 2.8. 𝒂 − 𝒃 = 𝒌𝒎       Elim ∃ : 2.6
 2.9. 𝒃 − 𝒄 = 𝒋𝒎       Elim ∃ : 2.7
 2.10. 𝒂 − 𝒄 = (𝒌 + 𝒋)𝒎     Algebra
 2.11. ∃𝒒	(𝒂 − 𝒄 = 𝒒𝒎)	     Intro ∃ : 2.10
 2.12. 𝒎 ∣ 𝒂 − 𝒄	       Def of ∣ : 2.11
 2.13. 𝒂 ≡𝒎 𝒄        Def of ≡ : 2.12
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof
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Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.
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 Def of ∣
 Elim ∃
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 Intro ∃
 Def of ∣
 Def of ≡
Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐.

Therefore, 𝑎 ≡! 𝑐. 
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Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
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Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑏	– 𝑐 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.

Therefore, 𝑎 ≡! 𝑐. 
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Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑏	– 𝑐 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.
Adding these, gives 𝑎	– 𝑐 = 𝑘𝑚 + 𝑗𝑚 = 𝑘 + 𝑗 𝑚.

Therefore, 𝑎 ≡! 𝑐. 



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.
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Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑏 ≡! 𝑐.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑏	– 𝑐 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.
Adding these, gives 𝑎	– 𝑐 = 𝑘𝑚 + 𝑗𝑚 = 𝑘 + 𝑗 𝑚.

Therefore, by the definition of divides, we have 
shown that 𝑚	|	(𝑎	– 𝑐), and then, 𝑎 ≡! 𝑐 by the 
definition of congruence.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.
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Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
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1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 ??



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
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 2.7. ∃𝒒	(𝒄 − 𝒅 = 𝒒𝒎)	       Def of ∣ : 2.5
 2.8. 𝒂 − 𝒃 = 𝒌𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒋𝒎        Elim ∃ : 2.7

 2.?. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       ??
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Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒌𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒋𝒎        Elim ∃ : 2.7

 2.?. 𝒎 ∣ 𝒂 + 𝒄 − (𝒃 + 𝒅)      ??
 2.?. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       Def of ≡
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 Direct Proof
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then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.
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 …
 2.8. 𝒂 − 𝒃 = 𝒌𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒋𝒎        Elim ∃ : 2.7

 2.?. ∃𝒒	( 𝒂 + 𝒄 − (𝒃 + 𝒅) = 𝒒𝒎)	   ??
 2.?. 𝒎 ∣ 𝒂 + 𝒄 − (𝒃 + 𝒅)      Def of ∣
 2.?. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       Def of ≡
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 Direct Proof
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Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.
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 2.11. ∃𝒒	( 𝒂 + 𝒄 − (𝒃 + 𝒅) = 𝒒𝒎)	   Intro ∃ : 2.10
 2.12. 𝒎 ∣ 𝒂 + 𝒄 − (𝒃 + 𝒅)     Def of ∣ : 2.11
 2.13. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       Def of ≡ : 2.12
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Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
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Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃
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 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

Therefore, 𝑎 + 𝑐 ≡! 𝑏 + 𝑑.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.
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Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.

Therefore, 𝑎 + 𝑐 ≡! 𝑏 + 𝑑.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.
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Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.
Adding these, gives 𝑎 + 𝑐 − 𝑏 + 𝑑 =
𝑎 − 𝑏 + 𝑐 − 𝑑 = 𝑘𝑚 + 𝑗𝑚 = 𝑘 + 𝑗 𝑚.

Therefore, 𝑎 + 𝑐 ≡! 𝑏 + 𝑑.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.
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 Def of ≡

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.
Adding these, gives 𝑎 + 𝑐 − 𝑏 + 𝑑 =
𝑎 − 𝑏 + 𝑐 − 𝑑 = 𝑘𝑚 + 𝑗𝑚 = 𝑘 + 𝑗 𝑚.

Therefore, by the definition of divides, we have 
shown 𝑚	| 𝑎 + 𝑐 − (𝑏 + 𝑑), and then, we have 
𝑎 + 𝑐 ≡! 𝑏 + 𝑑 by the definition of congruence.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.
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Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

Therefore, 𝑎𝑐 ≡! 𝑏𝑑.
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Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). 

Therefore, 𝑎𝑐 ≡! 𝑏𝑑.
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Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
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Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑗𝑚 and 𝑐	– 𝑑 = 𝑘𝑚 
for some integers 𝑗 and 𝑘.

Therefore, 𝑎𝑐 ≡! 𝑏𝑑.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.
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Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑗𝑚 and 𝑐	– 𝑑 = 𝑘𝑚 
for some integers 𝑗 and 𝑘.

Therefore, 𝑚	|	𝑎𝑐 − 𝑏𝑑, so 𝑎𝑐 ≡! 𝑏𝑑 by the 
definition of congruence.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.

Assumption

 
 Def of ≡
 Def of ∣
 Elim ∃

 

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑗𝑚 and 𝑐	– 𝑑 = 𝑘𝑚 
for some integers 𝑗 and 𝑘.

