
CSE 311: Foundations of Computing
Topic 3: Proofs



Applications of Logical Inference

• Software Engineering
– Express desired properties of program as set of logical 

constraints
– Use inference rules to show that program implies that 

those constraints are satisfied
• Artificial Intelligence
– Automated reasoning 

• Algorithm design and analysis
– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog
– Express desired outcome as set of constraints
– Automatically apply logic inference to derive solution



Logical Inference

• So far, we’ve considered:
– how to understand and express things using 

propositional and predicate logic
– how to compute using Propositional logic (circuits)
– how to show that different ways of expressing or 

computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know
– equivalence is a small part of this



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

p q A(p,q) B(p,q) 
T T T

T F T

F T F

F F F



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

Given that A is true, we see that B is also true. 

p q A(p,q) B(p,q) 
T T T T

T F T T

F T F

F F F

A ⇒ B



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

When we zoom out, what have we proven?

p q A(p,q) B(p,q) 
T T T T

T F T T

F T F ?

F F F ?



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

When we zoom out, what have we proven?

p q A(p,q) B(p,q) A ® B
T T T T T

T F T T T

F T F T T

F F F F T

(A ® B) º T



New Perspective

Equivalences
 A º B and (A « B) º T are the same

Inference
 A ⇒ B and (A ® B) º T are the same

Can do the inference by  zooming in 
to the rows where A is true
– that is, we assume that A is true



Proofs

• Start with given facts (hypotheses)
• Use rules of inference to extend set of facts
• Result is proved when it is included in the set



An inference rule:  Modus Ponens

• If A and A ® B are both true, then B must be true

• Write this rule as

• Given: 
– If it is Friday, then you have a 311 lecture today. 
– It is Friday.

• Therefore, by Modus Ponens:  
– You have a 311 lecture today.

A ; A ® B
∴  B



My First Proof!

Show that r follows from p, p ® q, and q ® r

 
1.  𝒑	 Given
2.  𝒑 → 𝒒     Given
3.  𝒒	®	𝒓 Given
4.  
5.  

Modus Ponens



My First Proof!

Show that r follows from p, p ® q, and q ® r

 
1.  𝒑            Given
2.  𝒑 → 𝒒     Given
3.  𝒒	®	𝒓 Given
4.  𝒒  MP: 1, 2
5.  𝒓 MP: 4, 3

Modus Ponens



1.  𝒑 → 𝒒              Given
2.  ¬𝒒                 Given
3.  ¬𝒒	®	¬𝒑     Contrapositive: 1
4.  ¬𝒑                 MP: 2, 3

Proofs can use equivalences too

Show that ¬p follows from p ® q and ¬q

Modus Ponens



Inference Rules

A  ;  B 
∴ C  ,  D

A  ;  A ® B   
∴        B   

Requirements:
Conclusions:

If A is true and B is true ….

Then, C must 
be true

Then D must 
be true

Example (Modus Ponens):

If I have A and A ® B both true,
Then B must be true.



Axioms:  Special inference rules

∴ C  ,  D

∴  A Ú¬A 

Requirements:
Conclusions:

If I have nothing…

Example (Excluded Middle):

A Ú¬A must be true.

Then D must 
be true

Then, C must 
be true



Simple Propositional Inference Rules

Two inference rules per binary connective,
one to eliminate it and one to introduce it

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

A ; A ® B
∴  B

How To Start:
 We have givens, find the ones that go 
 together and use them.  Now, treat new
 things as givens, and repeat.

