

Number Theory & Induction

Announcements & Reminders

- HW4 due yesterday @ 11:00PM on Gradescope
 - Use late days if you need to!
 - Make sure you tagged pages on gradescope correctly
- HW5
 - Releases tonight
 - Due Wednesday 2/12 @11:00 PM
- Book 1-on-1s on the ed message board!

Extended Euclid

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

```
First, we find the gcd:
gcd(33,7) = gcd(7,
```

gcd(<mark>33,7</mark>)	= gcd(7,5)	$33 = 4 \cdot 7 + 5$	
	= gcd(5,2)	$7 = 1 \cdot 5 + 2$	
	= gcd(2,1)	5 = 2 • 2 + 1	
	= gcd(1 ,0)	$2 = 2 \cdot 1 + 0$	

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

First, we find the g	jcd:						Next, we re-arrange the
gcd(33,7) =	gcd(7,5)	33	= 4	↓ •	7 +	5	equations by solving for the
=	gcd(5,2)	7	= 1	•	5 +	2	remainder:
=	gcd(2,1)	5	= 2	<u>></u> •	2 +	1	$1 = 5 - 2 \cdot 2$
=	gcd(1 ,0)	2	= 2	<u>></u> •	1 +	Θ	$2 = 7 - 1 \cdot 5$
	_						5 = 33 - 4 • 7

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

First, we find the gcd:						
gcd(<mark>33</mark> ,7)	= gcd(7,5)	33	=	4	٠	7 + 5
	= gcd(5,2)	7	=	1	•	5 + 2
	= gcd(2,1)	5	=	2	•	2 + 1
	= gcd(1 ,0)	2	=	2	•	1 + 0

Next, we re-arrange the equations by solving for the remainder:

1	=	5	—	2	٠	2	
2	=	7	_	1	•	5	
5	=	33	_	- 2	1 (7

Now, we backward substitute into the boxed numbers using the equations:

$$= 5 - 2 \cdot 2 = 5 - 2 \cdot (7 - 1 \cdot 5) = 3 \cdot 5 - 2 \cdot 7 = 3 \cdot (33 - 4 \cdot 7) - 2 \cdot 7 = 3 \cdot 33 + -14 \cdot 7$$

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

First, we find t	he gcd:							Next, we re-arrange the
gcd(<mark>33</mark> ,7)	= gcd(7,5)					7 +	\	equations by solving for the
	= gcd(5,2)	7	=	1	٠	5 +	2	remainder: →1 = 5 - 2 • 2 2 = 7 - 1 • 5
	= gcd(2,1)	5	=	2	•	2 +	1	→1 = 5 - 2 • 2
	= gcd(1 ,0)	2	=	2	•	1 +	0	
								$15 = 33 - 4 \cdot 7$

Now, we backward substitute into the boxed numbers using the equations:

$$1 = 5 - 2 \cdot 2$$

= 5 - 2 \cdot (7 - 1 \cdot 5)
= 3 \cdot 5 - 2 \cdot 7
= 3 \cdot (33 - 4 \cdot 7) - 2 \cdot 7
= 3 \cdot 33 + -14 \cdot 7

So, $1 = 3 \cdot 33 + -14 \cdot 7$. Thus, 33 - 14 = 19 is the multiplicative inverse of 7 mod 33

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

Try this problem with the people around you, and then we'll go over it together!

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

If we have $7z \equiv 2 \pmod{33}$, multiplying both sides by 19, we get:

 $z \equiv 2 \cdot 19 \pmod{33} \equiv 5 \pmod{33}.$

This means that the set of solutions is $\{5 + 33k \mid k \in Z\}$

Introducing Induction (kind of)

You are scared of heights and there is a prize at the top of a very very tall ladder.

You do not want to climb this ladder...

You are scared of heights and there is a prize at the top of a very very tall ladder.

You do not want to climb this ladder...

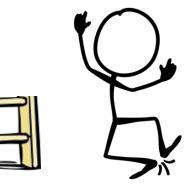
Lets convince your friend to climb it instead!!!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"



You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

I can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for **j+1** steps in the ladder, after **j+1** steps you will reach the top!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

I can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1 Since we know **j** of the **j** +1 steps hold, if you started with your foot on the <u>second</u> step (you skipped a step), you would reach the top!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

I can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1 Since we know **j** of the **j +1** steps hold, if you started with your foot on the <u>second</u> step (you skipped a step), you would reach the top!

