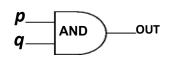

CSE 311: Foundations of Computing

Topic 2: More Logic

- This week we will see
 - new applications of Propositional Logic
 - new tools to use with Propositional Logic
 - a new type of Logic (Predicate Logic)

Circuits

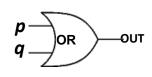
Computing With Logic


- **T corresponds to 1** or "high" voltage
- F corresponds to 0 or "low" voltage

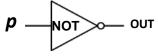
Gates

- Take inputs and produce outputs (functions)
- Several kinds of gates
- Correspond to propositional connectives (most of them)

AND, OR, NOT Gates

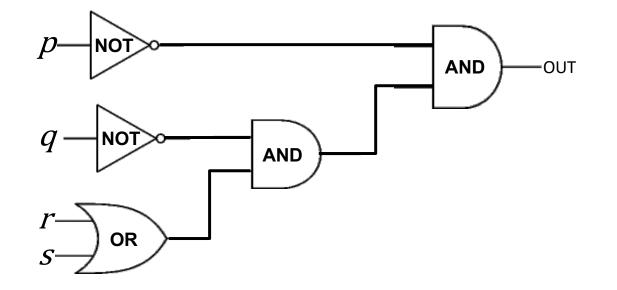

AND Gate

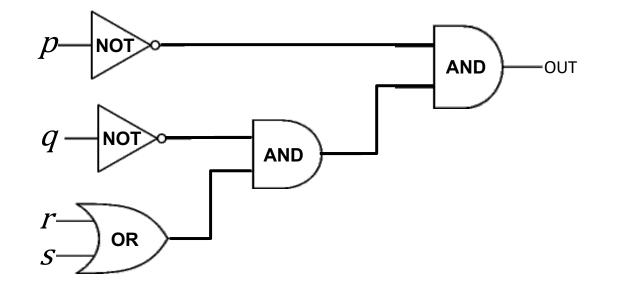
р	q	OUT
1	1	1
1	0	0
0	1	0
0	0	0


р	q	p∧q
Т	Н	Т
Т	F	F
F	Т	F
F	F	F

OR Gate

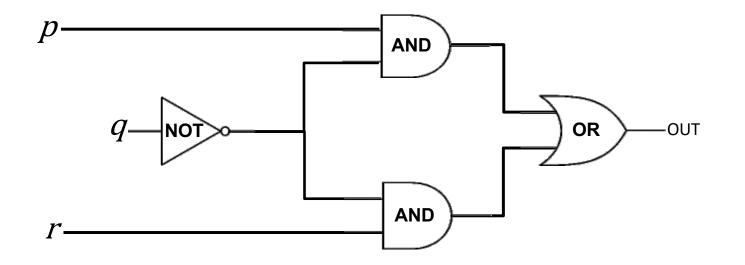
р	q	OUT
1	1	1
1	0	1
0	1	1
0	0	0


NOT Gate

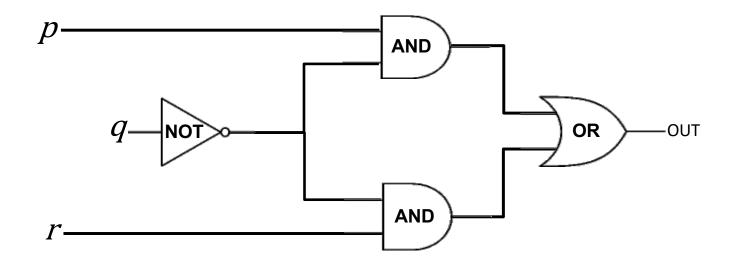

р	Ουτ
1	0
0	1

р	q	p∨q
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

р	¬ <i>p</i>
Т	F
F	Т

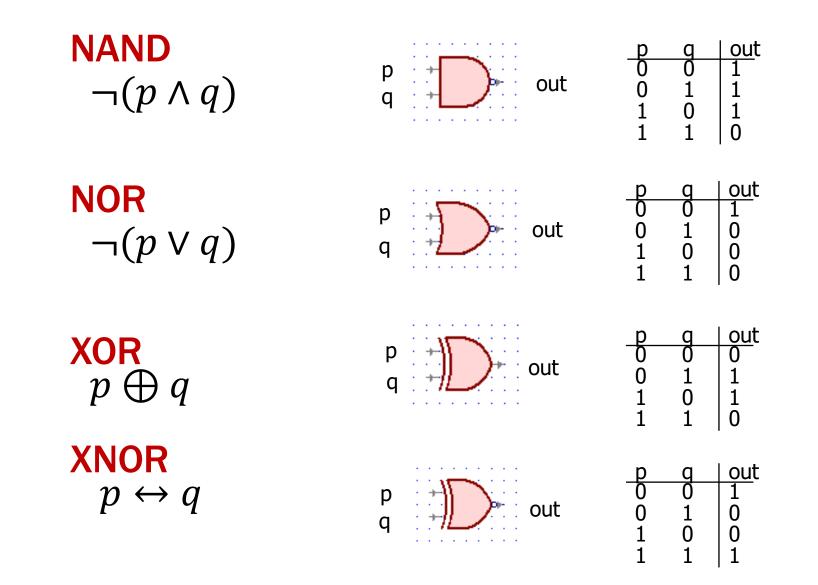

Values get sent along wires connecting gates

Values get sent along wires connecting gates

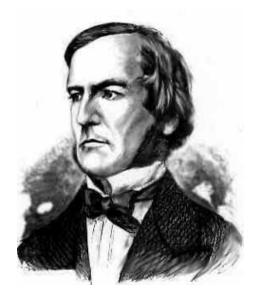

 $\neg p \land (\neg q \land (r \lor s))$

Combinational Logic Circuits

Wires can send one value to multiple gates!


Combinational Logic Circuits

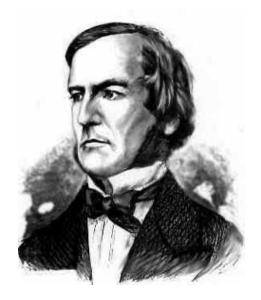
Wires can send one value to multiple gates!


 $(p \land \neg q) \lor (\neg q \land r)$

Other Useful Gates

Boolean Algebra

- Usual notation used in circuit design
- Boolean algebra
 - a set of elements B containing {0, 1}
 - binary operations { + , }
 - and a unary operation { a' } or { \overline{a} }


Write these in Boolean Algebra:

 $\neg p \land (\neg q \land (r \lor s))$

 $(p \land \neg q) \lor (\neg q \land r)$

Boolean Algebra

- Usual notation used in circuit design
- Boolean algebra
 - a set of elements B containing {0, 1}
 - binary operations { + , }
 - and a unary operation { a' } or { \overline{a} }

Write these in Boolean Algebra:

 $\neg p \land (\neg q \land (r \lor s)) \qquad (p \land \neg q) \lor (\neg q \land r)$

p'q'(r+s)

$$pq' + q'r$$

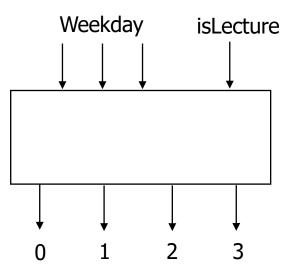
Sessions of Class:

We would like to compute the number of lectures or quiz sections remaining *at the start* of a given day of the week.

- Inputs: Day of the Week, Lecture/Section flag
- Output: Number of sessions left

Examples: Input: (Wednesday, Lecture) Output: 2 Input: (Monday, Section) Output: 1

Implementation in Software


}

```
public int classesLeftInMorning(int weekday, boolean isLecture) {
    switch (weekday) {
        case SUNDAY:
        case MONDAY:
            return isLecture ? 3 : 1;
        case TUESDAY:
        case WEDNESDAY:
            return isLecture ? 2 : 1;
        case THURSDAY:
            return isLecture ? 1 : 1;
        case FRIDAY:
            return isLecture ? 1 : 0;
        case SATURDAY:
            return isLecture ? 0 : 0;
   }
```

Implementation with Hardware

Encoding:

- How many bits for each input/output?
- Binary number for weekday
- One bit for each possible output

Defining Our Inputs!

Weekday Input:

- Binary number for weekday
- Sunday = 0, Monday = 1, ...
- We care about these in binary:

Weekday	Number	Binary
Sunday	0	000
Monday	1	001
Tuesday	2	010
Wednesday	3	011
Thursday	4	100
Friday	5	101
Saturday	6	110

Converting to a Truth Table!