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

 1. 𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒑 ∧ 𝒒 → 𝒓 Given

A ; A ® B
∴  B

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

 1. 𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒑 ∧ 𝒒 → 𝒓 Given
4. 𝒒 MP: 1, 2
5. 𝒑 ∧ 𝒒 Intro Ù: 1, 4
6. 𝒓 MP: 5, 3



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

 

𝒒𝒑   ;
𝒑 ∧ 𝒒	 ; 𝒑 ∧ 𝒒 → 𝒓

𝒓

MP
Intro Ù

MP

𝒑	 ; 	 𝒑 → 𝒒



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

 
1. 𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒒 MP: 1, 2
4. 𝒑 ∧ 𝒒 Intro Ù: 1, 3
5. 𝒑 ∧ 𝒒 → 𝒓 Given
6. 𝒓 MP: 4, 5

𝒒𝒑   ;
𝒑 ∧ 𝒒	 ; 𝒑 ∧ 𝒒 → 𝒓

𝒓

MP
Intro Ù

MP

Two visuals of the same proof.
We will use the right one, but if 
the bottom one helps you 
think about it, that’s great!

𝒑	 ; 	 𝒑 → 𝒒



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

20. ¬𝒓 Idea: Work 
backwards!

First: Write down givens 
and goal



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

20. ¬𝒓 MP: 2, 

Idea: Work backwards!

We want to eventually get ¬𝒓.  How?
• We can use 𝒒 → ¬𝒓 to get there.
• The justification between 2 and 20 

looks like “elim →” which is MP.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

19. 𝒒
20. ¬𝒓 MP: 2, 19

Idea: Work backwards!

We want to eventually get ¬𝒓.  How?
• Now, we have a new “hole”
• We need to prove 𝒒…

• Notice that at this point, if we 
prove 𝒒, we’ve proven ¬𝒓…



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

19. 𝒒
20. ¬𝒓 MP: 2, 19

This looks like or-elimination.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

18. ¬¬𝒔
19. 𝒒 ∨ Elim: 3, 18
20. ¬𝒓 MP: 2, 19

¬¬𝒔 doesn’t show up in the givens but
𝒔	does and we can use equivalences



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

17. 𝒔
18. ¬¬𝒔 Equivalent: 17
19. 𝒒 Elim ∨: 3, 18
20. ¬𝒓 MP: 2, 19 

(by Double Negation)



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given

2. 𝒒 → ¬𝒓 Given

3. ¬𝒔 ∨ 𝒒 Given

17. 𝒔 Elim ∧: 1

18. ¬¬𝒔 Equivalent: 17

19. 𝒒 Elim ∨: 3, 18

20. ¬𝒓 MP: 2, 19 

No holes left!  We just 
need to clean up a bit.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given
4. 𝒔 Elim ∧: 1
5. ¬¬𝒔 Equivalent: 4
6. 𝒒 Elim ∨: 3, 5
7. ¬𝒓 MP: 2, 6 



• You can use equivalences to make substitutions
    of any sub-formula.
     e.g.  𝒑®	𝒓 	Ú	𝒒 ≡ ¬𝒑	Ú	𝒓 	Ú	𝒒

• Inference rules only can be applied to whole 
formulas (not correct otherwise).

     e.g. 1.  𝒑 → 𝒓                 given
             2.  (𝒑	Ú	𝒒)	®	𝒓	 intro Ú from 1.

 

Important: Applications of Inference Rules

Does not follow!  e.g . p=F, q=T, r=F



Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 
it and one to introduce it

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Recall: New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

Given that A is true, we see that B is also true. 

p q A B 
T T T T

T F T T

F T F

F F F

A ⇒ B



Recall: New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where B is true:

When we zoom out, what have we proven?

p q A B A ® B
T T T T T

T F T T T

F T F T T

F F F F T

(A ® B) º T



Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 
it and one to introduce it

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Not like other rules

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



To Prove An Implication: 𝐴 → 𝐵

• We use the direct proof rule
• The “pre-requisite” A Þ B for the direct proof rule 

is a proof that “Assuming A, we can prove B.”
• The direct proof rule:

  If you have such a proof, then you can conclude        
  that A ® B is true

A Þ B  
∴ A ® B



Proofs using the direct proof rule

Show that p ® r follows from q and (p Ù q) ® r

1.   𝒒                      Given
2.  (𝒑	Ù	𝒒)	®	𝒓    Given
         3.1.   𝒑 Assumption
        3.2.   
        3.3.   𝒓            ??
3.    𝒑 → 𝒓             Direct Proof

