
CSE 311: Foundations of Computing
Topic 2: More Logic

More Logic

• This week we will see
– new applications of Propositional Logic
– new tools to use with Propositional Logic
– a new type of Logic (Predicate Logic)

Circuits

Application: Digital Circuits

Computing With Logic
– T corresponds to 1 or “high” voltage
– F corresponds to 0 or “low” voltage

Gates
– Take inputs and produce outputs (functions)
– Several kinds of gates
– Correspond to propositional connectives (most

of them)

AND, OR, NOT Gates

p q p Ù q

T T T

T F F

F T F

F F F

p q OUT

1 1 1

1 0 0
0 1 0

0 0 0

AND Gate
p

OUTANDq

OR Gate p q OUT

1 1 1

1 0 1

0 1 1
0 0 0

p
OUTORq

p q p Ú q

T T T

T F T

F T T

F F F

NOT Gate p OUT

1 0

0 1
p OUTNOT

p ¬ p

T F

F T

Combinational Logic Circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

p

q

r
s

OUT

Combinational Logic Circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

p

q

r
s

OUT

Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT

Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT

𝑝 ∧ ¬𝑞	 ∨ (¬𝑞 ∧ 𝑟)

Other Useful Gates

NAND
 ¬(𝑝 ∧ 𝑞)

NOR
 ¬(𝑝 ∨ 𝑞)

XOR
 𝑝⊕ 𝑞

XNOR
 𝑝 ↔ 𝑞

p
q out

p q out
0 0 1
0 1 1
1 0 1
1 1 0

p q out
0 0 1
0 1 0
1 0 0
1 1 0

out
p
q

p
q out

p q out
0 0 1
0 1 0
1 0 0
1 1 1

p q out
0 0 0
0 1 1
1 0 1
1 1 0

outp
q

Boolean Algebra

• Usual notation used in circuit design

• Boolean algebra
– a set of elements B containing {0, 1}
– binary operations { + , • }
– and a unary operation { a’ } or { !𝑎 }

Write these in Boolean Algebra:

Boolean Algebra

• Usual notation used in circuit design

• Boolean algebra
– a set of elements B containing {0, 1}
– binary operations { + , • }
– and a unary operation { a’ } or { !𝑎 }

𝑝𝑞! + 𝑞!𝑟𝑝′𝑞′(𝑟 + 𝑠)

Write these in Boolean Algebra:

A Combinational Logic Example

Sessions of Class:
We would like to compute the number of lectures or
quiz sections remaining at the start of a given day of
the week.

– Inputs: Day of the Week, Lecture/Section flag
– Output: Number of sessions left

Examples: Input: (Wednesday, Lecture) Output: 2
 Input: (Monday, Section) Output: 1

Implementation in Software
public int classesLeftInMorning(int weekday, boolean isLecture) {
 switch (weekday) {
 case SUNDAY:
 case MONDAY:
 return isLecture ? 3 : 1;
 case TUESDAY:
 case WEDNESDAY:
 return isLecture ? 2 : 1;
 case THURSDAY:
 return isLecture ? 1 : 1;
 case FRIDAY:
 return isLecture ? 1 : 0;
 case SATURDAY:
 return isLecture ? 0 : 0;
 }
}

Implementation with Hardware

Encoding:
– How many bits for each input/output?
– Binary number for weekday
– One bit for each possible output

isLectureWeekday

0 1 2 3

Defining Our Inputs!

Weekday Number Binary
Sunday 0 000

Monday 1 001

Tuesday 2 010
Wednesday 3 011

Thursday 4 100

Friday 5 101
Saturday 6 110

Weekday Input:
– Binary number for weekday
– Sunday = 0, Monday = 1, …
– We care about these in binary:

Converting to a Truth Table!

Weekday isLecture c0 c1 c2 c3
SUN 000 0
SUN 000 1
MON 001 0
MON 001 1
TUE 010 0
TUE 010 1
WED 011 0
WED 011 1
THU 100 -
FRI 101 0
FRI 101 1
SAT 110 -

case SUNDAY or MONDAY:
 return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
 return isLecture ? 2 : 1;
case THURSDAY:
 return isLecture ? 1 : 1;
case FRIDAY:
 return isLecture ? 1 : 0;
case SATURDAY:
 return isLecture ? 0 : 0;

Converting to a Truth Table!

Weekday isLecture c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

case SUNDAY or MONDAY:
 return isLecture ? 3 : 1;
case TUESDAY or WEDNESDAY:
 return isLecture ? 2 : 1;
case THURSDAY:
 return isLecture ? 1 : 1;
case FRIDAY:
 return isLecture ? 1 : 0;
case SATURDAY:
 return isLecture ? 0 : 0;

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic
Let’s begin by finding an expression
for c3. To do this, we look at the rows
where c3 = 1 (true).

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic

DAY == SUN && L == 1

DAY == MON && L == 1

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic

d2d1d0 == 000 && L == 1

d2d1d0 == 001 && L == 1

Substituting DAY for the
binary representation.