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

I can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1 Since we know **j** of the **j** +1 steps hold, if you started with your foot on the <u>second</u> step (you skipped a step), you would reach the top! So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

P(n)

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

I can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1 Since we know **j** of the **j** +1 steps hold, if you started with your foot on the <u>second</u> step (you skipped a step), you would reach the top! So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

I can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1 Since we know **j** of the **j** +1 steps hold, if you started with your foot on the <u>second</u> step (you skipped a step), you would reach the top! So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

P(n Base Case

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

I can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1 Since we know **j** of the **j** +1 steps hold, if you started with your foot on the <u>second</u> step (you skipped a step), you would reach the top! So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

P(n) Base Case Inductive Hypothesis P(j)

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

f can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1 Since we know **j** of the **j** +1 steps hold, if you started with your foot on the <u>second</u> step (you skipped a step), you would reach the top! So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

P(n) Base Case Inductive **Hypothesis** Inductive Step P(j+1)

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

can pro____to you that this claim will still hold for j+1 steps!

Goal: Pr that for **j+1** steps in the ladder, after **j+1** steps you will reach the top!

The total amber of steps is j+1 Since we know j of the j +1 steps hold, if you started with your foot on the <u>second</u> step (you skipped a step), you would reach the top! So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

P(n) Base Case Inductive **Hypothesis** Inductive Step Using the

IH

You Claim: "There are k steps in the ladder. After k steps you will reach the top!"

"If we have a ladder with **1** step. <u>I know you can lift your foot</u> so after 1 step you will reach the top of a 1 step ladder!"

"So my claim holds for 1 step!"

Let's **suppose** that for an arbitrary number of steps j, after j steps you will reach the top.

1 can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1 Since we know j of the j +1 steps hold, if you started with your foot on the <u>second</u> step (you skipped a step), you would reach the top! So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

P(n) holds!

P(n)

Base

Case

Inductive

Hypothesis

Inductive

Using the

Step

IH

Induction: How it actually works

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all $n \in N$ by induction on n

<u>Base Case:</u> Show P(b) is true.

<u>Inductive Hypothesis</u>: Suppose P(k) holds for an arbitrary $k \ge b$.

<u>Inductive Step:</u> Show P(k + 1) (i.e. get $P(k) \rightarrow P(k + 1)$)

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all $n \in \mathbb{N}$ by induction on n

Note: often you will condition n here, like "all natural numbers n" or " $n \ge 0$ "

<u>Base Case:</u> Show P(b) is true.

<u>Inductive Hypothesis</u>: Suppose P(k) holds for an arbitrary $k \ge b$.

<u>Inductive Step:</u> Show P(k + 1) (i.e. get $P(k) \rightarrow P(k + 1)$)

<u>Conclusion</u>: Therefore, P(n) holds for all n by the principle of induction. Match the earlier condition on n in your conclusion!

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all $n \in N$ by induction on

<u>Base Case:</u> Show P(b) is true.

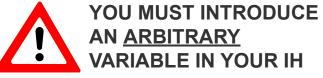
<u>Inductive Hypothesis</u>: Suppose P(k) holds for an arbitrary $k \ge b$.

<u>Inductive Step:</u> Show P(k + 1) (i.e. get $P(k) \rightarrow P(k + 1)$)

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all $n \in N$ by induction on

P(n) IS A PREDICATE, IT HAS A BOOLEAN VALUE NOT A NUMERICAL ONE

<u>Base Case:</u> Show P(b) is true.



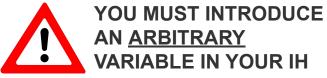
<u>Inductive Hypothesis</u>: Suppose P(k) holds for an arbitrary $k \ge b$.

<u>Inductive Step</u>: Show P(k + 1) (i.e. get $P(k) \rightarrow P(k + 1)$)

Let P(n) be "(whatever you're trying to prove)". We show P(n) holds for all $n \in N$ by induction on

P(n) IS A PREDICATE, IT HAS A BOOLEAN VALUE NOT A NUMERICAL ONE

<u>Base Case</u>: Show P(b) is true.



<u>Inductive Hypothesis:</u> Suppose P(k) holds for an arbitrary $k \ge b$.

Inductive Step: Show P(k + 1) (i.e. get $P(k) \rightarrow P(l + 1)$) START WITH LHS OF K + 1 ONLY AND WORK TOWARD RHS

Weak Induction

Prove that $9 \mid (n^3 + (n+1)^3 + (n+2)^3)$ for all n > 1.