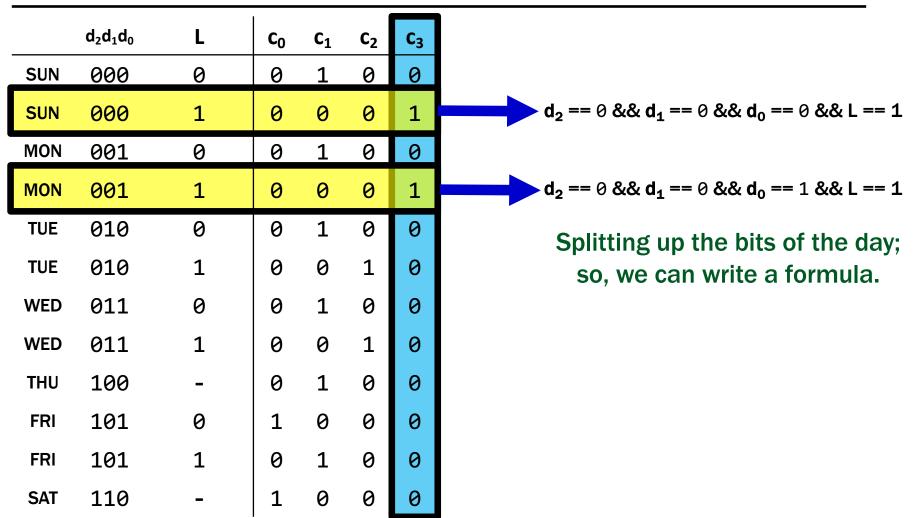
```
case SUNDAY or MONDAY:
    return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
    return isLecture ? 2 : 1;
case THURSDAY:
    return isLecture ? 1 : 1;
case FRIDAY:
    return isLecture ? 1 : 0;
case SATURDAY:
    return isLecture ? 0 : 0;
```

000 000	0				
000					
	1				
001	0				
001	1				
010	0				
010	1				
011	0				
011	1				
100	-				
101	0				
101	1				
110	-				
	001 010 010 011 011 100 101 101	001000110100010101100111100-10101011	00100011010001010110011-100-10101011	00100011010001010110011-100-10101011	00100011010001010110011-100-10101011

Converting to a Truth Table!

```
case SUNDAY or MONDAY:
    return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
    return isLecture ? 2 : 1;
case THURSDAY:
    return isLecture ? 1 : 1;
case FRIDAY:
    return isLecture ? 1 : 0;
case SATURDAY:
    return isLecture ? 0 : 0;
```

Wee	kday	isLecture	C 0	c ₁	c ₂	C ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0


	$d_2d_1d_0$	L	c 0	C ₁	C ₂	C ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0

Let's begin by finding an expression for c_3 . To do this, we look at the rows where $c_3 = 1$ (true).

Truth Table to Logic

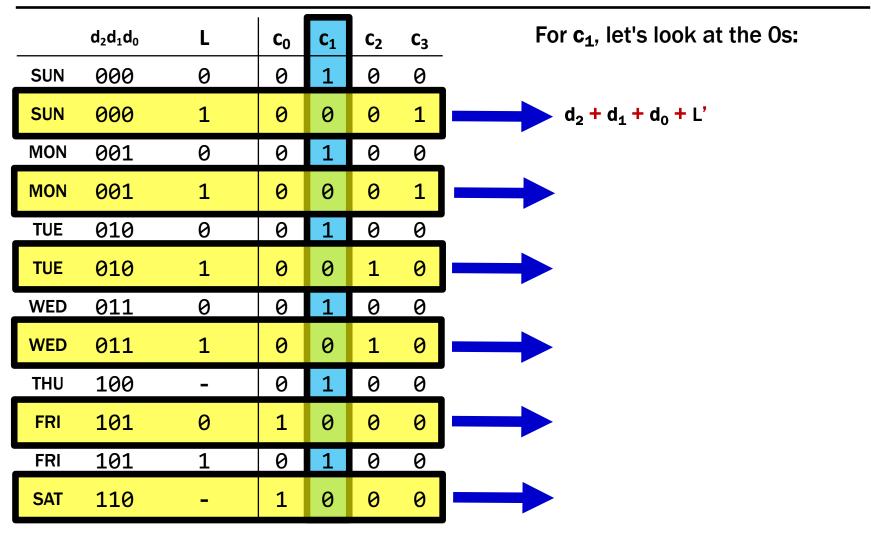
	$d_2d_1d_0$	L	c 0	C ₁	C ₂	C ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
			•			

	$d_2d_1d_0$	L	c ₀	c ₁	C ₂	C ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	_	1	0	0	0
			I			

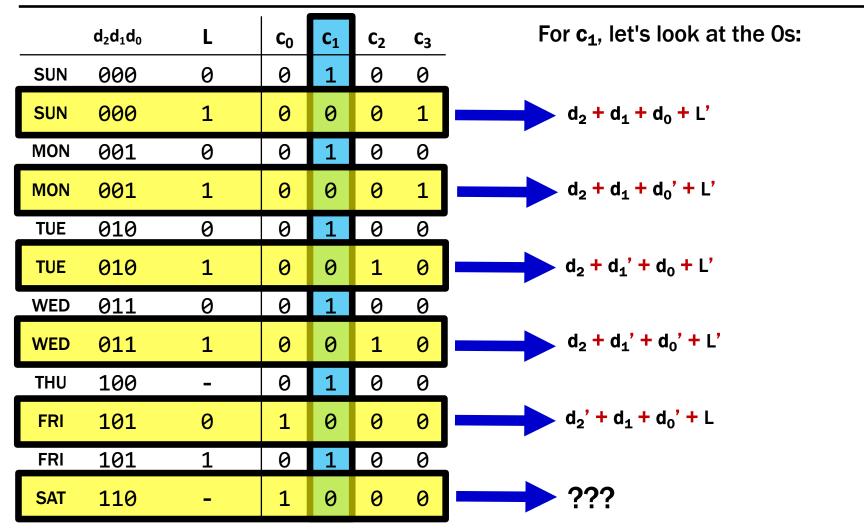
Truth Table to Logic

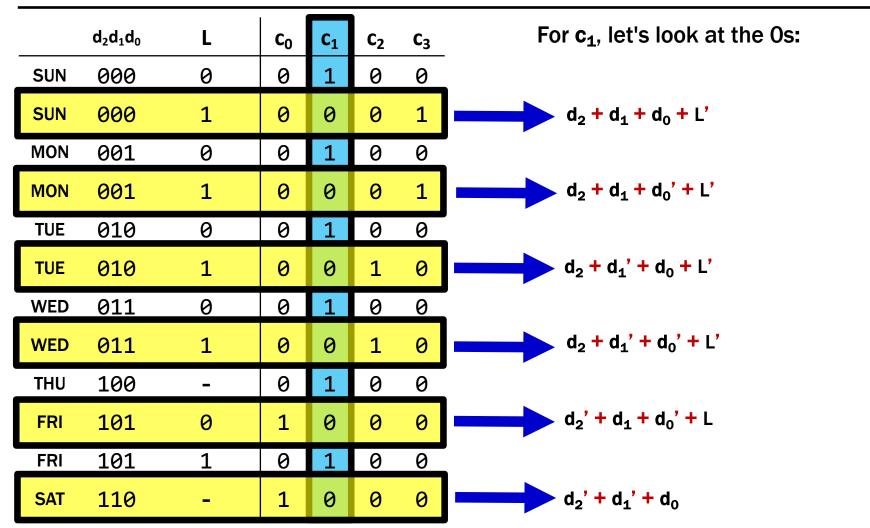
$d_2d_1d_0$	L	c 0	C ₁	C ₂	C ₃
000	0	0	1	0	0
000	1	0	0	0	1
001	0	0	1	0	0
001	1	0	0	0	1
010	0	0	1	0	0
010	1	0	0	1	0
011	0	0	1	0	0
011	1	0	0	1	0
100	-	0	1	0	0
101	0	1	0	0	0
101	1	0	1	0	0
110	_	1	0	0	0
	000 000 001 001 010 010 011 011 100 101 101	000 0 0000 1 0001 0 0010 1 0100 1 0110 0 0111 0 1000 - 1001 0 1011 0 1011 1	000 0 0 000 1 0 001 0 0 001 1 0 001 1 0 010 0 0 011 0 0 011 0 0 011 0 0 011 0 0 011 0 0 011 0 0 011 0 1 011 1 0 100 - 0 101 0 1 101 1 0	000 0 1 000 1 0 0 001 0 0 1 001 1 0 0 010 0 0 1 010 1 0 0 011 0 0 1 011 1 0 0 100 $ 0$ 1 101 0 1 0 101 1 0 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	$d_2d_1d_0$	L	c ₀	c ₁	C ₂	C ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0


How do we combine them?