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic

d2 == 0 && d1 == 0 && d0 == 0 && L == 1

d2 == 0 && d1 == 0 && d0 == 1 && L == 1

Splitting up the bits of the day;
so, we can write a formula.

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic

d2’•d1’•d0’•L

d2’•d1’•d0•L

Replacing with
Boolean Algebra…

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic

d2’•d1’•d0’•L

d2’•d1’•d0•L

How do we combine them?

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic

d2’•d1’•d0’•L

d2’•d1’•d0•L

Either situation causes c3 to be
true. So, we “or” them.

c3 = d2’•d1’•d0’•L +
d2’•d1’•d0•L

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic (Part 2)

Now, we do c2.

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic (Part 3)
For c1, let's look at the 0s:

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L
c2 = d2’•d1•d0’•L + d2’•d1•d0•L

d2 + d1 + d0 + L’

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic (Part 3)
For c1, let's look at the 0s:

d2 + d1 + d0 + L’

d2 + d1 + d0’ + L’

d2 + d1’ + d0 + L’

d2 + d1’ + d0’ + L’

d2’ + d1 + d0’ + L

???

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic (Part 3)
For c1, let's look at the 0s:

d2 + d1 + d0 + L’

d2 + d1 + d0’ + L’

d2 + d1’ + d0 + L’

d2 + d1’ + d0’ + L’

d2’ + d1 + d0’ + L

No matter what L is, we always say it’s 1.
So, we don’t need L in the expression.

d2’ + d1’ + d0

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic (Part 3)
For c1, let's look at the 0s:

d2 + d1 + d0 + L’

d2 + d1 + d0’ + L’

d2 + d1’ + d0 + L’

d2 + d1’ + d0’ + L’

d2’ + d1 + d0’ + L

How do we combine them?

d2’ + d1’ + d0

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic (Part 3)
For c1, let's look at the 0s:

c1 = (d2 + d1 + d0 + L’)(d2 + d1 + d0’ + L’)(d2 + d1’ + d0 + L’)
 (d2 + d1’ + d0’ + L’)(d2’ + d1 + d0’ + L)(d2’ + d1’ + d0)

d2 + d1 + d0 + L’

d2 + d1 + d0’ + L’

d2 + d1’ + d0 + L’

d2 + d1’ + d0’ + L’

d2’ + d1 + d0’ + L

d2’ + d1’ + d0

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

- 111 - 1 0 0 0

Truth Table to Logic (Part 3)

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L

c2 = d2’•d1•d0’•L + d2’•d1•d0•L

c1 = (d2 + d1 + d0 + L’)(d2 + d1 + d0’ + L’)
 (d2 + d1’ + d0 + L’)(d2 + d1’ + d0’ + L’)
 (d2’ + d1 + d0’ + L)(d2’ + d1’ + d0)

Is c1 still in CNF form?

Yes, but not canonical CNF

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic (Part 4)

Finally, we do c0:

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L

c2 = d2’•d1•d0’•L + d2’•d1•d0•L

c1 = (d2 + d1 + d0 + L’)(d2 + d1 + d0’ + L’)
 (d2 + d1’ + d0 + L’)(d2 + d1’ + d0’ + L’)
 (d2’ + d1 + d0’ + L)(d2’ + d1’ + d0)

d2d1d0 L c0 c1 c2 c3
SUN 000 0 0 1 0 0
SUN 000 1 0 0 0 1
MON 001 0 0 1 0 0
MON 001 1 0 0 0 1
TUE 010 0 0 1 0 0
TUE 010 1 0 0 1 0
WED 011 0 0 1 0 0
WED 011 1 0 0 1 0
THU 100 - 0 1 0 0
FRI 101 0 1 0 0 0
FRI 101 1 0 1 0 0
SAT 110 - 1 0 0 0

Truth Table to Logic (Part 4)

Finally, we do c0:

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L

c2 = d2’•d1•d0’•L + d2’•d1•d0•L

d2•d1’•d0•L’

d2•d1•d0’

c1 = (d2 + d1 + d0 + L’)(d2 + d1 + d0’ + L’)
 (d2 + d1’ + d0 + L’)(d2 + d1’ + d0’ + L’)
 (d2’ + d1 + d0’ + L)(d2’ + d1’ + d0)

Truth Table to Logic (Part 4)

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L

c2 = d2’•d1•d0’•L + d2’•d1•d0•L

c0 = d2•d1’•d0•L’ + d2•d1•d0’

d2

d1

d0

L

NOT

NOT

NOT

OR

AND

AND

Here’s c3 as a circuit:

c1 = (d2 + d1 + d0 + L’)(d2 + d1 + d0’ + L’)(d2 + d1’ + d0 + L’)(d2 + d1’ + d0’ + L’)(d2’ + d1 + d0’ + L)(d2’ + d1’ + d0)

Mapping Truth Tables to Logic Gates

Given a truth table:
1. Write the output in a table
2. Write the Boolean expression
3. Draw as gates
4. Map to available gates

Mapping Truth Tables to Logic Gates

Given a truth table:
1. Write the output in a table
2. Write the Boolean expression
3. Draw as gates
4. Map to available gates

This will give us some circuit.
But is it the best circuit?

