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Announcements & Reminders

e HW4 due yesterday @ 11:00PM on Gradescope

o Use late days if you need to!
o Make sure you tagged pages on gradescope correctly

o HW5
o Releases tonight
o Due Wednesday 2/12 @11:00 PM

e Book 1-on-1s on the ed message board!




Extended Euclid




Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.
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Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd:

gcd(33,7) =

ged(7,5)
gcd(5,2)
gcd(2,1)
gcd(1,0)
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Next, we re-arrange the
equations by solving for the
remainder:

1 =5-2 2

2 =7 -1 e 5

5 =33-4 7



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd: Next, we re-arrange the
gcd(33,7) = gcd(7,5) 33 =4 ¢« 7 + 5 equations by solving for the
= gcd(5,2) 7 =1 ¢ 5 + 2 remainder:
= gcd(2,1) 5 =2 2 +1 1 =5-2 92
= gcd(1,0) 2 =2 ¢1+0 2 =7 -1 e 5

5 =33 -4 47

Now, we backward substitute into the boxed numbers
using the equations:

1 =5-2+2
5= 2 ¢ (7-1-5)
3e5-2¢7
3°(33-4+7)-2-7
3¢33+-14+7



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd: Next, we re-arrange the
gcd(33,7) = gcd(7,5) 33 =4 ¢« 7 + 5 equations by solving for the
= gcd(5,2) 7 =1 ¢ 5 + 2 remainder:
= gcd(2,1) 5 =2 2 +1 1 =5-2 62
= gcd(1,0) 2 =2 ¢1+0 2 =7 -1 e 5

5=233-4e7
Now, we backward substitute into the boxed numbers
using the equations:

1 =5-2¢2 S0,1=333+-14-
= 5= 2+ (7-1¢5) 7. Thus, 33-14=19
= 3e5-2e¢7 is the multiplicative
= 3¢(33-4+7)-2+7 inverse of 7 mod 33

333+-14+7



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that
7y = 1 (mod 33). You should use the extended Euclidean Algorithm. Your
answer should be in therange 0 <y <33.

b) Now, solve 7z = 2 (mod 33) for all of its integer solutions z.

Try this problem with the people around you, and then we’ll go over it together!



Problem 2 - Extended Euclidean Algorithm

b) Now,solve7z = 2 (mod 33) for all of its integer solutions z.



Problem 2 - Extended Euclidean Algorithm

b) Now,solve7z = 2 (mod 33) for all of its integer solutions z.

If we have 7z = 2(mod 33), multiplying both sides by 19, we get:
z=2-19(mod 33) = 5(mod 33).

This means that the set of solutions is {5 + 33k | k € Z}



Introducing Induction (kind of)




Climb the ladder! =

You are scared of heights and there is a prize at the
top of a very very tall ladder.

You do not want to climb this ladder...
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Climb the ladder! =

You are scared of heights and there is a prize at the
top of a very very tall ladder.

You do not want to climb this ladder...

Lets convince your friend to climb it instead!!!




Climb the ladder! Q“‘
h J,\

You Claim: “There are k steps in the ladder. After k steps you
will reach the top!”
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Climb the ladder!

You Claim: “There are k steps in the ladder. After k steps you will reach
the top!”

“If we have a ladder with 1 step. | know you can lift your foot so after 1
step you will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”
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Climb the ladder! =
h ‘L\‘

You Claim: “There are k steps in the ladder. After k steps you will reach the
top!”

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step
you will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’'s suppose that for an arbitrary number of steps j, after j steps you will
reach the top.
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Climb the ladder!

You Claim: “There are k steps in the ladder. After k steps you will reach the top!”

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’s suppose that for an arbitrary number of steps j, after j steps you will reach
the top.

| can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

g
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Climb the ladder!

You Claim: “There are k steps in the ladder. After k steps you will reach the top!”

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you will
reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach the
top.

| can prove to you that this claim will still hold for j+1 steps!
Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!
The total number of steps is j+1

Since we know j of the j +1 steps hold, if you started with your foot on the second
step (you skipped a step), you would reach the top! g
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You Claim: “There are k steps in the ladder. After k steps you will reach the top!”
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Climb the ladder!

You Claim: “There are k steps in the ladder. After k steps you will reach the top!”

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’s suppose that for an arbitrary number of steps j, after j steps you will reach
the top.

| can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!
The total number of steps is j+1

Since we know j of the j +1 steps hold, if you started with your foot on the second
step (you skipped a step), you would reach the top!