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
SUN 000 1 0 0 0 1 MON 001 0 0 1 0 0 1 MON 001 1 0 0 1 0 0 MON 001 1 0 0 1 0 0 1 TUE 010 0 0 1 0 0 1 0 0 1 WED 011 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 <th></th>	
MON 001 0 1 0 0 MON 001 1 0 0 0 1 TUE 010 0 0 1 0 0 1 TUE 010 0 0 1 0 0 1 0 0 TUE 010 1 0 0	
MON 001 1 0 0 0 1 TUE 010 0 0 1 0 0 1 TUE 010 1 0 0 1 0 0 Either situation true. So, where the set of	L
TUE 010 0 0 1 0 0 <t< td=""><td></td></t<>	
TUE 010 1 0 0 1 0 0 1 0 $true. So, T$ WED 011 0 0 1 0 0 0 0 0 0 $true. So, T$ $true. So, T$ $true. So, T$ 0	-
IDE 010 1 0 0 1 0 $true. So, T$ WED 011 0 1 0 0 0 $c_3 = d_2' \cdot d_1' \cdot d_0$ WED 011 1 0 0 1 0 $c_3 = d_2' \cdot d_1' \cdot d_0$ WED 011 1 0 0 1 0 $c_3 = d_2' \cdot d_1' \cdot d_0$	
WED 011 0 0 1 0 0 WED 011 1 0 0 1 0 $c_3 = d_2' \cdot d_1' \cdot d_0'$ WED 011 1 0 0 1 0 $c_3 = d_2' \cdot d_1' \cdot d_0'$	5
	ve or them.
h•'•h	,'•L+
	• L
FRI 101 0 1 0 0 0	
FRI 101 1 0 1 0 0	
SAT 110 - 1 0 0 0	

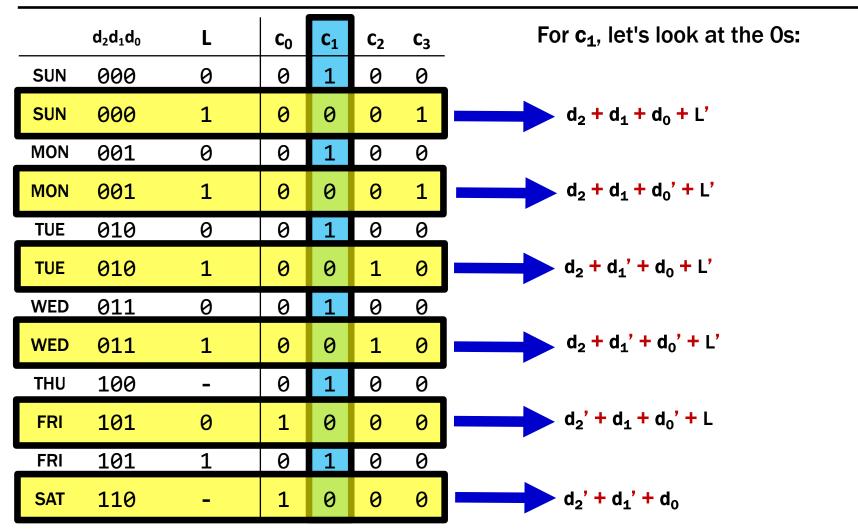

	$d_2d_1d_0$	L	C ₀	c ₁	c ₂	C ₃	c ₃ = c
SUN	000	0	0	1	0	0	Now, w
SUN	000	1	0	0	0	1	
MON	001	0	0	1	0	0	
MON	001	1	0	0	0	1	
TUE	010	0	0	1	0	0	
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	
WED	011	1	0	0	1	0	
THU	100	-	0	1	0	0	•
FRI	101	0	1	0	0	0	
FRI	101	1	0	1	0	0	
SAT	110	-	1	0	0	0	
			•				


 $\mathbf{c}_3 = \mathbf{d}_2' \cdot \mathbf{d}_1' \cdot \mathbf{d}_0' \cdot \mathbf{L} + \mathbf{d}_2' \cdot \mathbf{d}_1' \cdot \mathbf{d}_0 \cdot \mathbf{L}$

Now, we do c_2 .



 $c_{3} = d_{2}' \cdot d_{1}' \cdot d_{0}' \cdot L + d_{2}' \cdot d_{1}' \cdot d_{0} \cdot L$ $c_{2} = d_{2}' \cdot d_{1} \cdot d_{0}' \cdot L + d_{2}' \cdot d_{1} \cdot d_{0} \cdot L$



No matter what L is, we always say it's 1. So, we don't need L in the expression.

How do we combine them?

 $c_{1} = (d_{2} + d_{1} + d_{0} + L')(d_{2} + d_{1} + d_{0}' + L')(d_{2} + d_{1}' + d_{0} + L')$ (d_{2} + d_{1}' + d_{0}' + L')(d_{2}' + d_{1} + d_{0}' + L)(d_{2}' + d_{1}' + d_{0})

Truth Table to Logic (Part 3)

	$d_2d_1d_0$	L	C ₀	c ₁	C ₂	C ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0	1
MON	001	0	0	1	0	0
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0

$$c_{1} = (d_{2} + d_{1} + d_{0} + L')(d_{2} + d_{1} + d_{0}' + L')$$

$$(d_{2} + d_{1}' + d_{0} + L')(d_{2} + d_{1}' + d_{0}' + L')$$

$$(d_{2}' + d_{1} + d_{0}' + L)(d_{2}' + d_{1}' + d_{0})$$

$$c_{2} = d_{2}' \cdot d_{1} \cdot d_{0}' \cdot L + d_{2}' \cdot d_{1} \cdot d_{0} \cdot L$$

$$c_{3} = d_{2}' \cdot d_{1}' \cdot d_{0}' \cdot L + d_{2}' \cdot d_{1}' \cdot d_{0} \cdot L$$

Is c₁ still in CNF form? Yes, but not canonical CNF

Truth Table to Logic (Part 4)

		$d_2d_1d_0$	L	C ₀	c ₁	C ₂	C ₃	$c_1 = (d_2 + d_1 + d_0 + L')(d_1 + d_0 + L')(d_1 + d_1 + d_1 + d_1)$
	SUN	000	0	0	1	0	0	$(d_2 + d_1' + d_0 + L')$ (d_2' + d_1 + d_0' + L)
	SUN	000	1	0	0	0	1	$\mathbf{c_2} = \mathbf{d_2'} \cdot \mathbf{d_1} \cdot \mathbf{d_0'} \cdot \mathbf{L} + \mathbf{d_1'} \cdot \mathbf{d_0'} \cdot \mathbf{L} + \mathbf{d_0'} \cdot \mathbf{d_1'} \cdot \mathbf{d_0'} \cdot \mathbf{L} + \mathbf{d_0'} \cdot \mathbf$
	MON	001	0	0	1	0	0	
	MON	001	1	0	0	0	1	$\mathbf{c}_3 = \mathbf{d}_2' \bullet \mathbf{d}_1' \bullet \mathbf{d}_0' \bullet L \bullet$
	TUE	010	0	0	1	0	0	
	TUE	010	1	0	0	1	0	
	WED	011	0	0	1	0	0	
	WED	011	1	0	0	1	0	
	THU	100	-	0	1	0	0	Finally, we do c ₀ :
	FRI	101	0	1	0	0	0	
	FRI	101	1	0	1	0	0	
	SAT	110	-	1	0	0	0	
, I								

$$c_{1} = (d_{2} + d_{1} + d_{0} + L')(d_{2} + d_{1} + d_{0}' + L')$$

$$(d_{2} + d_{1}' + d_{0} + L')(d_{2} + d_{1}' + d_{0}' + L')$$

$$(d_{2}' + d_{1} + d_{0}' + L)(d_{2}' + d_{1}' + d_{0})$$

$$c_{2} = d_{2}' \cdot d_{1} \cdot d_{0}' \cdot L + d_{2}' \cdot d_{1} \cdot d_{0} \cdot L$$

$$c_{3} = d_{2}' \cdot d_{1}' \cdot d_{0}' \cdot L + d_{2}' \cdot d_{1}' \cdot d_{0} \cdot L$$

. . .

Truth Table to Logic (Part 4)

	$d_2d_1d_0$	L	C ₀	c ₁	C ₂	C ₃	$c_1 = (d_2 + d_1 + d_0 + L')(d_1 + d_0 + L')(d_1 + d_1 + d_1 + d_1)$
SUN	000	0	0	1	0	0	$(d_2 + d_1' + d_0 + L')$ (d_2' + d_1 + d_0' + L)
SUN	000	1	0	0	0	1	$\mathbf{c_2} = \mathbf{d_2'} \cdot \mathbf{d_1} \cdot \mathbf{d_0'} \cdot \mathbf{L} + \mathbf{c_2} = \mathbf{d_2'} \cdot \mathbf{d_1} \cdot \mathbf{d_0'} \cdot \mathbf{L} + \mathbf{c_2'} \cdot \mathbf{d_1'} \cdot \mathbf{d_0'} \cdot \mathbf{L} + \mathbf{d_0'} \cdot \mathbf{d_1'} \cdot \mathbf{d_0'} \cdot \mathbf{L} + \mathbf{d_0'} \cdot \mathbf{d_1'} \cdot \mathbf{d_0'} \cdot \mathbf{L} + \mathbf{d_0'} \cdot \mathbf{d_1'} \cdot d_$
MON	001	0	0	1	0	0	$c_{2} = d_{2} \cdot d_{1} \cdot d_{0} \cdot L$
MON	001	1	0	0	0	1	$\mathbf{c}_3 = \mathbf{u}_2 \cdot \mathbf{u}_1 \cdot \mathbf{u}_0 \cdot \mathbf{L}$
TUE	010	0	0	1	0	0	
TUE	010	1	0	0	1	0	
WED	011	0	0	1	0	0	
WED	011	1	0	0	1	0	
THU	100	-	0	1	0	0	Finally, we do c ₀ :
FRI	101	0	1	0	0	0	$d_2 \bullet d_1' \bullet d_0 \bullet L'$
FRI	101	1	0	1	0	0	
SAT	110	-	1	0	0	0	$d_2 \cdot d_1 \cdot d_0'$