Equivalence

Tautologies!
Terminology: A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

a b … T F

T T … T F

F T … T F

T F … T F

F F … T F

… … … … …

Tautologies!
Terminology: A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

p Ú ¬p

p Å p

(p ® r) Ù p

Tautologies!
Terminology: A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

p Ú ¬p

p Å p

(p ® r) Ù p

This is a tautology. It’s called the “law of the excluded middle”.
If p is true, then p Ú ¬p is true. If p is false, then p Ú ¬p is true.

This is a contradiction. It’s always false no matter what truth
value p takes on.

This is a contingency. When p=T, r=T, (T ® T)ÙT is true.
 When p=T, r=F, (T ® F)ÙT is false.

Tautologies!
Terminology: A compound proposition is a…
– Tautology if it is always true
– Contradiction if it is always false
– Contingency if it can be either true or false

SAT Problem: is it not a contradiction?
– every row is F in a contradiction
– not a contradiction means some row is T

Logical Equivalence

A = B means A and B are the same thing written twice:
– p Ù r = p Ù r

– p Ù r ≠ r Ù p

Logical Equivalence

A = B means A and B are the same thing written twice:
– p Ù r = p Ù r

– p Ù r ≠ r Ù p
These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

in more detail, “=” means same parse tree (see week 8),
so we can ignore differences in whitespace etc.

Logical Equivalence

A = B means A and B are the same thing written twice:
– p Ù r = p Ù r

– p Ù r ≠ r Ù p

A º B means A and B have identical truth values:
– p Ù r º p Ù r

– p Ù r º r Ù p

– p Ù r ≢ r Ú p

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

Logical Equivalence

A = B means A and B are the same thing written twice:
– p Ù r = p Ù r

– p Ù r ≠ r Ù p

A º B means A and B have identical truth values:
– p Ù r º p Ù r

– p Ù r º r Ù p

– p Ù r ≢ r Ú p

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

Two formulas that are equal also are equivalent.

These two formulas have the same truth table!

When p=T and r=F, p ∧	r is false, but p ∨	r is true!

A « B vs. A º B

A « B is a proposition that may be true or false
depending on the truth values of A and B.

A º B is an assertion over all possible truth values
that A and B always have the same truth values.

A º B and (A « B) º T have the same meaning
 as does “A « B is a tautology”

Logical Equivalence A º B

A º B is an assertion that two propositions A and B
always have the same truth values.

A º B and (A « B) º T have the same meaning.

p Ù r º r Ù p
p r p Ù r r Ù p (p Ù r) « (r Ù p)
T T T T T

T F F F T

F T F F T

F F F F T

De Morgan’s Laws

¬(p Ù r) º ¬p Ú ¬r
¬(p Ú r) º ¬p Ù ¬r

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement,
 ask “when is the original statement false”.

It’s false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

p r ¬p ¬r ¬p Ú ¬r p Ù r ¬(p Ù r)
T T F F F T F

T F F T T F T

F T T F T F T

F F T T T F T

Example: ¬(p Ù r) º ¬p Ú ¬r

De Morgan’s Laws

¬(p Ù r) º ¬p Ú ¬r
¬(p Ú r) º ¬p Ù ¬r

if (!(front != null && value > front.data)) {
 front = new ListNode(value, front);
} else {
 ListNode current = front;
 while (current.next != null && current.next.data < value))
 current = current.next;
 current.next = new ListNode(value, current.next);
}

De Morgan’s Laws

¬(p Ù r) º ¬p Ú ¬r
¬(p Ú r) º ¬p Ù ¬r

!(front != null && value > front.data)

front == null || value <= front.data

º

Law of Implication

p r p ® r ¬	p ¬	p Ú r
T T

T F

F T

F F

p ® r º ¬p Ú r

Law of Implication

p r p ® r ¬	p ¬	p Ú r
T T T F T

T F F F F

F T T T T

F F T T T

p ® r º ¬p Ú r

Biconditional: 𝑝 ↔ 𝑟

• p if and only if r (p iff r)
• p implies r and r implies p
• p is necessary and sufficient for r

p r p	«r p	→r r	→p (p	→r)	Ù (r	→p)
T T T T T
T F F F T

F T F T F

F F T T T

Biconditional: 𝑝 ↔ 𝑟

• p if and only if r (p iff r)
• p implies r and r implies p
• p is necessary and sufficient for r

p r p	«r p	→r r	→p (p	→r)	Ù (r	→p)
T T T T T T
T F F F T F

F T F T F F

F F T T T T

Some Familiar Properties of Arithmetic

• 𝑥 + 𝑦 = 𝑦 + 𝑥 (Commutativity)
– 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝
– 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