So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER
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WELCOME TO PROOF BY INDUCTION

[ You Claim: “There are k steps in the ladder. After k steps you will reach the top!” ] P(n)

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach
the top.

| can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!
The total number of steps is j+1
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So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

“



WELCOME TO PROOF BY INDUCTION

[ You Claim: “There are k steps in the ladder. After k steps you will reach the top!” ] P(n)

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

Base
“So my claim holds for 1 step!” Case

Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach
the top.

| can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!
The total number of steps is j+1

Since we know j of the j +1 steps hold, if you started with your foot on the second
step (you skipped a step), you would reach the top!

So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER
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WELCOME TO PROOF BY INDUCTION

[ You Claim: “There are k steps in the ladder. After k steps you will reach the top!” J P(n)

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you

. '”
will reach the top of a 1 step ladder! Base
“So my claim holds for 1 step!” Case
Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach Inductive
the top. i

Hypothesis
| can prove to you that this claim will still hold for j+1 steps! P()
Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!
The total number of steps is j+1
Since we know j of the j +1 steps hold, if you started with your foot on the second
step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!
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WELCOME TO PROOF BY INDUCTION

[ You Claim: “There are k steps in the ladder. After k steps you will reach the top!” ] P(n)

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

|

Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach
the top.

|

I can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1
Since we know j of the j +1 steps hold, if you started with your foot on the second

step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

Base
Case

Inductive
Hypothesis

V )

“



WELCOME TO PROOF BY INDUCTION

[ You Claim: “There are k steps in the ladder. After k steps you will reach the top!” J P(n)

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you

will reach the top of a 1 step ladder!” Base
“So my claim holds for 1 step!” Case
Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach Inductive
the top. i
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WELCOME TO PROOF BY INDUCTION

[ You Claim: “There are k steps in the ladder. After k steps you will reach the top!” J P(n)

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Base
Case

|

Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach
the top.

]Inducﬁve
Hypothesis

[ can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1
Since we know j of the j +1 steps hold, if you started with your foot on the second

step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER P(n)
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Induction: How it actually works




(Weak) Induction Template

Let P(n) be “(whateveryou’re trying to prove)”.
We show P(n) holds for alln € N by induction on n

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




(Weak) Induction Template

« ) . ”» Note: often you will
Let P(n) be “(whatevervyou’re trying to prove)”. y
(n) ( y yInstop ) conditionn here, like

We show P(n) holds for allm € N by induction on n «_| natural numbers n”
or‘n=> 0"

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.
Match the earlier condition on n in your conclusion!




(Weak) Induction Template

Let P(n) be “(whateveryou’re trying to prove)”. A Eg‘%'ﬁgggfg A%AJELLTE
We show P(n) holds for alln € N by induction o NOT A NUMERICAL ONE

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




(Weak) Induction Template

Let P(n) be “(whateveryou’re trying to prove)”. A Eg‘%f Qggfg A%AJELLTE

We show P(n) holds for alln € N by induction o NOT A NUMERICAL ONE

Base Case: Show P(b) is true. YOU MUST INTRODUCE
AN ARBITRARY
VARIABLE IN YOUR IH

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




(Weak) Induction Template

» , : » P(n) IS A PREDICATE, IT
Let P(n) be “(whateveryou’re trying to prove)”. A Hg‘% A BOOLEAN VALUE
We show P(n) holds for alln € N by induction o NOT A NUMERICAL ONE

Base Case: Show P (D) is true. YOU MUST INTRODUCE
AN ARBITRARY
VARIABLE IN YOUR IH

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

START WITH LHS OF
K+ 1 ONLY AND WORK

Inductive Step: Show P(k + 1) (i.e. get P(k) - Pm TOWARD RHS

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




Weak Induction




Prove that 9 | (n® + (n +1)3 + (n + 2)3) for all n > 1.

Task 3

Let P(n) be “9 | n3 + (n+1)3 + (n + 2)>". We will prove P(n) for all integers n > 1 by
induction.
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Let P(n) be “9 | n3 + (n+1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by
induction.

Base Case (n=2): 22+ 2+ 13+ (2+2)3 =8+27+64 =99 = 9-11, s0 9 |
23+ (24 1)% + (2 + 2)3, so P(2) holds.
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§ > 1. Note that this is equivalent to assuming that j3 + (5 + 1)3 + (j + 2)3 = 9k for
some integer k by the definition of divides.
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some integer k by the definition of divides.
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Prove that 9 | (n® + (n +1)3 + (n + 2)3) for all n > 1.

Task 3

Let P(n) be “9 | n3 + (n+1)3 + (n + 2)>". We will prove P(n) for all integers n > 1 by
induction.

Base Case (n=2): 22+ 2+ 13+ (2+2)3 =8+27+64 =99 = 9-11, s0 9 |
23+ (24 1)% + (2 + 2)3, so P(2) holds.

Induction Hypothesis: Assume that 9 | 2 + (j + 1)3 + (j + 2)3 for an arbitrary integer
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Prove that 9 | (n® + (n +1)3 + (n + 2)3) for all n > 1.