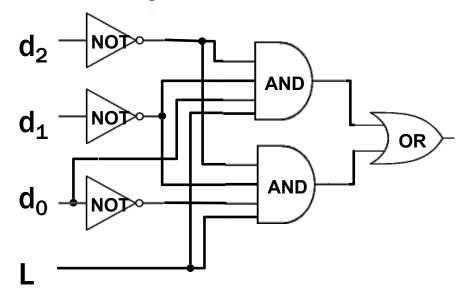
$$c_{1} = (d_{2} + d_{1} + d_{0} + L')(d_{2} + d_{1} + d_{0}' + L')$$

$$(d_{2} + d_{1}' + d_{0} + L')(d_{2} + d_{1}' + d_{0}' + L')$$

$$(d_{2}' + d_{1} + d_{0}' + L)(d_{2}' + d_{1}' + d_{0})$$

$$c_{2} = d_{2}' \cdot d_{1} \cdot d_{0}' \cdot L + d_{2}' \cdot d_{1} \cdot d_{0} \cdot L$$

$$c_{3} = d_{2}' \cdot d_{1}' \cdot d_{0}' \cdot L + d_{2}' \cdot d_{1}' \cdot d_{0} \cdot L$$


$$c_{0} = d_{2} \cdot d_{1} \cdot d_{0} \cdot L' + d_{2} \cdot d_{1} \cdot d_{0}'$$

$$c_{1} = (d_{2} + d_{1} + d_{0} + L')(d_{2} + d_{1} + d_{0}' + L')(d_{2} + d_{1}' + d_{0} + L')(d_{2} + d_{1}' + d_{0}' + L')(d_{2}' + d_{1} + d_{0}' + L)(d_{2}' + d_{1}' + d_{0})$$

$$c_{2} = d_{2}' \cdot d_{1} \cdot d_{0}' \cdot L + d_{2}' \cdot d_{1} \cdot d_{0} \cdot L$$

$$c_{3} = d_{2}' \cdot d_{1}' \cdot d_{0}' \cdot L + d_{2}' \cdot d_{1}' \cdot d_{0} \cdot L$$

Mapping Truth Tables to Logic Gates

Given a truth table:

- **1**. Write the output in a table
- 2. Write the Boolean expression
- 3. Draw as gates
- 4. Map to available gates

Mapping Truth Tables to Logic Gates

Given a truth table:

- **1**. Write the output in a table
- 2. Write the Boolean expression
- 3. Draw as gates
- 4. Map to available gates

This will give us some circuit. But is it the <u>best</u> circuit?

Equivalence

Terminology: A compound proposition is a...

- *Tautology* if it is always true
- *Contradiction* if it is always false
- Contingency if it can be either true or false

а	b	•••	Т	F
Т	Т		Т	F
F	Т		т	F
Т	F		Т	F
F	F		Т	F
		•••		

Terminology: A compound proposition is a...

- *Tautology* if it is always true
- *Contradiction* if it is always false
- Contingency if it can be either true or false

 $p \lor \neg p$

 $p \oplus p$

$$(p \rightarrow r) \land p$$

Terminology: A compound proposition is a...

- *Tautology* if it is always true
- *Contradiction* if it is always false
- Contingency if it can be either true or false

 $p \lor \neg p$

This is a tautology. It's called the "law of the excluded middle". If p is true, then $p \lor \neg p$ is true. If p is false, then $p \lor \neg p$ is true.

$p \oplus p$

This is a contradiction. It's always false no matter what truth value p takes on.

 $(p \rightarrow r) \land p$

This is a contingency. When p=T, r=T, $(T \rightarrow T) \land T$ is true. When p=T, r=F, $(T \rightarrow F) \land T$ is false.

Terminology: A compound proposition is a...

- *Tautology* if it is always true
- *Contradiction* if it is always false
- Contingency if it can be either true or false

SAT Problem: is it <u>not</u> a contradiction?

- every row is F in a contradiction
- not a contradiction means some row is T

- $p \wedge r = p \wedge r$
- $p \wedge r \neq r \wedge p$

 $- p \wedge r = p \wedge r$

These are equal, because they are character-for-character identical.

 $- p \wedge r \neq r \wedge p$

These are NOT equal, because they are different sequences of characters. They "mean" the same thing though.

in more detail, "=" means same parse tree (see week 8), so we can ignore differences in whitespace etc.

 $- p \wedge r = p \wedge r$

These are equal, because they are character-for-character identical.

 $- p \wedge r \neq r \wedge p$

These are NOT equal, because they are different sequences of characters. They "mean" the same thing though.

$A \equiv B$ means A and B have identical truth values:

$$- p \wedge r \equiv p \wedge r$$

$$- p \wedge r \equiv r \wedge p$$

 $- p \wedge r \not\equiv r \vee p$

 $- p \wedge r = p \wedge r$

These are equal, because they are character-for-character identical.

 $- p \wedge r \neq r \wedge p$

These are NOT equal, because they are different sequences of characters. They "mean" the same thing though.

$A \equiv B$ means A and B have identical truth values:

 $- p \wedge r \equiv p \wedge r$

Two formulas that are equal also are equivalent.

 $- p \wedge r \equiv r \wedge p$

These two formulas have the same truth table!

 $- p \wedge r \not\equiv r \vee p$

When p=T and r=F, $p \land r$ is false, but $p \lor r$ is true!

 $A \leftrightarrow B$ is a **proposition** that may be true or false depending on the truth values of A and B.

 $A \equiv B$ is an **assertion** over all possible truth values that A and B always have the same truth values.

 $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ have the same meaning as does " $A \leftrightarrow B$ is a tautology" $A \equiv B$ is an assertion that *two propositions* A and B always have the same truth values.

 $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ have the same meaning.

 $\boldsymbol{p} \wedge \boldsymbol{r} \equiv \boldsymbol{r} \wedge \boldsymbol{p}$

р	r	p∧r	<i>r</i> ∧ <i>p</i>	$(\boldsymbol{p} \wedge \boldsymbol{r}) \leftrightarrow (\boldsymbol{r} \wedge \boldsymbol{p})$
Т	Т	Т	Т	Т
Т	F	F	F	Т
F	Т	F	F	Т
F	F	F	F	Т

$$\neg (p \land r) \equiv \neg p \lor \neg r$$
$$\neg (p \lor r) \equiv \neg p \land \neg r$$

Negate the statement:

"My code compiles or there is a bug."

To negate the statement,

ask "when is the original statement false".

It's false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get: My code doesn't compile and there is not a bug.

Example:
$$\neg (p \land r) \equiv \neg p \lor \neg r$$

p	r	$\neg p$	r	_ <i>p</i> ∨_ <i>r</i>	p∧r	$\neg (p \land r)$
Т	Т	F	F	F	Т	F
Т	F	F	Т	Т	F	Т
F	Т	Т	F	Т	F	Т
F	F	Т	Т	Т	F	Т

```
\neg (p \land r) \equiv \neg p \lor \neg r\neg (p \lor r) \equiv \neg p \land \neg r
```

```
if (!(front != null && value > front.data)) {
   front = new ListNode(value, front);
} else {
   ListNode current = front;
   while (current.next != null && current.next.data < value))
      current = current.next;
   current.next = new ListNode(value, current.next);
}</pre>
```

$$\neg (p \land r) \equiv \neg p \lor \neg r$$
$$\neg (p \lor r) \equiv \neg p \land \neg r$$

!(front != null && value > front.data)

\equiv

front == null || value <= front.data</pre>

$$p \rightarrow r \equiv \neg p \lor r$$

p	r	$p \rightarrow r$	¬ <i>p</i>	¬ <i>p</i> ∨ <i>r</i>
Т	Т			
Т	F			
F	Т			
F	F			

$$p \rightarrow r \equiv \neg p \lor r$$

p	r	$p \rightarrow r$	¬ <i>p</i>	¬ <i>p</i> ∨ <i>r</i>
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

- *p* if and only if *r* (*p* iff *r*)
- *p* implies *r* and *r* implies *p*
- *p* is necessary and sufficient for *r*

p	r	$p \leftrightarrow r$	$p \rightarrow r$	$r \rightarrow p$	$(p \rightarrow r) \land (r \rightarrow p)$
Т	Т	Т	Т	т	
Т	F	F	F	Т	
F	Т	F	Т	F	
F	F	Т	Т	Т	

- *p* if and only if *r* (*p* iff *r*)
- *p* implies *r* and *r* implies *p*
- *p* is necessary and sufficient for *r*

p	r	$p \leftrightarrow r$	$p \rightarrow r$	$r \rightarrow p$	$(p \rightarrow r) \land (r \rightarrow p)$
Т	т	Т	Т	Т	т
Т	F	F	F	Т	F
F	т	F	Т	F	F
F	F	Т	Т	Т	Т

Some Familiar Properties of Arithmetic

• x + y = y + x (Commutativity)

• $x \cdot (y + z) = x \cdot y + x \cdot z$ (Distributivity)