• 𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧 (Distributivity)
– 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)
– 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧) (Associativity)
– 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
– 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟)

Important Equivalences

Some Familiar Properties of Arithmetic

• 𝑥 ⋅ 1 = 𝑥 (Identity)
• 𝑥 + 0 = 𝑥

• 𝑥 ⋅ 0 = 0 (Domination)

Important Equivalences

Some Familiar Properties of Arithmetic

• Usual properties hold under relabeling:
– 0, 1 becomes F, T
– “+” becomes “Ú”
– “	⋅	” becomes “Ù”

• But there are some new facts:
– Distributivity works for both “Ù” and “Ú”
– Domination works with T

• There are some other facts specific to logic…

Important Equivalences

Important Equivalences

Using Equivalences

• Note that p, q, and r can be any propositions
(not just atomic propositions)

• Ex: (r ® s) Ù (¬t) º (¬t) Ù (r ® s)

– apply commutativity: p Ù q º q Ù p
with p := r ® s
and q := ¬t

One more easy equivalence

p ¬ p ¬ ¬ p

T F T

F T F

Double Negation

𝑝	 ≡ 	¬	¬	𝑝

Uses of Equivalence

• Working with logical formulas
– simplification

• Working with circuits
– hardware verification

• Software applications
– query optimization and caching
– artificial intelligence
– program verification

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

What is the runtime of our algorithm?

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

Yes! Generate the truth tables for both propositions and check
if they are the same for every entry.

What is the runtime of our algorithm?

Every atomic proposition has two possibilities (T, F). If there are
𝒏 atomic propositions, there are 𝟐𝒏 rows in the truth table.

Another approach: Equivalence Chains

To show A is equivalent to B
– Apply a series of logical equivalences to

sub-expressions to convert A to B

To show A is a tautology
– Apply a series of logical equivalences to

sub-expressions to convert A to T

Another approach: Equivalence Chains

To show A is equivalent to B
– Apply a series of logical equivalences to

sub-expressions to convert A to B

Example:
 Let A be “𝑝 ∨ (𝑝 ∧ 𝑝)”, and B be “𝑝”.
 Our general equivalence proof looks like:

𝑝 ∨ 𝑝 ∧ 𝑝 ≡	
	 	 	 	 ≡ 𝑝

Another approach: Logical Equivalences

Example:
 Let A be “𝑝 ∨ (𝑝 ∧ 𝑝)”, and B be “𝑝”.
 Our general equivalence proof looks like:

𝑝 ∨ 𝑝 ∧ 𝑝 ≡	
	 	 	 	 ≡ 𝑝

Logical Equivalences

Example:
 Let A be “𝑝 ∨ (𝑝 ∧ 𝑝)”, and B be “𝑝”.
 Our general equivalence proof looks like:

𝑝 ∨ 𝑝 ∧ 𝑝 ≡	
	 	 	 	 ≡ 𝑝

𝑝 ∨ 𝑝 Idempotent
Idempotent

Logical Equivalences

To show A is a tautology
– Apply a series of logical equivalences to

sub-expressions to convert A to T

Example:
 Let A be “¬𝑝 ∨ (𝑝 ∨ 𝑝)”.
 Our general equivalence proof looks like:

¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡	
 ≡	
	 	 	 					≡ T

Logical Equivalences

Example:
 Let A be “¬𝑝 ∨ (𝑝 ∨ 𝑝)”.
 Our general equivalence proof looks like:

¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡	
 ≡	
	 	 	 					≡ T

Logical Equivalences

Example:
 Let A be “¬𝑝 ∨ (𝑝 ∨ 𝑝)”.
 Our general equivalence proof looks like:

¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡	
	 	 	 					≡
	 	 	 					≡ T

¬𝑝 ∨ 𝑝 Idempotent

Negation
𝑝 ∨ ¬𝑝 Commutative

Prove these propositions are equivalent: Option 1

𝒑 𝒓 𝒑 → 𝒓 𝒑 ∧ (𝒑 → 𝒓) 𝒑 ∧ 𝒓 𝒑 ∧ (𝒑 → 𝒓) ⟷ 𝒑 ∧ 𝒓
T T

T F

F T

F F

Make a Truth Table and show:

𝑝 ∧ (𝑝 → 𝑟) ⟷ 𝑝 ∧ 𝑟 ≡	T

Prove: p Ù (p ® r) º p Ù r

Prove these propositions are equivalent: Option 1

𝒑 𝒓 𝒑 → 𝒓 𝒑 ∧ (𝒑 → 𝒓) 𝒑 ∧ 𝒓 𝒑 ∧ (𝒑 → 𝒓) ⟷ 𝒑 ∧ 𝒓
T T T T T T

T F F F F T

F T T F F T

F F T F F T

Make a Truth Table and show:

