CSE 311: Foundations of Computing I

Quiz Section 10: Final Review

Task 1 – Irregularity

Show that the language $L = \{0^a 1^b : b \ge 2a \ge 0\}.$

a) Show that L is context free.

b) Show that the language <i>L</i> is irregular. Suppose, recognizes <i>L</i> .	, that some DFA M
Define $S = $ Since S has infinitely many strings and M there must be two different strings and same state p in M , where	has finitely many states, in S that go to the
We go by cases,	
Case 1 Suppose that	
Consider appending to both	
$_$ $\in L$ because:	
$\notin L$ because:	
Since were taken to the same state p , same state q by M . Since $\in L$, q must be accepting. But so M would incorrectly accept a string not in L , which is a contradiction!	must be take to the t $\notin L$,
Case 2 Suppose that	
Consider appending to both	
$\notin L$ because:	
$_$ $\in L$ because:	
Since were taken to the same state p , same state q by M . Since $\in L$, q must be accepting. But so M would incorrectly accept a string not in L , which is a contradiction!	must be take to the t $\notin L$,
Since we have a contradiction in all cases, we have a contradiction overall.	
Therefore, there's no DFA that recognizes L , showing that L is irregular.	

a) Let $A = \{1, 2, 3, 4\}$. Let R be the relation on A defined by $\{(x, y) : x \in A \text{ and } y \in A \text{ and } y \equiv_3 2x\} \cup \{(x, x) : gcd(x, 3) = 2\}$. Draw R as a directed graph on the vertices below.

•	•	•	٠
1	2	3	4

b) Draw the transitive reflexive closure of R below:

• • • • 1 2 3 4

c) Compute R^2 . Draw your answer as a directed graph.

•	•	٠	•
1	2	3	4

Task 3 – NFA to DFA

Let $\Sigma = \{0, 1\}$. Use the algorithm from lecture to convert the following NFA to a DFA. Label each state of your DFA with the set of NFA states it corresponds to. Do not simplify or minimize the resulting DFA.

Task 4 – DFA/REGEXP/CFG

For the following language, construct a DFA, Regular Expression, and CFG for it. $A = \{w \in \{0,1\}^* :$ the number of 0's minus the number of 1's in w is divisible by 3}.

Task 5 – Languages

- a) Construct a regular expression that represents binary strings where no occurrence of 11 is followed by a 0.
- b) Convert the regular expression " $1(0 \cup 11)^*$ " to an NFA using the algorithm from lecture. You may skip adding ε -transitions for concatenation if they are obviously unnecessary, but otherwise, you should follow the construction from lecture.

- c) Construct a CFG that represents the following language: $\{1^x 2^y 3^y 4^x : x, y \ge 0\}$.
- d) Create a DFA that recognizes all binary strings that either have every occurrence of a 1 immediately followed by a 0 or contain at least two 0s but not both.

Task 6 – Structural Induction

Consider the S defined recursively as follows:

Basis: $1 \in S$. **Recursive Step:** If $x \in S$ and $a \in \{0, 1\}$, then $xa \in S$.

and the set T of strings that start with a 1, which is defined formally as follows:

$$T := \{x \in \{0,1\}^* : \exists y \in \{0,1\}^* \ (x = 1 \bullet y)\}$$

Use structural induction to prove that $\forall x \in S \ (x \in T)$.

Task 7 – Review: Strong Induction

Define a sequence of positive integers a_n with $n \ge 1$ as follows:

$$\begin{array}{l} a_1 = 1 \\ a_2 = 2 \\ a_3 = 5 \\ a_n = 3a_{n-1} + 4a_{n-2} + a_{n-3} \end{array} \qquad \mbox{ for } n \geqslant 4 \end{array}$$

Prove that $a_n \ge 4^{n-2}$ for all integers $n \ge 1$.

Task 8 – A Set Theory Interlude

- 1. Prove or disprove: For all sets A, B, C if $A \cap C = B \cap C$ then A = B.
- 2. Prove or disprove: For all sets A, B, C if $A \cup C = B \cup C$ then A = B.
- 3. Prove or disprove: Let A, B, C be arbitrary sets. For all sets A, B, C if $A \cup C = B \cup C$ and $A \cap C = B \cap C$ then A = B.