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n = 2): $2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3$, so P(2) holds.

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n = 2): $2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3$, so P(2) holds.

Induction Hypothesis: Assume that $9 | j^3 + (j + 1)^3 + (j + 2)^3$ for an arbitrary integer j > 1. Note that this is equivalent to assuming that $j^3 + (j + 1)^3 + (j + 2)^3 = 9k$ for some integer k by the definition of divides.

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n = 2): $2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3$, so P(2) holds.

Induction Hypothesis: Assume that $9 | j^3 + (j + 1)^3 + (j + 2)^3$ for an arbitrary integer j > 1. Note that this is equivalent to assuming that $j^3 + (j + 1)^3 + (j + 2)^3 = 9k$ for some integer k by the definition of divides.

Induction Step: Goal: Show $9 | (j+1)^3 + (j+2)^3 + (j+3)^3 |$

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n = 2): $2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3$, so P(2) holds.

Induction Hypothesis: Assume that $9 | j^3 + (j + 1)^3 + (j + 2)^3$ for an arbitrary integer j > 1. Note that this is equivalent to assuming that $j^3 + (j + 1)^3 + (j + 2)^3 = 9k$ for some integer k by the definition of divides.

Induction Step: Goal: Show $9 | (j+1)^3 + (j+2)^3 + (j+3)^3 |$

 $(j+1)^3 + (j+2)^3 + (j+3)^3 =$

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n = 2): $2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3$, so P(2) holds.

Induction Hypothesis: Assume that $9 | j^3 + (j + 1)^3 + (j + 2)^3$ for an arbitrary integer j > 1. Note that this is equivalent to assuming that $j^3 + (j + 1)^3 + (j + 2)^3 = 9k$ for some integer k by the definition of divides.

Induction Step: Goal: Show $9 | (j+1)^3 + (j+2)^3 + (j+3)^3 |$

 $(j+1)^3 + (j+2)^3 + (j+3)^3 = (j+3)^3 + 9k - j^3$ for some integer k [Induction Hypothesis]

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n = 2): $2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3$, so P(2) holds.

Induction Hypothesis: Assume that $9 | j^3 + (j + 1)^3 + (j + 2)^3$ for an arbitrary integer j > 1. Note that this is equivalent to assuming that $j^3 + (j + 1)^3 + (j + 2)^3 = 9k$ for some integer k by the definition of divides.

Induction Step: Goal: Show $9 | (j+1)^3 + (j+2)^3 + (j+3)^3 |$

$$\begin{split} (j+1)^3 + (j+2)^3 + (j+3)^3 &= (j+3)^3 + 9k - j^3 \text{ for some integer } k \quad \text{[Induction Hypothesis]} \\ &= j^3 + 9j^2 + 27j + 27 + 9k - j^3 \end{split}$$

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n = 2): $2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3$, so P(2) holds.

Induction Hypothesis: Assume that $9 | j^3 + (j + 1)^3 + (j + 2)^3$ for an arbitrary integer j > 1. Note that this is equivalent to assuming that $j^3 + (j + 1)^3 + (j + 2)^3 = 9k$ for some integer k by the definition of divides.

Induction Step: Goal: Show $9 | (j+1)^3 + (j+2)^3 + (j+3)^3 |$

$$\begin{split} (j+1)^3 + (j+2)^3 + (j+3)^3 &= (j+3)^3 + 9k - j^3 \text{ for some integer } k \quad \text{[Induction Hypothesis]} \\ &= j^3 + 9j^2 + 27j + 27 + 9k - j^3 \\ &= 9j^2 + 27j + 27 + 9k \end{split}$$

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n = 2): $2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3$, so P(2) holds.

Induction Hypothesis: Assume that $9 | j^3 + (j + 1)^3 + (j + 2)^3$ for an arbitrary integer j > 1. Note that this is equivalent to assuming that $j^3 + (j + 1)^3 + (j + 2)^3 = 9k$ for some integer k by the definition of divides.

Induction Step: Goal: Show $9 | (j+1)^3 + (j+2)^3 + (j+3)^3 |$

$$\begin{aligned} (j+1)^3 + (j+2)^3 + (j+3)^3 &= (j+3)^3 + 9k - j^3 \text{ for some integer } k \quad \text{[Induction Hypothesis]} \\ &= j^3 + 9j^2 + 27j + 27 + 9k - j^3 \\ &= 9j^2 + 27j + 27 + 9k \\ &= 9(j^2 + 3j + 3 + k) \end{aligned}$$

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n = 2): $2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3$, so P(2) holds.