𝑝 ∧ (𝑝 → 𝑟) ⟷ 𝑝 ∧ 𝑟 ≡	T

Prove: p Ù (p ® r) º p Ù r

Prove these propositions are equivalent: Option 2

Prove: p Ù (p ® r) º p Ù r

𝑝 ∧ 𝑝 → 𝑟 ≡
 ≡
 ≡
 ≡
 ≡ 𝑝 ∧ 𝑟

Prove these propositions are equivalent: Option 2

Prove: p Ù (p ® r) º p Ù r

𝑝 ∧ 𝑝 → 𝑟 ≡ 𝑝 ∧ (¬𝑝 ∨ 𝑟)
 ≡ 𝑝 ∧ ¬𝑝 ∨ (𝑝 ∧ 𝑟)
 ≡	F ∨ (𝑝 ∧ 𝑟)
 ≡ 𝑝 ∧ 𝑟 ∨	F
 ≡ 𝑝 ∧ 𝑟

Law of Implication
Distributive
Negation
Commutative
Identity

Prove this is a Tautology: Option 1

(p Ù r) ® (r Ú p)

𝒑 𝒓 𝒑 ∧ 𝒓 𝒓 ∨ 𝒑 𝒑 ∧ 𝒓 → 𝒓 ∨ 𝒑
T T

T F

F T

F F

Make a Truth Table and show:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 ≡	T

Prove this is a Tautology: Option 1

(p Ù r) ® (r Ú p)

𝒑 𝒓 𝒑 ∧ 𝒓 𝒓 ∨ 𝒑 𝒑 ∧ 𝒓 → 𝒓 ∨ 𝒑
T T T T T

T F F T T

F T F T T

F F F F T

Make a Truth Table and show:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 ≡	T

Prove this is a Tautology: Option 2

(p Ù r) ® (r Ú p)
Use a series of equivalences like so:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 	≡	
 ≡	
 ≡	
 ≡	
 ≡
 ≡	
 ≡	
 ≡	
 ≡ T

Prove this is a Tautology: Option 2

(p Ù r) ® (r Ú p)
Use a series of equivalences like so:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 	≡ ¬ 𝑝 ∧ 𝑟 ∨ (𝑟 ∨ 𝑝)
 ≡ ¬𝑝 ∨ ¬𝑟 ∨ (𝑟 ∨ 𝑝)
 ≡ ¬𝑝 ∨ (¬𝑟 ∨ 𝑟 ∨ 𝑝)
 ≡ ¬𝑝 ∨ (¬𝑟 ∨ 𝑟 ∨ 𝑝)
 ≡ ¬𝑝 ∨ (𝑝 ∨ ¬𝑟 ∨ 𝑟)
 ≡ (¬𝑝 ∨ 𝑝) ∨ ¬𝑟 ∨ 𝑟
 ≡ (𝑝 ∨ ¬𝑝) ∨ 𝑟 ∨ ¬𝑟
 ≡ 	 T ∨ T
 ≡ T

Law of Implication
De Morgan

Associative
Associative
Commutative
Associative
Commutative (twice)

Negation (twice)
Domination/Identity

Chains of Equivalence/Tautology

• Not smaller than truth tables when there are only
a few propositional variables...

• ...but usually much shorter than truth table proofs
when there are many propositional variables

• A big advantage will be that we can extend them
to a more in-depth understanding of logic for
which truth tables don’t apply.

Predicate Logic

Predicate Logic

• Propositional Logic
– Allows us to analyze complex propositions in

terms of their simpler constituent parts (a.k.a.
atomic propositions) joined by connectives

• Predicate Logic
– Lets us analyze them at a deeper level by

expressing how those propositions depend on
the objects they are talking about

“All positive integers 𝑥, 𝑦, and 𝑧 satisfy 𝑥% + 𝑦% ≠ 𝑧%.”

Predicate Logic

Adds two key notions to propositional logic
– Predicates

– Quantifiers

Predicate
– A function that returns a truth value, e.g.,

Cat(x) := “x is a cat”
Prime(x) := “x is prime”
HasTaken(x, y) := “student x has taken course y”
LessThan(x, y) := “x < y”
Sum(x, y, z) := “x + y = z”
GreaterThan5(x) := “x > 5”
HasNChars(s, n) := “string s has length n”

Predicates can have varying numbers of arguments
and input types.

Predicates

Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This non-empty set of objects is called the
“domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x = 0”, “x > 0”, “x is a power of two”

(3) “student x has taken course y” “x is a pre-req for z”

“mammals” or “sentient beings” or “cats and dogs” or …

“numbers” or “integers” or “non-negative integers” or …

“students and courses” or “university entities” or …

Quantifiers

We use quantifiers to talk about collections of objects.

"x P(x)
P(x) is true for every x in the domain
 read as “for all x, P of x”

$x P(x)
 There is an x in the domain for which P(x) is true

 read as “there exists x, P of x”

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): "x P(x)
P(x) is true for every x in the domain
 read as “for all x, P of x”

Examples:

• "x Odd(x)

• "x LessThan4(x)

Are these true?