Task 3

Let P(n) be “9 | n3 + (n+ 1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by
induction.

Base Case (n=2): 22+ 2+ 13+ (2+2)3 =8+27+64 =99 = 9-11, s0 9 |
23+ (24 1)% + (2 + 2)3, so P(2) holds.

Induction Hypothesis: Assume that 9 | 2 + (j + 1)3 + (j + 2)3 for an arbitrary integer
j > 1. Note that this is equivalent to assuming that 53 + (5 +1)3 + (5 + 2)3 = 9k for
some integer k by the definition of divides.

Induction Step: |Goal: Show 9| (j +1)3 + (j +2)3 + (j + 3)®

G+132+(G+23+ (G +3)° = (5 +3)% + 9k — 53 for some integer k£ [Induction Hypothesis]



Prove that 9 | (n® + (n +1)3 + (n + 2)3) for all n > 1.

Task 3

Let P(n) be “9 | n3 + (n+ 1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by
induction.

Base Case (n=2): 22+ 2+ 13+ (2+2)3 =8+27+64 =99 = 9-11, s0 9 |
23+ (24 1)3 + (2 + 2)3, so P(2) holds.

Induction Hypothesis: Assume that 9 | 2 + (j + 1)3 + (j + 2)3 for an arbitrary integer
j > 1. Note that this is equivalent to assuming that 53 + (5 +1)3 + (5 + 2)3 = 9k for
some integer k by the definition of divides.
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G+132+(G+23+ (G +3)3 = (5 +3)% + 9k — 53 for some integer k£ [Induction Hypothesis]
=3 4+92 4275+ 27+ 9k — 53



Prove that 9 | (n® + (n +1)3 + (n + 2)3) for all n > 1.

Task 3

Let P(n) be “9 | n3 + (n+ 1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by
induction.

Base Case (n=2): 22+ 2+ 13+ (2+2)3 =8+27+64 =99 = 9-11, s0 9 |
23 + (24 1)% + (2 + 2)3, so P(2) holds.

Induction Hypothesis: Assume that 9 | 2 + (j + 1)3 + (j + 2)3 for an arbitrary integer
j > 1. Note that this is equivalent to assuming that 53 + (5 +1)3 + (5 + 2)3 = 9k for
some integer k by the definition of divides.

Induction Step: |Goal: Show 9| (5 +1)3 + (j +2)3 + (j + 3)®

G+132+(G+23+ (G +3)° = (5 +3)% + 9k — 53 for some integer k£ [Induction Hypothesis]
=3 4+92 42754+ 27+ 9k — 53
= 952 + 275 + 27 + 9%



Prove that 9 | (n® + (n +1)3 + (n + 2)3) for all n > 1.

Task 3

Let P(n) be “9 | n3 + (n+ 1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by
induction.

Base Case (n=2): 22+ 2+ 13+ (2+2)3 =8+27+64 =99 = 9-11, 50 9 |
23+ (24 1)% + (2 + 2)3, so P(2) holds.

Induction Hypothesis: Assume that 9 | 2 + (j + 1)3 + (j + 2)3 for an arbitrary integer
j > 1. Note that this is equivalent to assuming that 53 + (5 +1)3 + (5 + 2)3 = 9k for
some integer k by the definition of divides.

Induction Step: |Goal: Show 9| (5 +1)3 + (j +2)3 + (j + 3)®

G+132+(G+23+ G +3)3 = (5 +3)% + 9k — 53 for some integer k£ [Induction Hypothesis]
=3 4+92 4275+ 27+ 9k — 53
= 952 4+ 27§ 4+ 27 + 9k
=9(j2+3j+3+k)



Prove that 9 | (n® + (n +1)3 + (n + 2)3) for all n > 1.

Task 3

Let P(n) be “9 | n3 + (n+ 1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by
induction.

Base Case (n=2): 22+ 2+ 13+ (2+2)3 =8+27+64 =99 = 9-11, s0 9 |
23+ (24 1)% + (2 + 2)3, so P(2) holds.

Induction Hypothesis: Assume that 9 | 2 + (j + 1)3 + (j + 2)3 for an arbitrary integer
j > 1. Note that this is equivalent to assuming that 53 + (5 +1)3 + (5 + 2)3 = 9k for
some integer k by the definition of divides.

Induction Step: |Goal: Show 9| (5 +1)3 + (j +2)3 + (j + 3)®

G+12+(G+23+ (G +3)3 = (5 +3)%+ 9k — 53 for some integer k£ [Induction Hypothesis]
= 3 4+952 + 275427+ 9k — 53
= 952 4+ 27§ 4+ 27 + 9k
=9(;2+3j +3+k)

Since j is an integer, j2 +3j + 3 + k is also an integer. Therefore, by the definition of

divides, 9 | ( +1)3 + (5 +2)3 + (j + 3)3, so P(j) — P(j + 1) for an arbitrary integer
7= 1.