• (x + y) + z = x + (y + z) (Associativity)

Important Equivalences

- Identity
 - $p \wedge T \equiv p$
 - $p \vee F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $-\ p \wedge q \equiv q \wedge p$

Associative

$$- (p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$-(p \land q) \land r \equiv p \land (q \land r)$$

Distributive

$$- p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

- $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption

$$- p \lor (p \land q) \equiv p$$

$$- p \land (p \lor q) \equiv p$$

Negation

$$- p \lor \neg p \equiv T$$

 $- p \wedge \neg p \equiv F$

Some Familiar Properties of Arithmetic

- $x \cdot 1 = x$ (Identity)
- x + 0 = x

• $x \cdot 0 = 0$

(Domination)

Important Equivalences

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \land q \equiv q \land p$

Associative

$$-(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$-(p \land q) \land r \equiv p \land (q \land r)$$

• Distributive

$$-p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

$$- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Absorption

$$- p \lor (p \land q) \equiv p$$

$$-p \land (p \lor q) \equiv p$$

Negation

$$- p \lor \neg p \equiv T$$

$$-p \wedge \neg p \equiv F$$

Some Familiar Properties of Arithmetic

- Usual properties hold under relabeling:
 - 0, 1 becomes F, T
 - "+" becomes " \checkmark "
 - " \cdot " becomes " \wedge "
- But there are some new facts:
 - Distributivity works for both " \wedge " and " \checkmark "
 - Domination works with T
- There are some other facts specific to logic...

Important Equivalences

- Identity
 - $p \wedge T \equiv p$
 - $p \vee \mathbf{F} \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \land q \equiv q \land p$

Associative

$$-(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$-(p \land q) \land r \equiv p \land (q \land r)$$

- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption

$$- p \lor (p \land q) \equiv p$$

$$- p \land (p \lor q) \equiv p$$

Negation

$$- p \lor \neg p \equiv T$$

 $- p \wedge \neg p \equiv F$

Important Equivalences

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $\ p \wedge q \equiv q \wedge p$

Associative

$$-(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$- (p \land q) \land r \equiv p \land (q \land r)$$

Distributive

$$- \ p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

$$- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Absorption

$$- p \lor (p \land q) \equiv p$$

$$- p \land (p \lor q) \equiv p$$

Negation

$$- p \lor \neg p \equiv T$$

 $- p \land \neg p \equiv F$

• Note that p, q, and r can be **any** propositions (not just atomic propositions)

• Ex:
$$(r \rightarrow s) \land (\neg t) \equiv (\neg t) \land (r \rightarrow s)$$

- apply commutativity:
$$p \land q \equiv q \land p$$

with $p := r \rightarrow s$
and $q := \neg t$

One more easy equivalence

Double Negation

$$p \equiv \neg \neg p$$

p	¬ p	<i>p</i>
Т	F	Т
F	Т	F

- Working with logical formulas
 - simplification
- Working with circuits
 - hardware verification
- Software applications
 - query optimization and caching
 - artificial intelligence
 - program verification

Given two propositions, can we write an algorithm to determine if they are equivalent?

What is the runtime of our algorithm?

Given two propositions, can we write an algorithm to determine if they are equivalent?

Yes! Generate the truth tables for both propositions and check if they are the same for every entry.

What is the runtime of our algorithm?

Every atomic proposition has two possibilities (T, F). If there are n atomic propositions, there are 2^n rows in the truth table.

Another approach: Equivalence Chains

To show A is equivalent to B

 Apply a series of logical equivalences to sub-expressions to convert A to B

To show A is a tautology

 Apply a series of logical equivalences to sub-expressions to convert A to T

Another approach: Equivalence Chains

To show A is equivalent to B

Apply a series of logical equivalences to sub-expressions to convert A to B

Example:

Let A be " $p \lor (p \land p)$ ", and B be "p". Our general equivalence proof looks like:

$$p \lor (p \land p) \equiv \\ \equiv p$$

Another approach: Logical Equivalences

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $-\ p \wedge q \equiv q \wedge p$

- Associative
 - $-(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $-(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption $- p \lor (p \land q) \equiv p$
 - $-p \land (p \lor q) \equiv p$
- Negation
 - $p \lor \neg p \equiv T$ $p \land \neg p \equiv F$

- De Morgan's Laws
 - $egin{aligned}
 equation & \neg(p \land q) \equiv \neg p \lor \neg q \\
 egin{aligned}
 equation & \neg(p \lor q) \equiv \neg p \land \neg q
 \end{aligned}$
- Law of Implication

 $p \rightarrow q \equiv \neg p \lor q$

Contrapositive

 $p \to q \ \equiv \ \neg q \to \neg p$

Biconditional

 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Double Negation

 $p \equiv \neg \neg p$

Example:

Let A be " $p \lor (p \land p)$ ", and B be "p". Our general equivalence proof looks like:

$$p \lor (p \land p) \equiv \\ \equiv p$$

Logical Equivalences

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $-\ p \wedge q \equiv q \wedge p$

- Associative
 - $-(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $-(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption $- p \lor (p \land q) \equiv p$
 - $-p \land (p \lor q) \equiv p$
- Negation
 - $p \lor \neg p \equiv T$ $p \land \neg p \equiv F$

De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

 $\neg (p \lor q) \equiv \neg p \land \neg q$

Law of Implication

$$p \rightarrow q \equiv \neg p \lor q$$

Contrapositive

 $p \to q \ \equiv \ \neg q \to \neg p$

Biconditional

 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Double Negation

 $p \equiv \neg \neg p$

Example:

Let A be " $p \lor (p \land p)$ ", and B be "p". Our general equivalence proof looks like:

$$p \lor (p \land p) \equiv p \lor p$$

$$\equiv p$$
Idempotent
Idempotent

To show A is a tautology

 Apply a series of logical equivalences to sub-expressions to convert A to T

Example: Let A be " $\neg p \lor (p \lor p)$ ". Our general equivalence proof looks like:

$$\neg p \lor (p \lor p) \equiv \equiv \equiv \mathbf{T}$$

Logical Equivalences

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $-\ p \wedge q \equiv q \wedge p$

- Associative
 - $-(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $-(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- p v (q / (r)) = (p v q) / (p v
 Absorption
 - $-p \lor (p \land q) \equiv p$
 - $-p \land (p \lor q) \equiv p$
- Negation
 - $p \lor \neg p \equiv T$ $p \land \neg p \equiv F$

De Morgan's Laws

$$egin{aligned}
equation & \neg(p \land q) \equiv \neg p \lor \neg q \\
egin{aligned}
equation & \neg(p \lor q) \equiv \neg p \land \neg q
equation & \neg(p \land q) \equiv \neg p \land \neg q
equation & \neg(p \land q) \equiv \neg p \land \neg q
equation & \neg(p \lor q) \equiv \neg p \land \neg q
equation & \neg(p \lor q) \equiv \neg p \land \neg q
equation & \neg(p \lor q) \equiv \neg p \land \neg q
equation & \neg(p \lor q) \equiv \neg p \land \neg q
equation & \neg(p \lor q) \equiv \neg p \land \neg q
equation & \neg(p \lor q) \equiv \neg p \land \neg q
equation & \neg(p \lor q) \equiv \neg p \land \neg q
equation & \neg(p \lor q) \equiv \neg p \land \neg q
equation & \neg(p \lor q) \equiv \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg p \land \neg q
equation & \neg(p \lor q) = \neg q
equ$$

Law of Implication

$$p \rightarrow q \equiv \neg p \lor q$$

Contrapositive

 $p \to q \ \equiv \ \neg q \to \neg p$

Biconditional

 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Double Negation

 $p \equiv \neg \neg p$

Example:

Let A be " $\neg p \lor (p \lor p)$ ". Our general equivalence proof looks like:

$$\neg p \lor (p \lor p) \equiv \\ \equiv \\ \equiv \\ \equiv \\ \equiv \\ \blacksquare$$

Logical Equivalences

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $-\ p \wedge q \equiv q \wedge p$

- Associative
 - $-(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $-(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption $- p \lor (p \land q) \equiv p$
 - $-p \land (p \lor q) \equiv p$
- Negation
 - $p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$

De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$

 $\neg (p \lor q) \equiv \neg p \land \neg q$

Law of Implication

 $p \rightarrow q \equiv \neg p \lor q$

Contrapositive

 $p \to q \ \equiv \ \neg q \to \neg p$

Biconditional

 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Double Negation

 $p \equiv \neg \neg p$

Example:

Let A be " $\neg p \lor (p \lor p)$ ". Our general equivalence proof looks like:

$$p \lor (p \lor p) \equiv \neg p \lor p$$
$$\equiv p \lor \neg p$$
$$\equiv \mathbf{T}$$

Idempotent Commutative Negation

Prove:
$$p \land (p \rightarrow r) \equiv p \land r$$

Make a Truth Table and show:

 $(p \land (p \rightarrow r)) \leftrightarrow (p \land r) \equiv \mathbf{T}$

p	r	p ightarrow r	$(p \land (p \rightarrow r))$	$p \wedge r$	$(p \land (p \rightarrow r)) \leftrightarrow (p \land r)$
т	Т				
Т	F				
F	Т				
F	F				

