CSE 311 Section 7

Set Theory

Announcements & Reminders

- Congrats on finishing the midterm!
 - Please don't discuss as not everyone has taken it :)
- Homework 6 due Wednesday, February 26th @ 11:00pm
- Book One-on-Ones on the course homepage!

Set Elements

Problem 1 – How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say ∞.

- a) $A = \{1, 2, 3, 2\}$
- b) $B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\}, \{\}\}, \dots\}$
- c) $C = A \times (B \cup \{7\})$
- d) $D = \emptyset$
- e) $E = \{\emptyset\}$
- f) $F = \mathcal{P}(\{\emptyset\})$

Work this problem with the people around you, and then we'll go over it together!

Sets: Quick Review

Sets

- A set is an **unordered** group of **distinct** elements
 - Set variable names are capital letters, with lower-case letters for elements
- Set Notation:
 - \circ $a \in A$: "a is in A" or "a is an element of A"
 - \circ $A \subseteq B$: "A is a subset of B", every element of A is also in B
 - Ø: "empty set", a unique set containing no elements
 - \circ $\mathcal{P}(A)$: "power set of A", the set of all subsets of A including the empty set and A itself

Set Operators

• Subset: $A \subseteq B \equiv \forall x (x \in A \rightarrow x \in B)$

• Equality: $A = B \equiv \forall x (x \in A \leftrightarrow x \in B) \equiv A \subseteq B \land B \subseteq A$

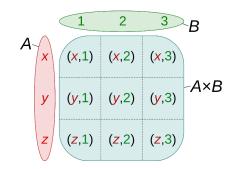
• Union: $A \cup B = \{x : x \in A \lor x \in B\}$

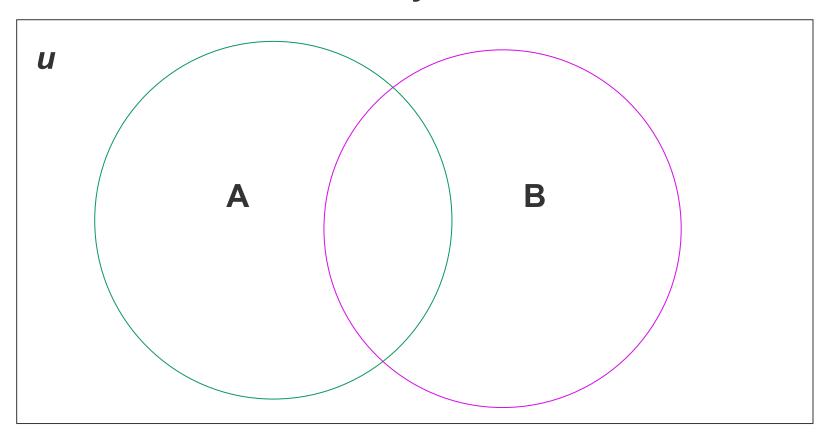
• Intersection: $A \cap B = \{x : x \in A \land x \in B\}$

• Complement: $\overline{A} = \{x : x \notin A\}$

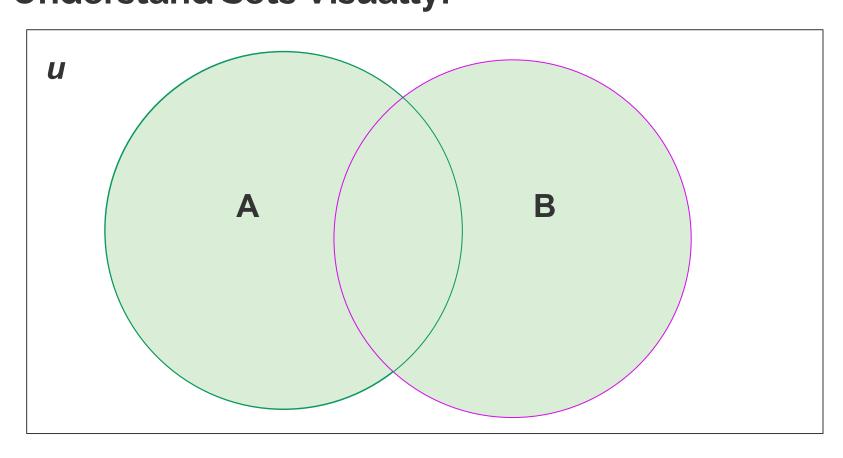
• Difference: $A \setminus B = \{x : x \in A \land x \notin B\}$