This is a 
proof

of 𝒑 → 𝒓

If we know 𝒑 is true…
Then, we’ve shown     
           r is true



Proofs using the direct proof rule

Show that p ® r follows from q and (p Ù q) ® r

1.   𝒒                      Given
2.  (𝒑	Ù	𝒒)	®	𝒓    Given
         3.1.   𝒑 Assumption
        3.2.   𝒑	Ù	𝒒     Intro Ù: 1, 3.1
        3.3.   𝒓            MP: 2, 3.2
3.    𝒑 → 𝒓             Direct Proof



Prove:  (p Ù q) ® (p Ú q)

Example

There MUST be an application of the
Direct Proof Rule (or an equivalence)

to prove this implication.

Where do we start?  We have no givens…



Example

Prove:  (p Ù q) ® (p Ú q)

1.1.   𝒑	Ù	𝒒                      Assumption

    
    1.9.   𝒑	Ú	𝒒      ??
1.   (𝒑 ∧ 𝒒)	®	(𝒑	Ú	𝒒)     Direct Proof



Example

Prove:  (p Ù q) ® (p Ú q)

1.1.   𝒑	Ù	𝒒                      Assumption
    1.2.   𝒑           Elim Ù: 1.1
    1.3.   𝒑	Ú	𝒒      Intro Ú: 1.2
1.   (𝒑 ∧ 𝒒)	®	(𝒑	Ú	𝒒)     Direct Proof



One General Proof Strategy

1.  𝒑          Given

…

?.  𝒓              ?

Use elimination rules
to move down

Use introduction rules
to move up



One General Proof Strategy

1. Use introduction rules to see how you would 
build up the formula you want to prove from 
pieces of what is given

2. Use elimination rules to break down the given 
formulas to get the pieces you need to do 1.

3. Write the proof beginning with what you figured 
out for 2 followed by 1.



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption

1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof
1.? 𝒑 → 𝒓



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption
1.2. 𝒑 → 𝒒 Elim ∧: 1.1
1.3. 𝒒 → 𝒓 Elim ∧: 1.1

1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof
1.? 𝒑 → 𝒓



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption
1.2. 𝒑 → 𝒒 Elim ∧: 1.1
1.3. 𝒒 → 𝒓 Elim ∧: 1.1

1.4.1. 𝒑 Assumption

1.4.? 𝒓
1.4. 𝒑 → 𝒓 Direct Proof

1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption
1.2. 𝒑 → 𝒒 Elim ∧: 1.1
1.3. 𝒒 → 𝒓 Elim ∧: 1.1

1.4.1. 𝒑 Assumption
1.4.2. 𝒒 MP: 1.2, 1.4.1
1.4.3. 𝒓 MP: 1.3, 1.4.2

1.4. 𝒑 → 𝒓 Direct Proof
1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof



Basic Rules for Propositional Logic

Most basic rules are these:

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Minimal Rules for Propositional Logic

Can get away with just these:

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof

∴ A Ú ¬A
Excluded
Middle not non-contradiction



Rules for Propositional Logic with Tautology

More rules makes proofs easier

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof

  A ≡ T
∴ A

Tautology   A ≡ B ; B
∴ A

Equivalent



More Rules for Propositional Logic

More rules makes proofs easier

¬A ; A 
∴ F

A Þ F  
∴ ¬A 

x   
∴ T

Principium
Contradictionis

Reductio Ad 
Absurdum

F    
∴ A

Ex Falso
Quodlibet

Ad Litteram
Verum

useful for proving things
without the Tautology rule



Other Rules for Propositional Logic

Some rules can be written in different ways
– e.g., two different elimination rules for “∨”

A Ú B ; A ® C ; B ® C
∴ C

Cases

A Ú B ; ¬A
∴ B

Elim ∨

these rules are equally capable



Rules for Propositional Logic w/o Tautology

Elim ∧ Intro  ∧

Intro  ∨

Modus Ponens Direct Proof

∧

∨

®

Principium
Contradictionis

Reductio Ad 
Absurdum

Ex Falso
Quodlibet

Ad Litteram
Verum

¬

F / T

Elimination Introduction

Cases



Inference Rules for Quantifiers: First look

** By special, we mean that c is a 
name for a value where P(c) is true. 
We can’t use anything else about that 
value, so c must be a NEW name!

