Quiz Section 5: Number Theory, Induction

Review

5 Steps to an Induction Proof: To prove $\forall n \in \mathbb{N} \ P(n)$ (or equivalently $\forall n \ge 0 \ P(n)$ for $n \in \mathbb{Z}$).

- 1. "Let P(n) be $\langle \text{fill in} \rangle$. We will show that P(n) is true for every $n \in \mathbb{N}$ (or equivalently integer $n \ge 0$) by induction."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis: Suppose P(k) is true for some arbitrary integer $k \ge 0$ "
- 4. "Inductive Step:" Prove that P(k+1) is true.

Use the goal to figure out what you need. Make sure you are using I.H. and point out where you are using it. (Don't assume P(k + 1)!)

5. "Conclusion: The claim follows by induction"

Task 1 – Multiplicative inverses

For each of the following choices of a and m, determine whether a has a multiplicative inverse modulo m. If yes, *guess* a multiplicative inverse of a modulo m and check your answer.

a) a = 3 and m = 8

b) a = 6 and m = 28

c) a = 5 and m = 29

Task 2 – Extended Euclidean Algorithm Practice

a) Find the multiplicative inverse of y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$, You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y < 33$.

b) Now solve $7z \equiv 2 \pmod{33}$ for all of its integers solutions z.

Task 3 – Induction with Divides

Prove that $9 | (n^3 + (n+1)^3 + (n+2)^3)$ for all integers n > 1.

Task 4 – Induction with Inequality

Prove that $6n + 6 < 2^n$ for all integers $n \ge 6$.

Task 5 – In Harmony with Ordinary Induction

Define

$$H_i = \sum_{j=1}^{i} \frac{1}{j} = 1 + \frac{1}{2} + \dots + \frac{1}{i}$$

The numbers H_i are called the *harmonic* numbers. Prove that $H_{2^n} \ge 1 + \frac{n}{2}$ for all integers $n \ge 0$.

Task 6 – Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in year n is described by the function f(n):

$$\begin{split} f(0) &= 0\\ f(1) &= 1\\ f(n) &= 2f(n-1) - f(n-2) \text{ for } n \geq 2 \end{split}$$

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n. That is, construct a formula for f(n) and prove its correctness.

Consider the function a(n) defined for $n \ge 1$ recursively as follows.

$$a(1) = 1$$

a(2) = 3

$$a(n) = 2a(n-1) - a(n-2)$$
 for $n \ge 3$

Use strong induction to prove that a(n) = 2n - 1 for all integers $n \ge 1$.

Task 8 – Induction with Equality

a) Define the triangle numbers as $\triangle_n = 0 + 1 + 2 + \cdots + n$, where $n \in \mathbb{N}$. In class we showed $\triangle_n = \frac{n(n+1)}{2}$.

Prove the following equality for all $n \in \mathbb{N}$:

$$0^3 + 1^3 + \dots + n^3 = \Delta_n^2$$

b) For every $n \in \mathbb{N}$, define S_n to be the sum of the squares of the natural numbers up to n, or

$$S_n = 0^2 + 1^2 + \dots + n^2$$

For all $n \in \mathbb{N}$, prove that $S_n = \frac{1}{6}n(n+1)(2n+1)$.

Task 9 – Efficient Modular Exponentiation

- a) Compute $2^{71} \mod 25$ using the efficient modular exponentiation algorithm.
- b) How many modular multiplications does the algorithm use for this computation?