• Cartesian Product: $A \times B = \{(a, b) : a \in A \land b \in B\}$

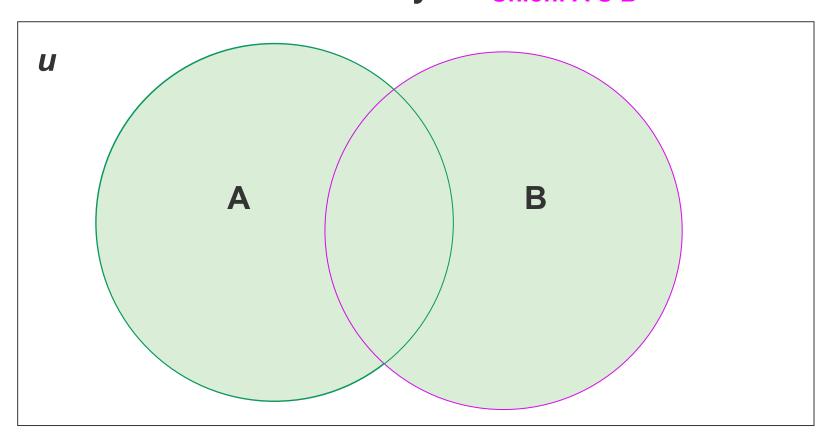


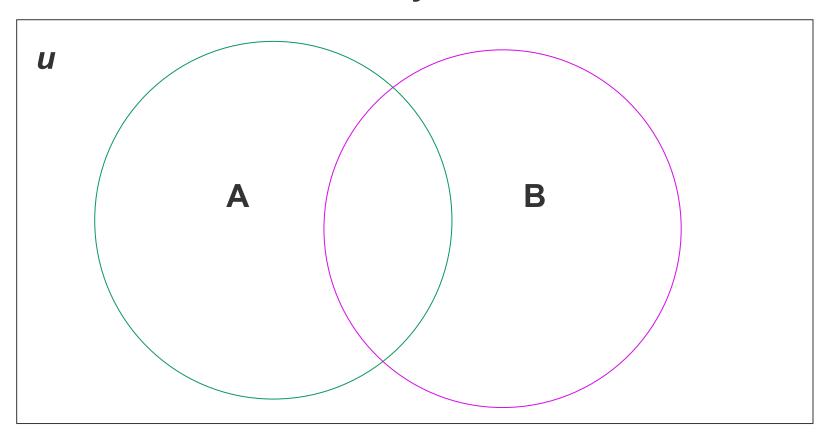


Understand Sets Visually!What Set Operation is this?