"x P(x)        
∴          P(a)  (for any a)

P(c) for some c
     ∴     $x P(x)

Intro $ Elim "

Intro "$x P(x)
∴ P(c) for some special** c

Elim $



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

5.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙 	
The main connective is implication
so Direct Proof seems good 

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙  Direct Proof

1.1. "𝒙	𝑷 𝒙   Assumption

1.5.	 $𝒙	𝑷 𝒙   

We need an $ we don’t have 
so “intro	$” rule makes sense 

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙  Direct Proof

1.1. "𝒙	𝑷 𝒙   Assumption

1.5.	 $𝒙	𝑷 𝒙   Intro $:	

We need an $ we don’t have 
so “intro	$” rule makes sense 

That requires P(c) 
for some c.  

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙            Direct Proof

1.1. "𝒙	𝑷 𝒙     Assumption
      

1.4 . 𝑷(𝟓)
1.5.	 $𝒙	𝑷 𝒙     Intro $: 1.4

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙            Direct Proof

1.1. "𝒙	𝑷 𝒙     Assumption

      

1.4 . 𝑷(𝟓)     Elim ": 1.1
1.5.	 $𝒙	𝑷 𝒙     Intro $: 1.4

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙            Direct Proof

1.1. "𝒙	𝑷 𝒙     Assumption
1.2. 𝑷(𝟓)     Elim ": 1.1 
1.3.	 $𝒙	𝑷 𝒙     Intro $: 1.2

Lesson: Elim "	and Intro $ are not rules we can apply mechanically

Integers
Domain of Discourse

This follows our usual strategy — eliminate forward, 
introduce backward — but it is weird…

How did we know to use 5? We didn't! We had to guess it.
That is not something we should do blindly / automatically.



Predicate Logic Proofs

• Can use
– Predicate logic inference rules

whole formulas only

– Predicate logic equivalences (De Morgan’s)
even on subformulas

– Propositional logic inference rules
 whole formulas only

– Propositional logic equivalences
even on subformulas



Predicate Logic Proofs with more content

• In propositional logic we could just write down 
other propositional logic statements as “givens”

   

• Here, we also want to be able to use domain 
knowledge so proofs are about something specific

• Example:

• Given the basic properties of arithmetic on integers, 
define:

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)

Predicate Definitions

Integers
Domain of Discourse



A Not so Odd Example

Integers
Domain of Discourse

Formally: prove  $x Even(x) 
Prove  “There is an even number”

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)

Predicate Definitions



A Not so Odd Example

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse

Formally: prove  $x Even(x) 
Prove  “There is an even number”

1. 	 2 = 2⋅1   Algebra
2.    $y (2 = 2⋅y) Intro $: 1
3.  Even(2)  Definition of Even: 2
4.	 	 $x Even(x)  Intro $: 3



A Prime Example

Integers
Domain of Discourse

Prove  “There is an even prime number”
Formally: prove  $x (Even(x) Ù Prime(x)) 

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)
Prime(x) := “…”

Predicate Definitions



A Prime Example

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)
Prime(x) := “…”

Predicate Definitions
Integers

Domain of Discourse

1. 	 2 = 2⋅1      Algebra
2.  $y (2 = 2⋅y)    Intro $: 1
3.  Even(2)     Def of Even: 3
4.  Prime(2)     Property of integers
5.  Even(2) Ù Prime(2)  Intro Ù: 2, 4
6.	 	 $x (Even(x) Ù Prime(x)) Intro $: 5

Prove  “There is an even prime number”
Formally: prove  $x (Even(x) Ù Prime(x)) 

* Later we will further break down “Prime” using quantifiers to prove statements like this

*



Inference Rules for Quantifiers: First look

* in the domain of P 
** By special, we mean that c is a 
name for a value where P(c) is true. 
We can’t use anything else about that 
value, so c has to be a NEW name!

