CSE 311: Foundations of Computing

Topic 3: Proofs

Applications of Logical Inference

• Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- So far, we've considered:
 - how to understand and express things using propositional and predicate logic
 - how to compute using Propositional logic (circuits)
 - how to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - equivalence is a small part of this

р	q	A(<i>p</i> , <i>q</i>)	B(<i>p</i> ,q)
Т	Т	Т	
Т	F	Т	
F	Т	F	
F	F	F	

р	q	A(<i>p</i> , <i>q</i>)	B(<i>p</i> ,q)
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	
F	F	F	

Given that A is true, we see that B is also true.

 $A \Rightarrow B$

р	q	A(<i>p</i> , <i>q</i>)	B(<i>p,q</i>)
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	?
F	F	F	?

When we zoom out, what have we proven?

р	q	A(p,q)	B(<i>p,q</i>)	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

$$(\mathsf{A} \to \mathsf{B}) \equiv \mathbf{T}$$

Equivalences

 $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

Inference

 $A \Rightarrow B$ and $(A \rightarrow B) \equiv T$ are the same

Can do the inference by zooming in to the rows where **A** is true

– that is, we <u>assume</u> that A is true

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

- If A and $A \rightarrow B$ are both true, then B must be true
- Write this rule as $A : A \to B$ $\therefore B$
- Given:
 - If it is Friday, then you have a 311 lecture today.
 - It is Friday.
- Therefore, by Modus Ponens:
 - You have a 311 lecture today.

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	p	Given
2.	p ightarrow q	Given
3.	$q \rightarrow r$	Given
4.		
5.		

Modus Ponens $A : A \to B$ $\therefore B$ Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	p	Given
2.	p ightarrow q	Given
3.	$q \rightarrow r$	Given
4.	q	MP: 1, 2
5.	r	MP: 4, 3

Modus Ponens
$$A ; A \rightarrow B$$

 $\therefore B$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

Modus Ponens
$$A : A \to B$$

 $\therefore B$

Inference Rules

Example (Modus Ponens):

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules

Example (Excluded Middle):

$\therefore A \lor \neg A$

 $A \lor \neg A$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \rightarrow B}{\therefore B}$$

 $\frac{A \land B}{\therefore A, B}$

 $\frac{A;B}{\therefore A \land B}$

1.	p	Given
2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
3.	$p \land q \rightarrow r$	Given
4.	q	MP: 1, 2
5.	$oldsymbol{p}\wedgeoldsymbol{q}$	Intro \: 1, 4
6.	r	MP: 5, 3

$$\begin{array}{c} p \ ; \ p \rightarrow q \\ p \ ; \ q \\ \hline p \land q \ ; \ p \land q \rightarrow r \\ \hline p \land q \ ; \ p \land q \rightarrow r \\ \hline r \end{array} MP$$

Two visuals of the same proof. We will use the right one, but if the bottom one helps you think about it, that's great!

1.	p	Given
2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
3.	<i>q</i>	MP: 1, 2
4.	$\boldsymbol{p} \wedge \boldsymbol{q}$	Intro <a>: 1, 3
5.	$p \land q \rightarrow r$	Given
6.	r	MP: 4, 5

$$\begin{array}{c} p \; ; \; p \rightarrow q \\ p \; ; \; q \\ \hline p \; ; \; q \\ \hline p \wedge q \; ; \; p \wedge q \rightarrow r \\ \hline r \end{array} MP$$

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given

3. $\neg s \lor q$ Given

First: Write down givens and goal

Idea: Work backwards!

20. $\neg r$

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove *q*...
 - Notice that at this point, if we prove *q*, we've proven ¬*r*...

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

¬¬*s* doesn't show up in the givens but *s* does and we can use equivalences

- 19. *q* V Elim: 3, 18
- 20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given	
2.	$oldsymbol{q} ightarrow eg r$	Given	
3.	$\neg s \lor q$	Given	
17.	S	?	
18.	¬¬ <i>S</i>	Equivalent: 17	(by Double Negation)
19.	q	Elim ∨: 3, 18	

20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given
17.	S	Elim ∧: 1
18.	¬¬ <i>\$</i>	Equivalent: 17
19.	q	Elim ∨: 3, 18
20.	$\neg r$	MP: 2, 19

No holes left! We just need to clean up a bit.

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given
4.	<i>S</i>	Elim ∧: 1
5.	¬¬ <i>\$</i>	Equivalent: 4
6.	<i>q</i>	Elim ∨: 3, 5
7.	$\neg r$	MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g.
$$(p \rightarrow r) \lor q \equiv (\neg p \lor r) \lor q$$

• Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given
2. $(p \lor q) \Rightarrow r$ intro \checkmark from 1.
Does not follow! e.g. p=F, q=T, r=F

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Given that A is true, we see that B is also true.