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): "x P(x)
P(x) is true for every x in the domain
 read as “for all x, P of x”

Examples:

• "x Odd(x)

• "x LessThan4(x)

Are these true? It depends on the domain. For example:

{1, 3, -1, -27} Integers Odd Integers

True False True

True False False

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): $x P(x)
 There is an x in the domain for which P(x) is true

read as “there exists x, P of x”

Examples:

• $x Odd(x)

• $x LessThan4(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): $x P(x)
 There is an x in the domain for which P(x) is true

read as “there exists x, P of x”

Examples:

• $x Odd(x)

• $x LessThan4(x)

Are these true? It depends on the domain. For example:

{1, 3, -1, -27} Integers Positive
Multiples of 5

True True True

True True False

Statements with Quantifiers

Even(x) := “x is even”
Odd(x) := “x is odd”
Prime(x) := “x is prime”

Greater(x, y) := “x > y”
Equal(x, y) := “x = y”
Sum(x, y, z) := “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

$x Even(x)

"x Odd(x)

"x (Even(x) Ú Odd(x))

$x (Even(x) Ù Odd(x))

"x Greater(x+1, x)

$x (Even(x) Ù Prime(x))

Determine the truth values of each of these statements:

T e.g. 2, 4, 6, ...

F e.g. 2, 4, 6, ...

T every integer is either even or odd

F no integer is both even and odd

T adding 1 makes a bigger number

T Even(2) is true and Prime(2) is true

Syntax of Quantifiers

Negation (not) ¬𝑝
For all ∀𝑥	𝑃(𝑥)
Exists ∃𝑥	𝑃(𝑥)
Conjunction (and) 𝑝 ∧ 𝑞
Disjunction (or) 𝑝 ∨ 𝑞
Exclusive Or 𝑝⊕ 𝑞
Implication 𝑝 ⟶ 𝑟
Biconditional 𝑝 ⟷ 𝑞

Precedence

highest

lowest

∀𝑥	¬𝑃 𝑥 ∧ 𝑄(𝑦) means (∀𝑥	¬𝑃 𝑥) ∧ 𝑄(𝑦)

Syntax of Quantifiers

Negation (not) ¬𝑝
For all ∀𝑥	𝑃(𝑥)
Exists ∃𝑥	𝑃(𝑥)
Conjunction (and) 𝑝 ∧ 𝑞
Disjunction (or) 𝑝 ∨ 𝑞
Exclusive Or 𝑝⊕ 𝑞
Implication 𝑝 ⟶ 𝑟
Biconditional 𝑝 ⟷ 𝑞

Not everyone uses
this convention!

We will try to
accommodate
both approaches…

Syntax of Quantifiers (Two Conventions)

Negation (not) ¬𝑝
For all ∀𝑥	𝑃(𝑥)
Exists ∃𝑥	𝑃(𝑥)
Conjunction (and) 𝑝 ∧ 𝑞
Disjunction (or) 𝑝 ∨ 𝑞
Exclusive Or 𝑝⊕ 𝑞
Implication 𝑝 ⟶ 𝑟
Biconditional 𝑝 ⟷ 𝑞
For all ∀𝑥, 𝑃(𝑥)
Exists ∃𝑥, 𝑃(𝑥)

highest

lowest

Syntax of Quantifiers (Two Conventions)

Negation (not) ¬𝑝
For all ∀𝑥	𝑃(𝑥)
Exists ∃𝑥	𝑃(𝑥)
Conjunction (and) 𝑝 ∧ 𝑞
Disjunction (or) 𝑝 ∨ 𝑞
Exclusive Or 𝑝⊕ 𝑞
Implication 𝑝 ⟶ 𝑟
Biconditional 𝑝 ⟷ 𝑞
For all ∀𝑥, 𝑃(𝑥)
Exists ∃𝑥, 𝑃(𝑥)

∀𝑥,¬𝑃 𝑥 ∧ 𝑄(𝑦)

means
∀𝑥	(¬𝑃 𝑥 ∧ 𝑄(𝑦))

Statements with Quantifiers (Literal Translations)

Positive Integers
Domain of Discourse

"x $y Greater(y, x)

$y "x Greater(y, x)

"x $y (Prime(y) Ù Greater(y, x))

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

$x $y (Prime(x) Ù Prime(y) Ù Sum(x, 2, y))

Translate the following statements to English

For every positive integer x, there is a positive integer y, such that y > x.

There is a positive integer y such that, for every pos. int. x, we have y > x.

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

For each positive integer x, if x is prime, then x = 2 or x is odd.

There exist positive integers x and y such that x and y are prime and x + 2 = y.

Even(x) := “x is even”
Odd(x) := “x is odd”
Prime(x) := “x is prime”

Greater(x, y) := “x > y”
Equal(x, y) := “x = y”
Sum(x, y, z) := “x + y = z”

Predicate Definitions

Statements with Quantifiers (Literal Translations)

Positive Integers
Domain of Discourse

"x $y Greater(y, x)

$y "x Greater(y, x)

"x $y (Prime(y) Ù Greater(y, x))

Translate the following statements to English

For every positive integer x, there is a positive integer y, such that y > x.