Induction Hypothesis: Assume that $9 | j^3 + (j + 1)^3 + (j + 2)^3$ for an arbitrary integer j > 1. Note that this is equivalent to assuming that $j^3 + (j + 1)^3 + (j + 2)^3 = 9k$ for some integer k by the definition of divides.

Induction Step: Goal: Show $9 | (j+1)^3 + (j+2)^3 + (j+3)^3 |$

$$\begin{split} (j+1)^3 + (j+2)^3 + (j+3)^3 &= (j+3)^3 + 9k - j^3 \text{ for some integer } k \quad \text{[Induction Hypothesis]} \\ &= j^3 + 9j^2 + 27j + 27 + 9k - j^3 \\ &= 9j^2 + 27j + 27 + 9k \\ &= 9(j^2 + 3j + 3 + k) \end{split}$$

Since j is an integer, $j^2 + 3j + 3 + k$ is also an integer. Therefore, by the definition of divides, $9 \mid (j+1)^3 + (j+2)^3 + (j+3)^3$, so $P(j) \rightarrow P(j+1)$ for an arbitrary integer j > 1.

Conclusion:

Task 3

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n = 2): $2^3 + (2 + 1)^3 + (2 + 2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2 + 1)^3 + (2 + 2)^3$, so P(2) holds.

Induction Hypothesis: Assume that $9 | j^3 + (j + 1)^3 + (j + 2)^3$ for an arbitrary integer j > 1. Note that this is equivalent to assuming that $j^3 + (j + 1)^3 + (j + 2)^3 = 9k$ for some integer k by the definition of divides.

Induction Step: Goal: Show $9 | (j+1)^3 + (j+2)^3 + (j+3)^3 |$

$$\begin{split} (j+1)^3 + (j+2)^3 + (j+3)^3 &= (j+3)^3 + 9k - j^3 \text{ for some integer } k \quad \text{[Induction Hypothesis]} \\ &= j^3 + 9j^2 + 27j + 27 + 9k - j^3 \\ &= 9j^2 + 27j + 27 + 9k \\ &= 9(j^2 + 3j + 3 + k) \end{split}$$

Since j is an integer, $j^2 + 3j + 3 + k$ is also an integer. Therefore, by the definition of divides, $9 \mid (j+1)^3 + (j+2)^3 + (j+3)^3$, so $P(j) \rightarrow P(j+1)$ for an arbitrary integer j > 1.

Conclusion: P(n) holds for all integers n > 1 by induction.

Task 3

Cozy walkthrough!

https://tinyurl.com/section5t3

Strong Induction

a(1)=1 a(2)=3 $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$ Use strong induction to prove that a(n)=2n-1 for all $n\geqslant 1.$

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all $n \ge 1$ by strong induction.

a(1)=1 a(2)=3 $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$ Use strong induction to prove that a(n)=2n-1 for all $n\geqslant 1.$

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all $n \ge 1$ by strong induction.

Base Cases (n = 1, n = 2): (n = 1) $a(1) = 1 = 2 \cdot 1 - 1$

a(1)=1 a(2)=3 $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$ Use strong induction to prove that a(n)=2n-1 for all $n\geqslant 1.$

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all $n \ge 1$ by strong induction. **Base Cases** (n = 1, n = 2): (n = 1) $a(1) = 1 = 2 \cdot 1 - 1$ (n = 2) $a(2) = 3 = 2 \cdot 2 - 1$ So, P(1) and P(2) hold.

a(1)=1 a(2)=3 $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$ Use strong induction to prove that a(n)=2n-1 for all $n\geqslant 1.$

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all $n \ge 1$ by strong induction. Base Cases (n = 1, n = 2): (n = 1)

 $a(1) = 1 = 2 \cdot 1 - 1$ (n = 2) $a(2) = 3 = 2 \cdot 2 - 1$

So, P(1) and P(2) hold. **Inductive Hypothesis:** Suppose that P(j) is true for all integers $1 \le j \le k$ for some arbitrary $k \ge 2$.

a(1)=1 a(2)=3 $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$ Use strong induction to prove that a(n)=2n-1 for all $n\geqslant 1.$

```
Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all n \ge 1 by strong induction.

Base Cases (n = 1, n = 2):

(n = 1)

a(1) = 1 = 2 \cdot 1 - 1

(n = 2)

a(2) = 3 = 2 \cdot 2 - 1

So, P(1) and P(2) hold.
```

Inductive Hypothesis:

Task 7

Suppose that P(j) is true for all integers $1 \le j \le k$ for some arbitrary $k \ge 2$.