 $A \Rightarrow B$

р	q	Α	В	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

$$(\mathsf{A} \to \mathsf{B}) \equiv \mathbf{T}$$

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

To Prove An Implication: $A \rightarrow B$

 $A \Rightarrow B$

 $\therefore A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" A ⇒ B for the direct proof rule is a proof that "Assuming A, we can prove B."
- The direct proof rule:

If you have such a proof, then you can conclude that $A \rightarrow B$ is true

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1.	q	Given
2.	$(\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow \boldsymbol{r}$	Given
	3.1. <i>p</i>	Assumption
	3.2. <i>p</i> ∧ <i>q</i>	Intro \: 1, 3.1
	3.3. <i>r</i>	MP: 2, 3.2
3.	$p \rightarrow r$	Direct Proof

Example

Where do we start? We have no givens...

Example

Prove: $(p \land q) \rightarrow (p \lor q)$

1.9.
$$p \lor q$$
??1. $(p \land q) \rightarrow (p \lor q)$ Direct Proof

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \land q$ 1.2. p1.3. $p \lor q$ 1. $(p \land q) \rightarrow (p \lor q)$ Assumption Elim A: 1.1 Intro A: 1.2 Direct Proof

- Use introduction rules to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use elimination rules to break down the given formulas to get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Example

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Example

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.	$(\boldsymbol{p} \rightarrow \boldsymbol{q}) \land (\boldsymbol{q} \rightarrow \boldsymbol{r})$	Assumption
1.2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Elim ^: 1.1
1.3.	$m{q} ightarrow m{r}$	Elim ∧: 1.1

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1.	$(\boldsymbol{p} ightarrow \boldsymbol{q}) \wedge (\boldsymbol{q} ightarrow \boldsymbol{q})$	→ r) Assumption
1.2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Elim ∧: 1.1
1.3.	$oldsymbol{q} ightarrow oldsymbol{r}$	Elim ∧: 1.1
	1.4.1. <i>p</i>	Assumption

1.4.? r1.4. $p \rightarrow r$ Direct Proof 1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove:	$((p \rightarrow q) \land (q))$	$q \rightarrow r)) \rightarrow (p \rightarrow r)$
1.1	$(\boldsymbol{p} \rightarrow \boldsymbol{q}) \wedge (\boldsymbol{q})$	$q \rightarrow r$) Assumption
1.2	$p \rightarrow q$	Elim ∧: 1.1
1.3	$a \to r$	Elim ∧: 1.1
	1.4.1. <i>p</i>	Assumption
	1.4.2. <i>q</i>	MP: 1.2, 1.4.1
	1.4.3. <i>r</i>	MP: 1.3, 1.4.2
1.4	. $p ightarrow r$	Direct Proof
1. ((<i>p</i>	$(\rightarrow q) \land (q \rightarrow r)$	$)) \rightarrow (p \rightarrow r)$ Direct Proof

Basic Rules for Propositional Logic

Most basic rules are these:

Minimal Rules for Propositional Logic

Can get away with just these:

Rules for Propositional Logic with Tautology

More rules makes proofs easier

More Rules for Propositional Logic

More rules makes proofs easier

useful for proving things without the Tautology rule

Other Rules for Propositional Logic

Some rules can be written in different ways

– e.g., two different elimination rules for " \vee "

these rules are equally capable

Rules for Propositional Logic w/o Tautology

Inference Rules for Quantifiers: First look

$$\begin{array}{c|c} Elim \exists & \exists x P(x) \\ \therefore P(c) \text{ for some special** c} \end{array} & Intro \forall \end{array}$$

** By special, we mean that c is a name for a value where P(c) is true.We can't use anything else about that value, so c must be a NEW name!

My First Predicate Logic Proof

Prove $(\forall x P(x)) \rightarrow (\exists x P(x))$

Domain of Discourse

Integers

The main connective is implication so Direct Proof seems good

?

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5. $\exists x P(x)$ Intro $\exists : \bigcirc$ That requires P(c) for some c. **1.** $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

1.1. $\forall x P(x)$

Assumption

1.4. P(5)**1.5.** $\exists x P(x)$ **1.** $\forall x P(x) \rightarrow \exists x P(x)$ **?** Intro ∃: 1.4

Direct Proof

1.1. $\forall x P(x)$

Assumption

1.4. P(5)**1.5.** $\exists x P(x)$ **1.** $\forall x P(x) \rightarrow \exists x P(x)$

Elim ∀: 1.1 Intro ∃: 1.4

Direct Proof

- 1.1. $\forall x P(x)$ 1.2. P(5)1.3. $\exists x P(x)$
- **1.3.** $\exists x P(x)$

Assumption Elim ∀: 1.1 Intro ∃: 1.2

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

This follows our usual strategy — eliminate forward, introduce backward — but it is weird...