There is a positive integer y such that, for every pos. int. x, we have y > x.

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

Even(x) := “x is even”
Odd(x) := “x is odd”
Prime(x) := “x is prime”

Greater(x, y) := “x > y”
Equal(x, y) := “x = y”
Sum(x, y, z) := “x + y = z”

Predicate Definitions

Statements with Quantifiers (Natural Translations)

Positive Integers
Domain of Discourse

"x $y Greater(y, x)

$y "x Greater(y, x)

"x $y (Prime(y) Ù Greater(y, x))

Translate the following statements to English

For every positive integer, there is some larger positive integer.

There is a positive integer that is larger than every other positive integer.

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

Even(x) := “x is even”
Odd(x) := “x is odd”
Prime(x) := “x is prime”

Greater(x, y) := “x > y”
Equal(x, y) := “x = y”
Sum(x, y, z) := “x + y = z”

Predicate Definitions

Statements with Quantifiers (Literal Translations)

Positive Integers
Domain of Discourse

$x $y (Prime(x) Ù Prime(y) Ù Sum(x, 2, y))

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

Translate the following statements to English

For each positive integer x, if x is prime, then x = 2 or x is odd.

There exist positive integers x and y such that x and y are prime and x + 2 = y.

Even(x) := “x is even”
Odd(x) := “x is odd”
Prime(x) := “x is prime”

Greater(x, y) := “x > y”
Equal(x, y) := “x = y”
Sum(x, y, z) := “x + y = z”

Predicate Definitions

Statements with Quantifiers (Natural Translations)

Positive Integers
Domain of Discourse

$x $y (Prime(x) Ù Prime(y) Ù Sum(x, 2, y))

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

Translate the following statements to English

Even(x) := “x is even”
Odd(x) := “x is odd”
Prime(x) := “x is prime”

Greater(x, y) := “x > y”
Equal(x, y) := “x = y”
Sum(x, y, z) := “x + y = z”

Predicate Definitions

There exist prime numbers that are 2 apart.

There exist primes x and y such that x + 2 = y.

Statements with Quantifiers (Natural Translations)

Positive Integers
Domain of Discourse

$x $y (Prime(x) Ù Prime(y) Ù Sum(x, 2, y))

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

Translate the following statements to English

Even(x) := “x is even”
Odd(x) := “x is odd”
Prime(x) := “x is prime”

Greater(x, y) := “x > y”
Equal(x, y) := “x = y”
Sum(x, y, z) := “x + y = z”

Predicate Definitions

There exist prime numbers that are 2 apart.

There exist primes x and y such that x + 2 = y.

Every prime number is either 2 or odd.

Spot the domain restriction patterns

English to Predicate Logic

“All red cats like tofu”

“Some red cats don’t like tofu”

Cat(x) := “x is a cat”
Red(x) := “x is red”
LikesTofu(x) := “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

"x ((Red(x) Ù Cat(x)) ® LikesTofu(x))

$y ((Red(y) Ù Cat(y)) Ù ¬LikesTofu(y))

“All Red cats like tofu”

“Some red cats don’t like tofu”

English to Predicate Logic

Cat(x) := “x is a cat”
Red(x) := “x is red”
LikesTofu(x) := “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

“Some” means “there exists”.

When putting two predicates together like this, we
use an “and”.

When restricting to a smaller
domain in a “for all” we use
implication.

When restricting to a smaller
domain in an “exists” we use
and.

“All Red cats like tofu”

“Some red cats don’t like tofu”

“Red cats like tofu”

“A red cat doesn’t like tofu”

English to Predicate Logic

Mammals
Domain of Discourse

When there’s no leading quantification,
it usually means “for all”.

“A” means “there exists”.

Cat(x) := “x is a cat”
Red(x) := “x is red”
LikesTofu(x) := “x likes tofu”

Predicate Definitions

Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more natural if we

1. Notice “domain restriction” patterns

 "x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

 Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names

 "x $y Greater(y, x)

 For every positive integer, there is some larger positive integer.

3. Can sometimes drop “all” or “there is”

 ¬ $x (Even(x) Ù Prime(x) Ù Greater(x, 2))

 No even prime is greater than 2.

More English Ambiguity

Implicit quantifiers in English are often ambiguous

 Three people that are all friends can form a raiding party

 Three people that I know are all friends with Bill Gates

Formal logic removes this ambiguity
– quantifiers can always be specified
– unquantified variables that are not known constants (e.g, π)

are implicitly "–quantified (mostly… one special case coming later)

"

$

Negations of Quantifiers

Purple(x) := “x is a purple fruit”
Predicate Definitions

(*) "x Purple(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one seems right?