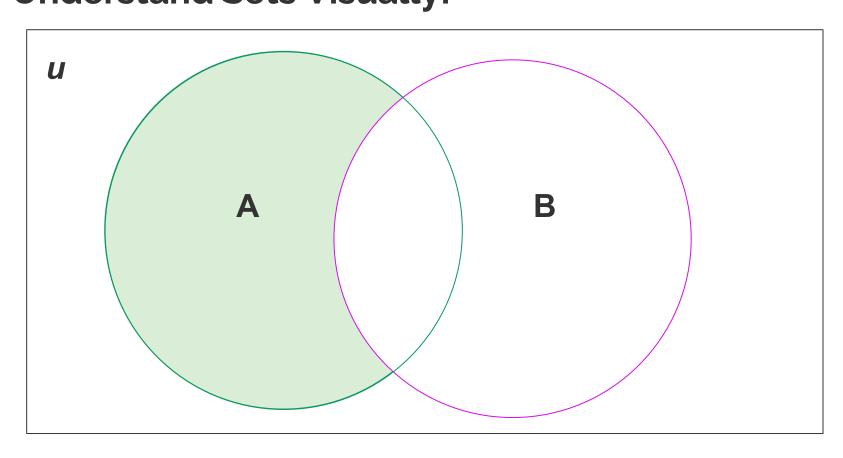


What Set Operation is this? Union: A U B

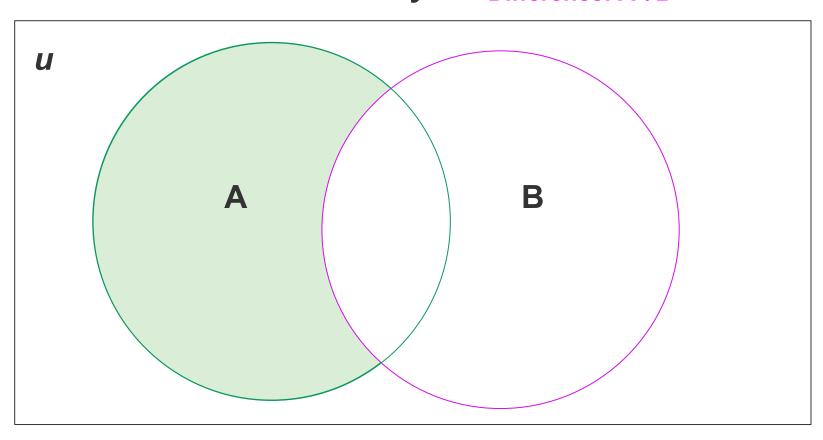


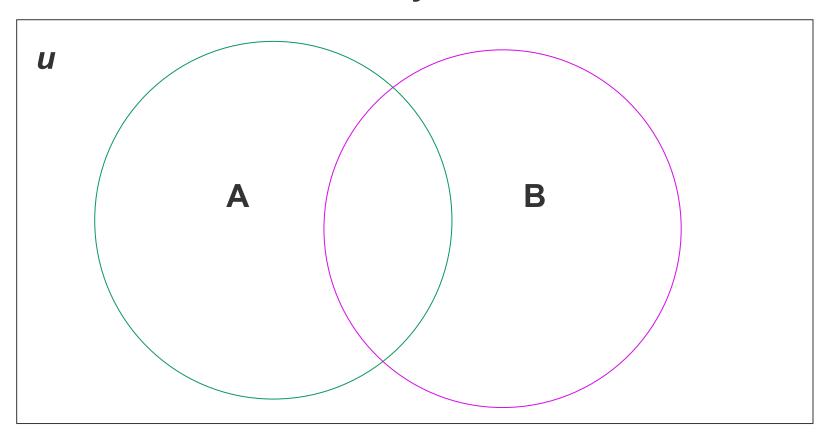


Understand Sets Visually!What Set Operation is this?



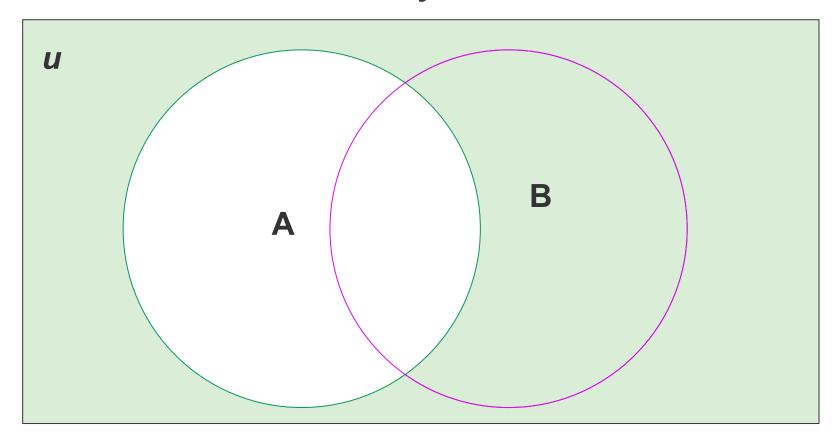
What Set Operation is this? Difference: A \ B