Prove:
$$p \land (p \rightarrow r) \equiv p \land r$$

Make a Truth Table and show:

 $(p \land (p \rightarrow r)) \leftrightarrow (p \land r) \equiv \mathbf{T}$

p	r	p ightarrow r	$(p \land (p \rightarrow r))$	$p \wedge r$	$(p \land (p ightarrow r)) \leftrightarrow (p \land r)$
Т	Т	Т	Т	т	Т
Т	F	F	F	F	Т
F	Т	т	F	F	Т
F	F	т	F	F	Т

Prove:
$$p \land (p \rightarrow r) \equiv p \land r$$

$$p \land (p \rightarrow r) \equiv \\ \equiv \\ \equiv \\ \equiv \\ p \land r$$

• Identity

- $p \wedge T \equiv p$
- $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $\ p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \wedge q \equiv q \wedge p$

- Associative
 - $-(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption
 - $p \lor (p \land q) \equiv p$
 - $p \land (p \lor q) \equiv p$
- Negation
 - $p \lor \neg p \equiv T$
 - $p \land \neg p \equiv F$

De Morgan's Laws

 $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$

Law of Implication

 $p \to q \equiv \neg p \lor q$

Contrapositive

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

Biconditional

 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Double Negation

 $p \equiv \neg \neg p$

Prove:
$$p \land (p \rightarrow r) \equiv p \land r$$

$$p \land (p \to r) \equiv p \land (\neg p \lor r)$$
$$\equiv (p \land \neg p) \lor (p \land r)$$
$$\equiv \mathbf{F} \lor (p \land r)$$
$$\equiv (p \land r) \lor \mathbf{F}$$
$$\equiv p \land r$$

Law of Implication Distributive Negation Commutative Identity

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $\ p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \land q \equiv q \land p$

- Associative
 - $-(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Absorption
 - $p \lor (p \land q) \equiv p$
 - $p \land (p \lor q) \equiv p$
- Negation
 - $p \lor \neg p \equiv T$
 - $p \land \neg p \equiv F$

De Morgan's Laws

 $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$

Law of Implication

 $p \to q \equiv \neg p \lor q$

Contrapositive

$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

Biconditional

 $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Double Negation

 $p \equiv \neg \neg p$

$(p \land r) \rightarrow (r \lor p)$

Make a Truth Table and show:

 $(p \land r) \to (r \lor p) \equiv \mathbf{T}$

p	r	$p \wedge r$	$r \lor p$	$(p \wedge r) \rightarrow (r \vee p)$
Т	Т			
Т	F			
F	Т			
F	F			

$(p \land r) \rightarrow (r \lor p)$

Make a Truth Table and show:

 $(p \land r) \to (r \lor p) \equiv \mathbf{T}$

p	r	$p \wedge r$	$r \lor p$	$(p \wedge r) \rightarrow (r \vee p)$
Т	Т	Т	Т	Т
Т	F	F	т	Т
F	Т	F	т	т
F	F	F	F	Т

 $(p \land r) \rightarrow (r \lor p)$

Use a series of equivalences like so:

 $(p \land r) \rightarrow (r \lor p) \equiv$ \equiv \equiv \equiv Identity $-p \wedge T \equiv p$ \equiv $- p \vee F \equiv p$ **Domination** \equiv $- p \lor T \equiv T$ = $- p \wedge F \equiv F$ Idempotent \equiv $- p \lor p \equiv p$ \equiv Т $- p \wedge p \equiv p$ **Commutative**

 $- p \lor q \equiv q \lor p$ $- p \land q \equiv q \land p$

Associative
$-(p \lor q) \lor r \equiv p \lor (q \lor r)$
$- (p \land q) \land r \equiv p \land (q \land r)$
Distributive
$- p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
$- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Absorption
$- p \lor (p \land q) \equiv p$
$- p \land (p \lor q) \equiv p$
Negation
$- p \lor \neg p \equiv T$
$- p \land \neg p \equiv F$

$$(p \land r) \rightarrow (r \lor p)$$

Use a series of equivalences like so:

 $-p \wedge$

 $-p \vee$

 $-p \vee$

 $-p \wedge$

 $-p \vee$

 $-p \wedge$

 $- p \lor q \equiv q \lor p$ $-p \wedge q \equiv q \wedge p$

$$(p \land r) \rightarrow (r \lor p) \equiv \neg (p \land r) \lor (r \lor p)$$
$$\equiv (\neg p \lor \neg r) \lor (r \lor p)$$
$$\equiv (\neg p \lor \neg r) \lor (r \lor p)$$
$$\equiv \neg p \lor (\neg r \lor (r \lor p))$$
$$\equiv \neg p \lor ((\neg r \lor r) \lor p)$$
$$\equiv \neg p \lor ((\neg r \lor r) \lor p)$$
$$\equiv (\neg p \lor p) \lor ((\neg r \lor r))$$
$$\equiv (p \lor \neg p) \lor (r \lor \neg r)$$
$$\equiv \mathbf{T} \lor \mathbf{T}$$
$$\equiv \mathbf{T}$$
Commutative

Associative $-(p \lor q) \lor r \equiv p \lor (q \lor r)$ $-(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$ **Distributive** $-p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ Absorption $- p \lor (p \land q) \equiv p$ $-p \land (p \lor q) \equiv p$ Negation $- p \vee \neg p \equiv T$ $-p \wedge \neg p \equiv F$

Law of Implication **De Morgan Associative Associative Commutative Associative Commutative (twice) Negation** (twice) **Domination/Identity**

- Not smaller than truth tables when there are only a few propositional variables...
- ...but usually *much shorter* than truth table proofs when there are many propositional variables
- A big advantage will be that we can extend them to a more in-depth understanding of logic for which truth tables don't apply.

Predicate Logic

Predicate Logic

Propositional Logic

 Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives

Predicate Logic

 Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about

"All positive integers x, y, and z satisfy $x^3 + y^3 \neq z^3$."

Adds two key notions to propositional logic

- Predicates
- Quantifiers

Predicate

- A function that returns a truth value, e.g.,

Cat(x) := "x is a cat" Prime(x) := "x is prime" HasTaken(x, y) := "student x has taken course y" LessThan(x, y) := "x < y" Sum(x, y, z) := "x + y = z" GreaterThan5(x) := "x > 5" HasNChars(s, n) := "string s has length n"

Predicates can have varying numbers of arguments and input types.

For ease of use, we define one "type"/"domain" that we work over. This non-empty set of objects is called the "domain of discourse".

For each of the following, what might the domain be? (1) "x is a cat", "x barks", "x ruined my couch"

"mammals" or "sentient beings" or "cats and dogs" or ...

(2) "x is prime", "x = 0", "x > 0", "x is a power of two"

"numbers" or "integers" or "non-negative integers" or ...

(3) "student x has taken course y" "x is a pre-req for z"

"students and courses" or "university entities" or ...

We use *quantifiers* to talk about collections of objects.

∀x P(x)
P(x) is true for every x in the domain read as "for all x, P of x"

∃x P(x)

There is an x in the domain for which P(x) is true read as "there exists x, P of x" We use quantifiers to talk about collections of objects.
Universal Quantifier ("for all"): ∀x P(x)
P(x) is true for every x in the domain
read as "for all x, P of x"

Examples: Are these true?

- $\forall x \text{ Odd}(x)$
- $\forall x \text{ LessThan4}(x)$

We use *quantifiers* to talk about collections of objects. Universal Quantifier ("for all"): ∀x P(x) P(x) is true for every x in the domain read as "for all x, P of x"

Examples: Are these true? It depends on the domain. For example:

- $\forall x \text{ Odd}(x)$
- $\forall x \text{ LessThan4}(x)$

{1, 3, -1, -27}	Integers	Odd Integers
True	False	True
True	False	False

We use *quantifiers* to talk about collections of objects. Existential Quantifier ("exists"): $\exists x P(x)$ There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Examples: Are these true?

- $\exists x \text{ Odd}(x)$
- $\exists x \text{ LessThan4}(x)$

We use *quantifiers* to talk about collections of objects. **Existential Quantifier** ("exists"): $\exists x P(x)$ There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Examples: Are these true? It depends on the domain. For example:

- $\exists x \text{ Odd}(x)$
- ∃x LessThan4(x)

{1, 3, -1, -27}	Integers	Positive Multiples of 5
True	True	True
True	True	False

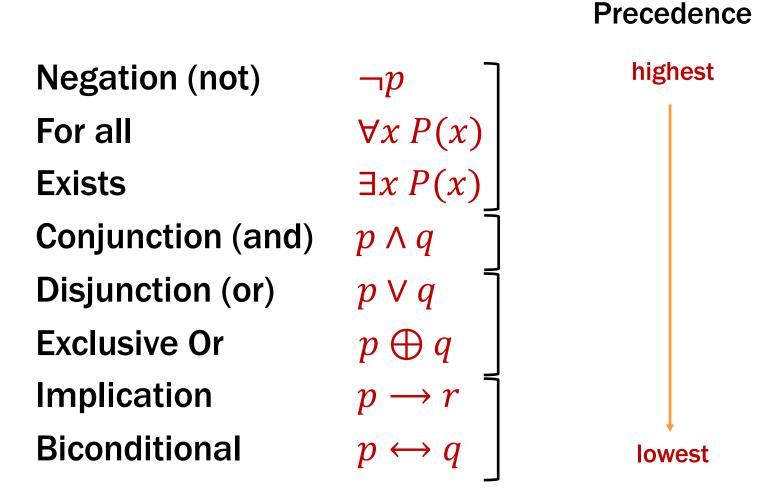
Statements with Quantifiers

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) := "x is even"	Greater(x, y) := "x > y"
Odd(x) := "x is odd"	Equal(x, y) := "x = y"
Prime(x) := "x is prime"	Sum(x, y, z) := "x + y = z"

Determine the truth values of each of these statements:

- ∃x Even(x) **T** e.g. 2, 4, 6, ...
- ∀x Odd(x) **F** e.g. 2, 4, 6, ...