Fruits
Domain of Discourse

Negations of Quantifiers

(*) "x Purple(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

{plum, apple}
Domain of Discourse

(*) Purple(plum) Ù Purple(apple)
(a) Purple(plum) Ú Purple(apple)
(b) ¬ Purple(plum) Ú ¬ Purple(apple)
(c) ¬ Purple(plum) Ù ¬ Purple(apple)

Purple(x) := “x is a purple fruit”
Predicate Definitions

Fruits
Domain of Discourse

De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
 ¬ $x P(x) º "x ¬ P(x)

De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
 ¬ $x P(x) º "x ¬ P(x)

There is no unicorn

 Every animal is not a unicorn

¬ $x Unicorn(x)

"x ¬ Unicorn(x)

These are equivalent but not equal

De Morgan’s Laws for Quantifiers

¬ $ x " y (x ≥ y)
º " x ¬ "y (x ≥ y)
º " x $ y ¬ (x ≥ y)
º " x $ y (y > x)

“There is no integer larger than every other integer”

“For every integer, there is a larger integer”

¬"x P(x) º $x ¬ P(x)
 ¬ $x P(x) º "x ¬ P(x)

These are equivalent but not equal

De Morgan’s Laws for Quantifiers

¬ $x (Even(x) Ù Prime(x) Ù Greater(x, 2))
º "x ¬(Even(x) Ù Prime(x) Ù Greater(x, 2))
º "x (¬(Even(x) Ù Prime(x)) Ú ¬Greater(x, 2))
º "x (¬(Even(x) Ù Prime(x)) Ú LessEq(x, 2))
º "x ((Even(x) Ù Prime(x)) ® LessEq(x, 2))

“No even prime is greater than 2”

“Every even prime is less than or equal to 2.”

¬"x P(x) º $x ¬ P(x)
 ¬ $x P(x) º "x ¬ P(x)

De Morgan’s Laws for Quantifiers

¬ $x (P(x) Ù R(x)) º "x (P(x) ® ¬ R(x))

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)

¬"x (P(x) ® R(x)) º $x (P(x) Ù ¬ R(x))

We just saw that

Can similarly show that

Quantifiers in Java

• Implementing quantifiers in Java…

 boolean forAll(Map<Integer, Boolean> P) {
 for (Integer x : P.keySet()) {
 if (!P.get(x)) return false;
 }
 return true;
 }

 boolean exists(Map<Integer, Boolean> P) {
 for (Integer x : P.keySet()) {
 if (P.get(x)) return true;
 }
 return false;
 }

"x P(x)

$x P(x)

(Bound) variable names don’t matter: "x P(x) º "a P(a)

Scope of Quantifiers

$x (P(x) Ù Q(x)) vs. ($x P(x)) Ù ($x Q(x))

This one asserts P
and Q of the same x.

This one asserts P and Q
of potentially different x’s.

Variables with the same name do not
necessarily refer to the same object.

Scope of Quantifiers

Example: NotLargest(y) := $ x Greater (x, y)
 º $ z Greater (z, y)

 truth value:
 doesn’t depend on x or z “bound variables”
 does depend on y “free variable”

{1, 2, 3, …, 100}
Domain of Discourse

Scope of Quantifiers

Example: NotLargest(y) := $ x Greater (x, y)
 º $ z Greater (z, y)

 truth value:
 doesn’t depend on x or z “bound variables”
 does depend on y “free variable”

 quantifiers only act on free variables of the formula

 $ y (P(x,y) ® " x Q(y, x)))

{1, 2, 3, …, 100}
Domain of Discourse

" x

" x ($y (P(x,y) Ù " x Q(y, x)))

Quantifier “Style”

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same
variable multiple times…there are a lot of letters…

Nested Quantifiers

• Bound variable names don’t matter

 "x $y P(x, y) º "a $b P(a, b)

• Positions of quantifiers can sometimes change
 "x (Q(x) Ù $y P(x, y)) º "x $y (Q(x) Ù P(x, y))

• But: order is important...

Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) := “x ≥ y”
Predicate Definitions

x

y
1 2 3 4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

$x "y GreaterEq(x, y)

{1, 2, 3, 4}
Domain of Discourse

Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) := “x ≥ y”
Predicate Definitions

“Every number has a number greater than or equal to it.”

y
1 2 3 4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

$x "y GreaterEq(x, y)

"y $x GreaterEq(x, y)

{1, 2, 3, 4}
Domain of Discourse

x

Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) := “x ≥ y”
Predicate Definitions

“Every number has a number greater than or equal to it.”

y
1 2 3 4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

$x "y GreaterEq(x, y)

"y $x GreaterEq(x, y)

Important: both include the case x = y

Different names does not imply different objects!

{1, 2, 3, 4}
Domain of Discourse

x

Quantification with Two Variables

expression when true when false

"x " y P(x, y) Every pair is true. At least one pair is false.

$ x $ y P(x, y) At least one pair is true. All pairs are false.

" x $ y P(x, y) We can find a specific y for
each x.
(x1, y1), (x2, y2), (x3, y3)

Some x doesn’t have a
corresponding y.

$ y " x P(x, y) We can find ONE y that
works no matter what x is.
(x1, y), (x2, y), (x3, y)

For any candidate y, there is
an x that it doesn’t work for.