How did we know to use 5? We didn't! We had to guess it. That is not something we should do blindly / automatically.

Lesson: Elim \forall and Intro \exists are **not** rules we can apply *mechanically*

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's) even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences even on subformulas

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example:

Given the basic properties of arithmetic on integers, define:

Predicate Definitions Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

1.	2 = 2 · 1	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Definition of Even: 2
4.	∃x Even(x)	Intro ∃: 3

A Prime Example

Domain of Discourse Integers Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$ Prime(x) := "..."

Prove "There is an even prime number" Formally: prove $\exists x (Even(x) \land Prime(x))$

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$ Prime(x) := "..."

Prove "There is an even prime number" Formally: prove $\exists x (Even(x) \land Prime(x))$

1.	$2 = 2 \cdot 1$	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Def of Even: 3
4.	Prime(2)*	Property of integers
5.	Even(2) ^ Prime(2)	Intro ∧: 2, 4
6.	$\exists x (Even(x) \land Prime(x))$	Intro ∃: 5

* Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

Let a be an arbitrary integer

Even and Odd	Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers			
$\underbrace{\text{Intro } \forall \text{``Let a be arbitrary}^{"P(a)}}_{\therefore \forall x P(x)} \underbrace{\text{Elim } \exists \\ \therefore P(x) \\ \vdots P($	∃x P(x) P(c) for some <i>special</i> ** c			
Prove: "The square of any even number is even."				
Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$				
Let a be an arbitrary integer				
1.1.1 Even(a)	Assumption			
1.1.2 ∃y (a = 2y)	Definition of Even			
1.1.3 a = 2 b	Elim ∃ (b)			
1.1.4 $a^2 = 2(2b^2)$	Algebra			
1.1.5 ∃y (a ² = 2y)	Intro \exists Used $a^2 = 2c$ for $c=2b^2$			
1.1.6 Even(a ²)	Definition of Even			
1.1 Even(a)→Even(a ²)	Direct proof			
1. $\forall x (Even(x) \rightarrow Even(x^2))$	Intro ∀			

Even and Odd	Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers		
$\underbrace{Intro \forall \text{``Let a be arbitrary*''P(a)}}_{\therefore \forall x P(x)} \underbrace{Elim \exists}_{\therefore P(x)}$] ∃x P(x) (c) for some <i>special</i> * * c		
Prove: "The square of any even number is even."			
Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$			
Let a be an arbitrary integer			
1.1.1 Even(a)	Assumption		
1.1.2 ∃y (a = 2y)	Definition of Even: 1.1.1		
1.1.3 a = 2b	Elim ∃ (b): 1.1.2		
1.1.4 $a^2 = 2(2b^2)$	Algebra: 1.1.3		
1.1.5 ∃y (a ² = 2y)	Intro ∃: 1.1.4		
1.1.6 Even(a ²)	Definition of Even: 1.1.5		
1.1 Even(a)→Even(a ²)	Direct proof		
1. $\forall x (Even(x) \rightarrow Even(x^2))$	Intro \forall		

- Formal proofs follow <u>simple</u> well-defined rules
 - "assembly language" (like byte code) for proofs
 - easy for a machine to check
- In principle, formal proofs are the standard for what it means to be "proven" in mathematics

- almost all math (and theory CS) done in Predicate Logic

- High-level language that lets us work more quickly
 - not necessary to spell out every detail
 - <u>reader</u> checks that the writer is not skipping too much
- Vastly more common in computer science
- English proof is correct if the <u>reader</u> believes they could translate it into a formal proof
 - the reader is the "compiler" for English proofs
 - different readers can have different standards!