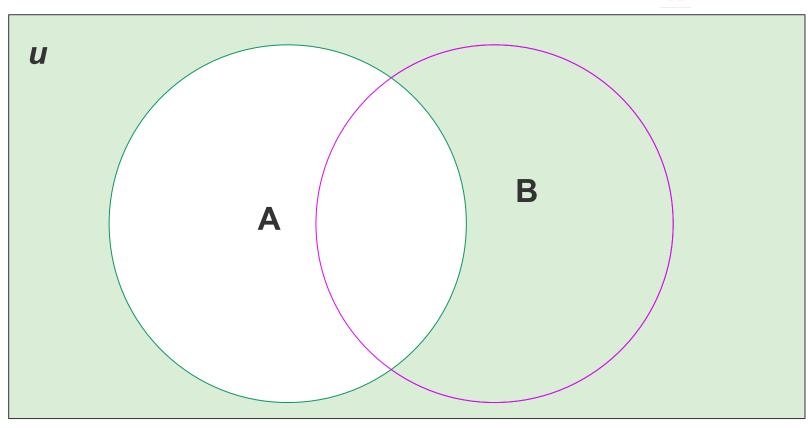


What Set Operation is this?

Understand Sets Visually!



What Set Operation is this? A complement: \overline{A}



Set Proofs

Subset Proofs

One of the most common types of proofs you will be asked to write involving sets is a subset proof. That is, you will be asked to prove that $A \subseteq B$. We always approach these proofs with the same proof skeleton:

Let x be an arbitrary element of A, so $x \in A$.

 \dots some steps using set definitions to show that x must also be in B...

Thus, $x \in B$

Since x was arbitrary, $A \subseteq B$.

Using Cozy For Sets

- A U B: A Union B- "A cup B"
- **A** ∩ **B**: "A cap B"
- **A** ∈ **B**: "A in B"
- A\B: "A\B"
- B complement- "~B" (Only one Argument)
- A\B\C is implicitly (A\B)\C

Problem 2a - Subsets

For any sets A, B, and C, show that it holds that $A \setminus B \subseteq A \cup C$

Set Equality: Using Meta Theorem

Problem 3

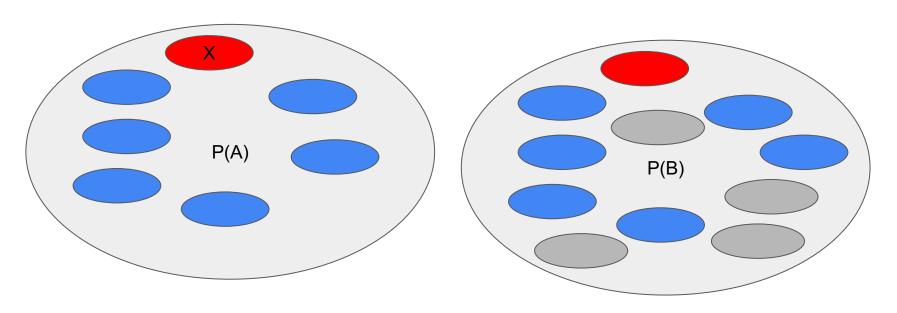
Let A and B be sets. Consider the claim: $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Powerset English Proof (optional)

Problem 4

Let A and B be sets. Prove that $\mathcal{P}(A)\subseteq\mathcal{P}(B)$ follows from $A\subseteq B$.

Powersets P(A) subset P(B)



That's all Folks!