Т

- $\forall x (Even(x) \lor Odd(x))$ **T**
- $\exists x (Even(x) \land Odd(x))$
- ∀x Greater(x+1, x)

 $\exists x (Even(x) \land Prime(x))$ **T**

- eg 2 4 6
- every integer is either even or odd
- **F** no integer is both even and odd
 - adding 1 makes a bigger number
 - Even(2) is true and Prime(2) is true

Syntax of Quantifiers

 $\forall x \neg P(x) \land Q(y)$ means $(\forall x \neg P(x)) \land Q(y)$

Negation (not) For all **Exists Conjunction** (and) **Disjunction** (or) **Exclusive Or** Implication **Biconditional**

$$\neg p$$

$$\forall x P(x)$$

$$\exists x P(x)$$

$$p \land q$$

$$p \lor q$$

$$p \bigoplus q$$

$$p \bigoplus q$$

$$p \longrightarrow r$$

$$p \leftrightarrow q$$

Not everyone uses this convention!

We will try to accommodate both approaches...

Syntax of Quantifiers (Two Conventions)

Negation (not) $\neg \gamma$ For all $\forall x$ **Exists** $\exists x$ **Conjunction** (and) *p* / **Disjunction** (or) p**Exclusive Or** *p* (Implication p -**Biconditional** pFor all $\forall x$ **Exists** ΞX

Syntax of Quantifiers (Two Conventions)

Negation (not) For all ١ **Exists Conjunction** (and) **Disjunction** (or) **Exclusive Or** Implication **Biconditional** For all **Exists**

$$\neg p$$

$$\forall x P(x)$$

$$\exists x P(x)$$

$$p \land q$$

$$p \lor q$$

$$p \leftrightarrow q$$

$$p \leftrightarrow q$$

$$\forall x, P(x)$$

$$\exists x, P(x)$$

$$\forall x, \neg P(x) \land Q(y)$$

means $\forall x (\neg P(x) \land Q(y))$

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers Predicate DefinitionsEven(x) := "x is even"Greater(x, y) := "x > y"Odd(x) := "x is odd"Equal(x, y) := "x = y"Prime(x) := "x is prime"Sum(x, y, z) := "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

For every positive integer x, there is a positive integer y, such that y > x.

∃y ∀x Greater(y, x)

There is a positive integer y such that, for every pos. int. x, we have y > x.

 $\forall x \exists y (Prime(y) \land Greater(y, x))$

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

For each positive integer x, if x is prime, then x = 2 or x is odd.

 $\exists x \exists y (Prime(x) \land Prime(y) \land Sum(x, 2, y))$

There exist positive integers x and y such that x and y are prime and x + 2 = y.

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) := "x is even"	Greater(x, y) := " $x > y$ "
Odd(x) := "x is odd"	Equal(x, y) := "x = y"
Prime(x) := "x is prime"	Sum(x, y, z) := "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

For every positive integer x, there is a positive integer y, such that y > x.

 $\exists y \ \forall x \ Greater(y, x)$

There is a positive integer y such that, for every pos. int. x, we have y > x.

 $\forall x \exists y (Prime(y) \land Greater(y, x))$

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

Statements with Quantifiers (Natural Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) := "x is even"	Greater(x, y) := " $x > y$ "
Odd(x) := "x is odd"	Equal(x, y) := " $x = y$ "
Prime(x) := "x is prime"	Sum(x, y, z) := "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

For every positive integer, there is some larger positive integer.

∃y ∀x Greater(y, x)

There is a positive integer that is larger than every other positive integer.

 $\forall x \exists y (Prime(y) \land Greater(y, x))$

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers Predicate DefinitionsEven(x) := "x is even"Greater(x, y) := "x > y"Odd(x) := "x is odd"Equal(x, y) := "x = y"Prime(x) := "x is prime"Sum(x, y, z) := "x + y = z"

Translate the following statements to English

 $\exists x \exists y (Prime(x) \land Prime(y) \land Sum(x, 2, y))$

There exist positive integers x and y such that x and y are prime and x + 2 = y.

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

For each positive integer x, if x is prime, then x = 2 or x is odd.

Statements with Quantifiers (Natural Translations)

Domain of Discourse Positive Integers Predicate DefinitionsEven(x) := "x is even"Greater(x, y) := "x > y"Odd(x) := "x is odd"Equal(x, y) := "x = y"Prime(x) := "x is prime"Sum(x, y, z) := "x + y = z"

Translate the following statements to English

 $\exists x \exists y (Prime(x) \land Prime(y) \land Sum(x, 2, y))$

There exist primes x and y such that x + 2 = y.

There exist prime numbers that are 2 apart.

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

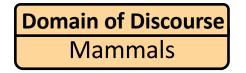
Statements with Quantifiers (Natural Translations)

Domain of Discourse Positive Integers Predicate DefinitionsEven(x) := "x is even"Greater(x, y) := "x > y"Odd(x) := "x is odd"Equal(x, y) := "x = y"Prime(x) := "x is prime"Sum(x, y, z) := "x + y = z"

Translate the following statements to English

 $\exists x \exists y (Prime(x) \land Prime(y) \land Sum(x, 2, y))$

There exist primes x and y such that x + 2 = y.


There exist prime numbers that are 2 apart.

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

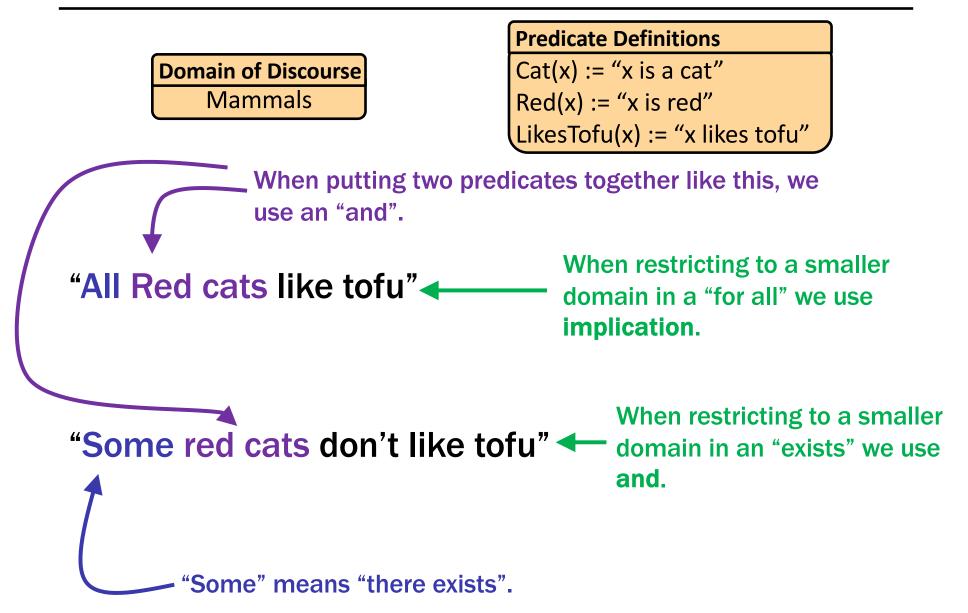
Every prime number is either 2 or odd.

Spot the domain restriction patterns

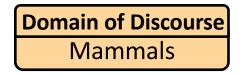
English to Predicate Logic

Predicate Definitions

Cat(x) := "x is a cat" Red(x) := "x is red" LikesTofu(x) := "x likes tofu"

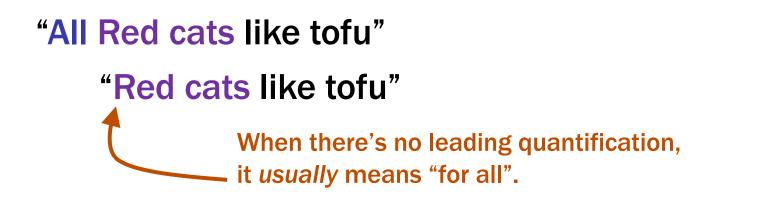

"All red cats like tofu"

 $\forall x ((\text{Red}(x) \land \text{Cat}(x)) \rightarrow \text{LikesTofu}(x))$


"Some red cats don't like tofu"

 $\exists y ((\text{Red}(y) \land \text{Cat}(y)) \land \neg \text{LikesTofu}(y))$

English to Predicate Logic



English to Predicate Logic

Predicate Definitions

Cat(x) := "x is a cat" Red(x) := "x is red" LikesTofu(x) := "x likes tofu"

"Some red cats don't like tofu"

Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more <u>natural</u> if we

1. Notice "domain restriction" patterns

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

Every prime number is either 2 or odd.