- High-level language that lets us work more quickly
 - not necessary to spell out every detail
 - <u>reader</u> checks that the writer is not skipping too much
- Vastly more common in computer science
- English proofs require understanding formal proofs
 - English proof follows the structure of a formal proof
 - we will learn English proofs by translating from formal eventually, we will write English directly

Prove: "The square of any even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Let a be an arbitrary integer

1.1.1 Even(a) Assumption **1.1.2** $\exists y (a = 2y)$ Definition of Even: 1.1.1 1.1.3 a = 2bElim ∃ (b): 1.1.2 **1.1.4** $a^2 = 2(2b^2)$ Algebra: 1.1.3 **1.1.5** $\exists y (a^2 = 2y)$ Intro 3: 1.1.4 **1.1.6** Even(a²) Definition of Even: 1.1.5 **1.1** Even(a) \rightarrow Even(a²) Direct proof **1.** $\forall x (Even(x) \rightarrow Even(x^2))$ Intro ∀

English Proof: Even and Odd		Even(x) $\equiv \exists y (x)$ Odd(x) $\equiv \exists y (x)$ Domain: Intege	=2y) =2y+1) ers		
Prove "The square of every even integer is even."					
Let a be an arbitrary integer. Let a be an arbitrary integer					
Suppose a is even.	1.1.1 Even(a	1)	Assumption		
Then, by definition, a = 2 b for some integer b .	1.1.2 ∃y (a = 1.1.3 a = 2b	= 2y)	Definition Elim ∃		
Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$.	1.1.4 a ² = 2(2 b²)	Algebra		
So a ² is, by definition, even.	1.1.5 ∃y (a ² 1.1.6 Even(a	= 2y) 1 ²)	Intro ∃ Definition		
Since a was arbitrary, we have shown that the square of every even number is even. 1.	1. Even(a)→ ∀x (Even(x)→	Even(a²) D Even(x²)) Int	irect Proof ro ∀		

Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary integer.

Suppose **a** is even. Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer **b**. Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary **even** integer.

Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer **b**. Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

 $\forall x (Even(x) \rightarrow Even(x^2))$

Predicate Definitions Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Predicate Definitions Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Let **x** and **y** be arbitrary integers.

Since x and y were arbitrary, the sum of any odd integers is even.

1.1. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ **1.** $\forall x \forall y ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(x+y))$ Intro \forall

Predicate Definitions Even(x) = $\exists y \ (x = 2y)$ Odd(x) = $\exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

Let x and y be arbitrary integers 1.1.1 $Odd(x) \land Odd(y)$ Assumption

so x+y is even.

Since x and y were arbitrary, the sum of any odd integers is even.

1.1.9 Even(x+y)

1.1. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ Direct..

1. $\forall x \forall y ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(x+y))$ Intro \forall

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the sum of any odd integers is even.

Let **x** and **y** be arbitrary integers

1.1.1	$Odd(\mathbf{x}) \land Odd(\mathbf{y})$	Assumption
1.1.2	Odd(x)	Elim A
1.1.3	Odd(y)	Elim A

1.1.9 Even(x+y)

1.1. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ Direct..

1. $\forall x \forall y ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(x+y))$ Intro \forall

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.	Let x and y be arbitrary integers.	
Suppose that both are odd.	1.1.1 Odd(x) ∧ Odd(y) 1.1.2 Odd(x) 1.1.3 Odd(y)	Assumption Elim ∧ Elim ∧
Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b.	1.1.4 $\exists z (x = 2z+1)$ 1.1.5 $x = 2a+1$	Def of Odd: 1.1.2 Elim ∃
	1.1.6 ∃z (y = 2z+1) 1.1.7 y = 2b+1	Def of Odd: 1.1.3 Elim ∃
so x+y is, by definition, even.	1.1.9 ∃z (x+y = 2z) 1.1.10 Even(x+y)	Intro∃ Def of Even
Since x and y were arbitrary, the sum of any odd integers is even.	1.1. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Ev$ 1. $\forall \mathbf{x} \forall \mathbf{y} ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) -$	ren(x+y) Direct → Even(x+y)) Intro ∀

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

Let **x** and **y** be arbitrary integers.

1.1.1 $Odd(\mathbf{x}) \land Odd(\mathbf{y})$ Assumption 1.1.2 Odd(x)Elim Λ $1.1.3 \text{ Odd}(\mathbf{y})$ Elim Λ **1.1.4** $\exists z (x = 2z+1)$ Def of Odd: 1.1.2 **1.1.5** x = 2a+1Elim 3 **1.1.6** $\exists z (y = 2z+1)$ Def of Odd: 1.1.3 **1.1.7 y** = 2**b**+1 Elim E **1.1.8** x+y = 2(a+b+1)Algebra **1.1.9** $\exists z (x+y = 2z)$ Intro **∃** 1.1.10 Even(x+y) Def of Even

1.1. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ Direct.. **1.** $\forall \mathbf{x} \forall \mathbf{y} ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y}))$ Intro \forall Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■

Predicate Definitions Even(x) = $\exists y \ (x = 2y)$ Odd(x) = $\exists y \ (x = 2y + 1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary **odd** integers.

Then, x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even.

 $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$