Show: ∃k	(𝑎𝑐 − bd = km)

Therefore, 𝑚	|	𝑎𝑐 − 𝑏𝑑 by the definition of divides, 
so 𝑎𝑐 ≡! 𝑏𝑑 by the definition of congruence.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.

Assumption

 
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑗𝑚 and 𝑐	– 𝑑 = 𝑘𝑚 
for some integers 𝑗 and 𝑘.
Equivalently, 𝑎 = 𝑏 + 𝑗𝑚 and 𝑐 = 𝑑 + 𝑘𝑚. 
Multiplying these gives 𝑎𝑐 = 𝑏 + 𝑗𝑚 𝑑 + 𝑘𝑚 =
𝑏𝑑 + 𝑏𝑘𝑚 + 𝑑𝑗𝑚 + 𝑗𝑘𝑚 = 𝑏𝑑 + 𝑏𝑘 + 𝑑𝑗 + 𝑗𝑘 𝑚, 
so 𝑎𝑐 − 𝑏𝑑 = 𝑏𝑘 + 𝑑𝑗 + 𝑗𝑘 𝑚.
Therefore, 𝑚	|	𝑎𝑐 − 𝑏𝑑 by the definition of divides,
so 𝑎𝑐 ≡! 𝑏𝑑 by the definition of congruence.



Modular Arithmetic: Properties

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Properties

“≡𝒎” allows us to solve problems in modular arithmetic, e.g.
• add / subtract numbers from both sides of equations
• chains of “≡𝒎” values shows first and last are “≡𝒎”
• substitute “≡𝒎” values in equations (not proven yet)

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.



Properties of “≡𝒎” Used in Algebra

Example: given that 5𝑥 + 4	 ≡< 2𝑥 + 25,
    prove that 3𝑥 ≡< 21

These are Theorems that
we use implicitly in Algebra

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄    “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅 “Add Equations”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	 “Multiply Equations”



Properties of “≡𝒎” Used in Algebra

1. 5𝑥 + 4 ≡< 2𝑥 + 25   Given
2. −4 = −4	      Algebra
3. 5𝑥 ≡< 2𝑥 + 21     Add Equations: 2, 1 ??

Line 2 says “=” not “≡0”

But “=” implies “≡0” !
(equality is a special case)

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄    “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅 “Add Equations”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	 “Multiply Equations”



Properties of “≡𝒎” Used in Algebra

1. 5𝑥 + 4 ≡< 2𝑥 + 25    Given
2. −4 = −4	       Algebra
3. −4 ≡< −4       To Modular: 2
4. 5𝑥 ≡< 2𝑥 + 21      Add Equations: 3, 1
5. −2𝑥 = −2𝑥	       Algebra
6. −2𝑥 ≡< −2𝑥	      To Modular
7. 3𝑥 ≡< 21	       Add Equations: 4, 6

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄    “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅 “Add Equations”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	 “Multiply Equations”



Another Property of “=” Used in Algebra

Example: given 2𝑦 + 3𝑥 = 25 and 𝑥 = 7,
    prove that 2𝑦 + 21 = 25.

Can “plug in” (a.k.a. substitute)
the known value of a variable

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.        “To Modular”

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄    “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅 “Add Equations”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	 “Multiply Equations”

This is also true of congruences!
(We just don't have the tools to prove it yet.)



Recall: Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

What numbers a and b did we prove this for?

We don't know anything about these numbers.
I.e., they were arbitrary.

That means our proof could be changed…



Recall: Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎     Assumption
 …
 1.7. 𝒂 ≡𝒎 𝒃        Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)	   Direct Proof
 2.1. 𝒂 ≡𝒎 𝒃	        Assumption
 …
 2.8. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Elim Ù
2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)    Direct Proof
3. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) ∧
    (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	    Intro Ù
4. (𝒂 ≡𝒎 𝒃) ↔ (𝒂	mod	𝒎 = 𝒃	mod	𝒎)    Equivalent



Recall: Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Let 𝒂 and 𝒃 be arbitrary integers.
 1.1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎      Assumption
 …
 1.1.7. 𝒂 ≡𝒎 𝒃          Def of ≡
   1.1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)	     Direct Proof
 1.2.1. 𝒂 ≡𝒎 𝒃	          Assumption
 …
 1.2.8. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	      Elim Ù
   1.2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)     Direct Proof
   1.3. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) ∧
       (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	      Intro Ù
   1.4. (𝒂 ≡𝒎 𝒃) ↔ (𝒂	mod	𝒎 = 𝒃	mod	𝒎)     Equivalent
1. ∀𝒂	∀𝒃	( 𝒂 ≡𝒎 𝒃 ↔ 𝒂	mod	𝒎 = 𝒃	mod	𝒎 ) Intro ∀



Recall: Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

This is stated as

(a ≡0 b) ↔ (a	mod	m	 = 	b	mod	m)

but it is really

∀a	∀b	 ((a ≡" b) ↔ (a	mod	m	 = 	b	mod	m))

Rule: unquantified variables are implicitly ∀-quantified
(will see one exception later…)

This is a fact we can apply to any
integers 𝒂 and 𝒃 (and 𝒎 > 𝟎).



Recall: Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

But the proof stays as is!

Rule: structure of the proof follows
the structure of the claim