2. Avoid introducing *unnecessary* variable names

 $\forall x \exists y Greater(y, x)$

For every positive integer, there is some larger positive integer.

3. Can sometimes drop "all" or "there is"

 $\neg \exists x (Even(x) \land Prime(x) \land Greater(x, 2))$

No even prime is greater than 2.

Implicit quantifiers in English are often ambiguous

<u>Three people</u> that are all friends can form a raiding party \forall

Ξ

Three people that I know are all friends with Bill Gates

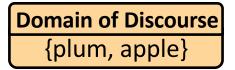
Formal logic removes this ambiguity

- quantifiers can always be specified
- unquantified variables that are not known constants (e.g, π) are **implicitly** \forall -quantified (mostly... one special case coming later)

Negations of Quantifiers

(*) $\forall x Purple(x)$ ("All fruits are purple")

What is the negation of (*)?


- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Try your intuition! Which one seems right?

Negations of Quantifiers

- (*) $\forall x Purple(x)$ ("All fruits are purple")
 - What is the negation of (*)?
 - (a) "there exists a purple fruit"
 - (b) "there exists a non-purple fruit"
 - (c) "all fruits are not purple"

- (*) Purple(plum) ^ Purple(apple)
 - (a) Purple(plum) v Purple(apple)
 - (b) ¬ Purple(plum) ∨ ¬ Purple(apple)
 - (c) ¬ Purple(plum) ∧ ¬ Purple(apple)

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

There is no unicorn $\neg \exists x Unicorn(x)$

Every animal is not a unicorn

 $\forall x \neg Unicorn(x)$

These are equivalent but not equal

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no integer larger than every other integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

"For every integer, there is a larger integer"

These are equivalent but not equal

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"No even prime is greater than 2"

$$\neg \exists x (Even(x) \land Prime(x) \land Greater(x, 2))$$

$$\equiv \forall x \neg (Even(x) \land Prime(x) \land Greater(x, 2))$$

$$\equiv \forall x (\neg(Even(x) \land Prime(x)) \lor \neg Greater(x, 2))$$

$$= \forall x (\neg(Even(x) \land Prime(x)) \lor LessEq(x, 2))$$

 $\equiv \forall x ((Even(x) \land Prime(x)) \rightarrow LessEq(x, 2))$

"Every even prime is less than or equal to 2."

We just saw that

$$\neg \exists x (P(x) \land R(x)) \equiv \forall x (P(x) \rightarrow \neg R(x))$$

Can similarly show that

$$\neg \forall x (P(x) \rightarrow R(x)) \equiv \exists x (P(x) \land \neg R(x))$$

De Morgan's Laws respect domain restrictions! (It leaves them in place and only negates the other parts.) • Implementing quantifiers in Java...

(Bound) variable names don't matter: $\forall x P(x) \equiv \forall a P(a)$

 $\exists x \ (P(x) \land Q(x)) \qquad \forall s. \quad (\exists x \ P(x)) \land (\exists x \ Q(x))$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

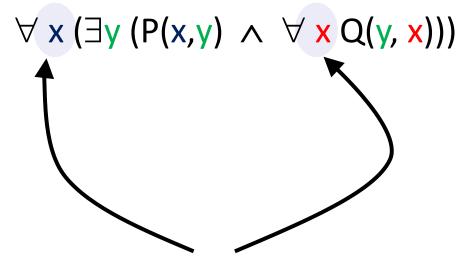
Variables with the same name do not necessarily refer to the same object.

Example: NotLargest(y) :=
$$\exists$$
 x Greater (x, y)
 $\equiv \exists$ z Greater (z, y)

truth value:

doesn't depend on x or z "bound variables" does depend on y "free variable"

Example: NotLargest(y) :=
$$\exists$$
 x Greater (x, y)
 $\equiv \exists$ z Greater (z, y)

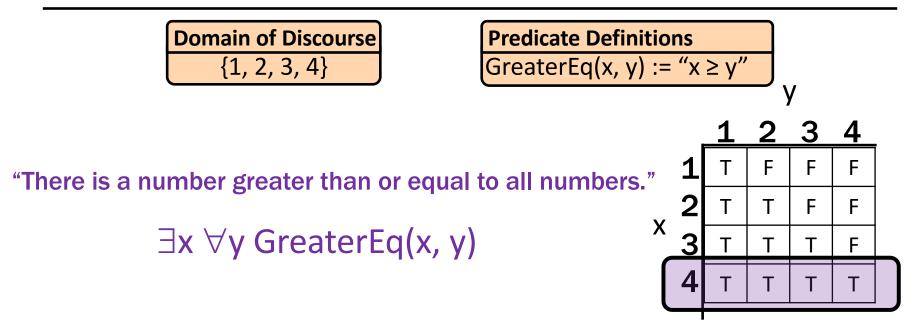

truth value:

doesn't depend on x or z "bound variables" does depend on y "free variable"

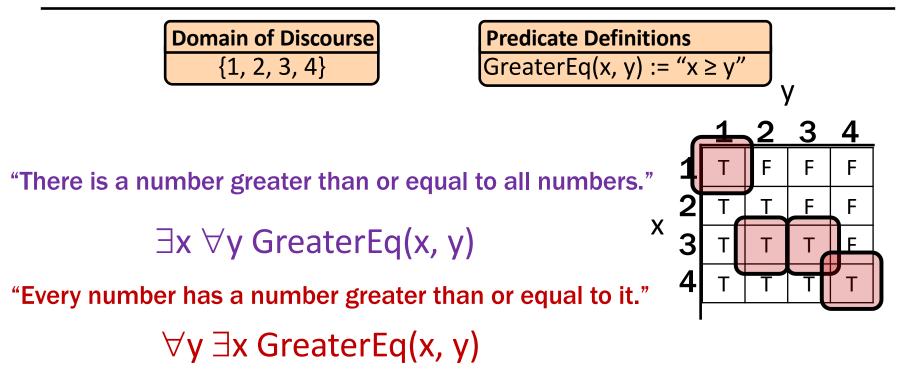
quantifiers only act on free variables of the formula

$$\forall \mathbf{x} \exists \mathbf{y} (\mathsf{P}(\mathbf{x},\mathbf{y}) \rightarrow \forall \mathbf{x} \mathsf{Q}(\mathbf{y},\mathbf{x})))$$

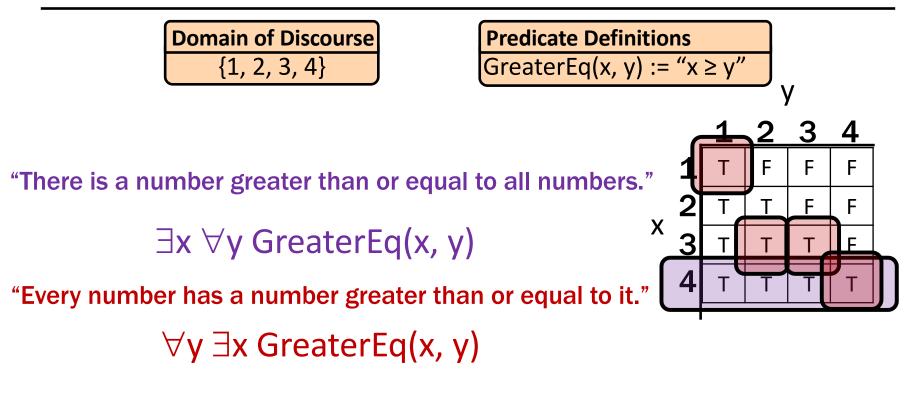
Quantifier "Style"



This isn't "wrong", it's just horrible style. Don't confuse your reader by using the same variable multiple times...there are a lot of letters... Bound variable names don't matter


 $\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$

- Positions of quantifiers can <u>sometimes</u> change $\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$
- But: order is important...


Quantifier Order Can Matter

Quantifier Order Can Matter

Quantifier Order Can Matter

The purple statement requires **an entire row** to be true. The red statement requires one entry in **each column** to be true.

Important: both include the case x = y

Different names does not imply different objects!

Quantification with Two Variables

expression	when true	when false
$\forall x \forall y P(x, y)$	Every pair is true.	At least one pair is false.
∃ x ∃ y P(x, y)	At least one pair is true.	All pairs are false.
∀ x ∃ y P(x, y)	We can find a specific y for each x. $(x_1, y_1), (x_2, y_2), (x_3, y_3)$	Some x doesn't have a corresponding y.
∃ y ∀ x P(x, y)	We can find ONE y that works no matter what x is. $(x_1, y), (x_2, y), (x_3, y)$	For any candidate y, there is an x that it doesn't work for.