"x P(x)        
∴          P(a)  (for any a)

“Let a be arbitrary*”...P(a)
      ∴        "x P(x)

P(c) for some c
     ∴     $x P(x)

Intro $ Elim "

Intro "$x P(x)
∴ P(c) for some special** c

Elim $



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 

 

 
 
 

  
1.   "x (Even(x)®Even(x2))



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer

 
 
 

 
 1.1  Even(a)®Even(a2) 
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1   Even(a)                  Assumption
    

 
 
1.1.6  Even(a2)             

 1.1   Even(a)®Even(a2)      Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1   Even(a)              Assumption
1.1.2	 ∃y (a = 2y)           Definition of Even
 

1.1.5	 ∃y (a2 = 2y)           
1.1.6  Even(a2)            Definition of Even

 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1 Even(a)              Assumption
1.1.2 ∃y (a = 2y)           Definition of Even
1.1.3 a = 2b              Elim $ (b)

1.1.5 ∃y (a2 = 2y)           
1.1.6  Even(a2)            Definition of Even

 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 

Need a2 = 2c 
for some c



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1 Even(a)              Assumption
1.1.2 ∃y (a = 2y)           Definition of Even
1.1.3 a = 2b              Elim $ (b)
1.1.4   a2 = 2(2b2)      Algebra
1.1.5 ∃y (a2 = 2y)     Intro $
1.1.6  Even(a2)            Definition of Even

 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 

Used a2 = 2c for c=2b2



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1 Even(a)              Assumption
1.1.2 ∃y (a = 2y)           Definition of Even: 1.1.1
1.1.3 a = 2b              Elim $ (b): 1.1.2
1.1.4   a2 = 2(2b2)      Algebra: 1.1.3
1.1.5 ∃y (a2 = 2y)     Intro $: 1.1.4
1.1.6  Even(a2)            Definition of Even: 1.1.5

 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Formal Proofs

• Formal proofs follow simple well-defined rules
– “assembly language” (like byte code) for proofs
– easy for a machine to check

• In principle, formal proofs are the standard for 
what it means to be “proven” in mathematics
– almost all math (and theory CS) done in Predicate Logic



English Proofs

•  High-level language that lets us work more quickly
– not necessary to spell out every detail
– reader checks that the writer is not skipping too much

• Vastly more common in computer science

• English proof is correct if the reader believes they 
could translate it into a formal proof
– the reader is the “compiler” for English proofs
– different readers can have different standards!



English Proofs

•  High-level language that lets us work more quickly
– not necessary to spell out every detail
– reader checks that the writer is not skipping too much

• Vastly more common in computer science

• English proofs require understanding formal proofs
– English proof follows the structure of a formal proof
– we will learn English proofs by translating from formal

eventually, we will write English directly



Recall: Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1 Even(a)              Assumption
1.1.2 ∃y (a = 2y)           Definition of Even: 1.1.1
1.1.3 a = 2b              Elim $ (b): 1.1.2
1.1.4   a2 = 2(2b2)       Algebra: 1.1.3
1.1.5 ∃y (a2 = 2y)     Intro $: 1.1.4
1.1.6  Even(a2)            Definition of Even: 1.1.5

 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



English Proof: Even and Odd

Prove “The square of every even integer is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Let a be an arbitrary integer

   1.1.1   Even(a)           Assumption

   1.1.2   ∃y (a = 2y)    Definition
   1.1.3   a = 2b     Elim ∃
   

   1.1.4   a2 = 2(2b2)    Algebra

   1.1.5	 ∃y (a2 = 2y)      Intro ∃
   1.1.6  Even(a2)       Definition

   1.1.   Even(a)®Even(a2)  Direct Proof
1.   "x (Even(x)®Even(x2))     Intro "

Let a be an arbitrary integer. 