Conclusion:



Prove that 9 | (n® + (n +1)3 + (n + 2)3) for all n > 1.

Task 3

Let P(n) be “9 | n3 + (n+ 1)3 + (n + 2)3". We will prove P(n) for all integers n > 1 by
induction.

Base Case (n=2): 22+ 2+ 13+ (2+2)3 =8+27+64 =99 = 9-11, s0 9 |
23+ (24 1)% + (2 + 2)3, so P(2) holds.

Induction Hypothesis: Assume that 9 | 2 + (j + 1)3 + (j + 2)3 for an arbitrary integer
j > 1. Note that this is equivalent to assuming that 53 + (5 +1)3 + (5 + 2)3 = 9k for
some integer k by the definition of divides.

Induction Step: |Goal: Show 9| (5 +1)3 + (j +2)3 + (j + 3)®

G+12+(G+23+ (G +3)3 = (5 +3)%+ 9k — 53 for some integer k£ [Induction Hypothesis]
= 3 4+952 + 275427+ 9k — 53
= 952 4+ 27§ 4+ 27 + 9k
=9(;2+3j +3+k)

Since j is an integer, j2 +3j + 3 + k is also an integer. Therefore, by the definition of

divides, 9 | ( +1)3 + (5 +2)3 + (j + 3)3, so P(j) — P(j + 1) for an arbitrary integer
7= 1.

Conclusion: P(n) holds for all integers n > 1 by induction.



Prove that 9 | (n® + (n +1)3 + (n + 2)3) for all n > 1.

Task 3

Cozy walkthrough!
https://tinyurl.com/section5t3




Strong Induction




Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1

a(2) =3

TaSk 7 a(n) =2a(n—1) —a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 7 a(n) =2a(n—1) —a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(FE=1)
a(l)=1=2-1-1



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1

a(2) =3

TaSk 7 a(n) =2a(n—1) —a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(=1
a(l)=1=2.1-1

(n=2)
a(2)=3=2-2-1

So, P(1) and P(2) hold.



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 7 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(=1
a(l)=1=2.1-1

(n=2)
a(2)=3=2-2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 7 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(FE=1)
a(l)=1=2.1-1

(n=2)
a(2)=3=2-2-1

So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1

a(2) =3

TaSk 7 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(FE="1)
a(l)=1=2.1-1

(n=2)
a(2)=3=2-2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.

a(k +1) = 2a(k) —a(k — 1) [Definition of a]



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 7 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(=1
a(l)=1=2.1-1

(n=2)
a(2)=3=2-2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.

a(k +1) = 2a(k) —a(k — 1) [Definition of a]
=22k—-1)—(2(k—-1)-1) [Inductive Hypothesis]



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 7 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(FE="1)
a(l)=1=2.1-1

(n=2)
a(2)=3=2.-2-1

So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.

a(k +1) = 2a(k) —a(k — 1) [Definition of a]
=2(2k-1)—(2(k—-1)-1) [Inductive Hypothesis]
=2k+1 [Algebra]



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 7 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n = 1,n = 2):
(=1
a(l)=1=2-1-1

(n=2)
a(2)=3=2:2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.

a(k +1) = 2a(k) —a(k — 1) [Definition of a]
=22k-1)—(2(k—-1)-1) [Inductive Hypothesis]
=2k+1 [Algebra]
=2(k+1)—1 [Algebra]

So, P(k + 1) holds.



Consider the function a(n) defined for n > 1 recursively as follows.
a(l)=1
a(2) =3

TaSk 7 a(n) =2a(n—1)—a(n—2) forn >3

Use strong induction to prove that a(n) = 2n — 1 for all n > 1.

Let P(n) be “a(n) = 2n — 1". We will show that P(n) is true for all n > 1 by strong
induction.

Base Cases (n =1,n = 2):
(=1
a(l)=1=2-1-1

(n=2)
a(2)=3=2-2-1
So, P(1) and P(2) hold.

Inductive Hypothesis:
Suppose that P(j) is true for all integers 1 < j < k for some arbitrary k > 2.

Inductive Step:
We will show P(k + 1) holds.

a(k +1) = 2a(k) —a(k — 1) [Definition of a]
=22k—-1)—(2(k—-1)-1) [Inductive Hypothesis]
=2k+1 [Algebra]
=2(k+1)—1 [Algebra]

So, P(k + 1) holds.

Conclusion:
Therefore, P(n) holds for all integers n = 1 by principle of strong induction.



That's All!

| hope you enjoyed it, because | know | did

Written by Aruna & Zareef