Suppose a is even.

Then, by definition, a = 2b for 
some integer b.

Squaring both sides, we get 
a2 = 4b2 = 2(2b2). 

So a2 is, by definition, even.

Since a was arbitrary, we have 
shown that the square of every 
even number is even.



English Proof: Even and Odd

Prove “The square of every even integer is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, a = 2b for some 
integer b. Squaring both sides, we get a2 = 4b2 = 2(2b2). 
So a2 is, by definition, is even.

Since a was arbitrary, we have shown that the square of 
every even number is even.



English Proof: Even and Odd

Prove “The square of every even integer is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Proof: Let a be an arbitrary even integer.

Then, by definition, a = 2b for some integer b. Squaring 
both sides, we get a2 = 4b2 = 2(2b2). So a2 is, by 
definition, is even.

Since a was arbitrary, we have shown that the square of 
every even number is even.

"x (Even(x) ® Even(x2))



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 

Let x and y be arbitrary integers.

Since x and y were arbitrary, the 
sum of any odd integers is even.

Let x and y be arbitrary integers.

  

   1.1.   (Odd(x) ∧	Odd(y)) ® Even(x+y) 
1.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y))  Intro "



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 

Let x and y be arbitrary integers

   1.1.1   Odd(x) ∧	Odd(y)        Assumption

      1.1.9  Even(x+y)  

   1.1.   (Odd(x) ∧	Odd(y)) ® Even(x+y)  Direct..
1.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y))  Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 

Let x and y be arbitrary integers

   1.1.1   Odd(x) ∧	Odd(y)  Assumption
      1.1.2   Odd(x)    Elim ∧
      1.1.3 Odd(y)    Elim ∧

      1.1.9  Even(x+y)  

   1.1.   (Odd(x) ∧	Odd(y)) ® Even(x+y) Direct..
1.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y))  Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Let x and y be arbitrary integers.

   1.1.1   Odd(x) ∧	Odd(y)    Assumption
 1.1.2   Odd(x)           Elim ∧
 1.1.3   Odd(y)      Elim ∧

  1.1.4   ∃z (x = 2z+1)         Def of Odd: 1.1.2
 1.1.5   x = 2a+1          Elim ∃

      1.1.6   ∃z (y = 2z+1)        Def of Odd: 1.1.3
      1.1.7   y = 2b+1       Elim ∃

   

 1.1.9	 ∃z (x+y = 2z)    Intro ∃
 1.1.10 Even(x+y)      Def of Even

   1.1.   (Odd(x) ∧	Odd(y)) ® Even(x+y)  Direct..
1.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for 
some integer b.

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Let x and y be arbitrary integers.

   1.1.1   Odd(x) ∧	Odd(y)    Assumption
 1.1.2   Odd(x)           Elim ∧
 1.1.3   Odd(y)      Elim ∧

  1.1.4   ∃z (x = 2z+1)         Def of Odd: 1.1.2
 1.1.5   x = 2a+1          Elim ∃

      1.1.6   ∃z (y = 2z+1)        Def of Odd: 1.1.3
      1.1.7   y = 2b+1       Elim ∃

 1.1.8   x+y = 2(a+b+1)        Algebra

 1.1.9	 ∃z (x+y = 2z)    Intro ∃
 1.1.10 Even(x+y)      Def of Even

   1.1.   (Odd(x) ∧	Odd(y)) ® Even(x+y)  Direct..
1.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for 
some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Proof:   Let x and y be arbitrary integers.
Suppose that both are odd. Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for some integer b. Their 
sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so 
x+y is, by definition, even.
Since x and y were arbitrary, the sum of any two odd 
integers is even.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse



Even and Odd

Prove “The sum of two odd numbers is even.”

Proof:   Let x and y be arbitrary odd integers.
Then, x = 2a+1 for some integer a and y = 2b+1 for some 
integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 
2(a+b+1), so x+y is, by definition, even.
Since x and y were arbitrary, the sum of any two odd 
integers is even.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

"x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 