Inductive Step: We will show P(k + 1) holds.

a(1)=1 a(2)=3 $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$ Use strong induction to prove that a(n)=2n-1 for all $n\geqslant 1.$

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all $n \ge 1$ by strong induction. **Base Cases** (n = 1, n = 2): (n = 1) $a(1) = 1 = 2 \cdot 1 - 1$ (n = 2) $a(2) = 3 = 2 \cdot 2 - 1$ So, P(1) and P(2) hold. Inductive Hypothesis: Suppose that P(j) is true for all integers $1 \le j \le k$ for some arbitrary $k \ge 2$. Inductive Step:

We will show P(k+1) holds.

Task 7

a(k+1) = 2a(k) - a(k-1) [Definition of a]

a(1)=1 a(2)=3 $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$ Use strong induction to prove that a(n)=2n-1 for all $n\geqslant 1.$

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all $n \ge 1$ by strong induction. **Base Cases** (n = 1, n = 2): (n = 1) $a(1) = 1 = 2 \cdot 1 - 1$ (n = 2) $a(2) = 3 = 2 \cdot 2 - 1$ So, P(1) and P(2) hold. **Inductive Hypothesis:** Suppose that P(j) is true for all integers $1 \le j \le k$ for some arbitrary $k \ge 2$.

Inductive Step: We will show P(k+1) holds.

 $\begin{aligned} a(k+1) &= 2a(k) - a(k-1) & \qquad & [\text{Definition of } a] \\ &= 2(2k-1) - (2(k-1)-1) & \qquad & [\text{Inductive Hypothesis}] \end{aligned}$

a(1)=1 a(2)=3 $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$ Use strong induction to prove that a(n)=2n-1 for all $n\geqslant 1.$

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all $n \ge 1$ by strong induction. **Base Cases** (n = 1, n = 2): (n = 1) $a(1) = 1 = 2 \cdot 1 - 1$ (n = 2) $a(2) = 3 = 2 \cdot 2 - 1$ So, P(1) and P(2) hold. **Inductive Hypothesis:** Suppose that P(j) is true for all integers $1 \le j \le k$ for some arbitrary $k \ge 2$.

Inductive Step: We will show P(k+1) holds.

 $\begin{aligned} a(k+1) &= 2a(k) - a(k-1) & \text{[Definition of } a] \\ &= 2(2k-1) - (2(k-1)-1) & \text{[Inductive Hypothesis]} \\ &= 2k+1 & \text{[Algebra]} \end{aligned}$

a(1)=1 a(2)=3 $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$ Use strong induction to prove that a(n)=2n-1 for all $n\geqslant 1.$

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all $n \ge 1$ by strong induction. **Base Cases** (n = 1, n = 2): (n = 1) $a(1) = 1 = 2 \cdot 1 - 1$ (n = 2) $a(2) = 3 = 2 \cdot 2 - 1$

So, P(1) and P(2) hold. **Inductive Hypothesis:** Suppose that P(j) is true for all integers $1 \le j \le k$ for some arbitrary $k \ge 2$.

Inductive Step: We will show P(k + 1) holds.

Task 7

 $\begin{aligned} a(k+1) &= 2a(k) - a(k-1) & \text{[Definition of } a] \\ &= 2(2k-1) - (2(k-1)-1) & \text{[Inductive Hypothesis]} \\ &= 2k+1 & \text{[Algebra]} \\ &= 2(k+1) - 1 & \text{[Algebra]} \end{aligned}$

So, P(k+1) holds.

a(1)=1 a(2)=3 $a(n)=2a(n-1)-a(n-2) \mbox{ for } n\geqslant 3$ Use strong induction to prove that a(n)=2n-1 for all $n\geqslant 1.$

Let P(n) be "a(n) = 2n - 1". We will show that P(n) is true for all $n \ge 1$ by strong induction. Base Cases (n = 1, n = 2):

(n = 1) $a(1) = 1 = 2 \cdot 1 - 1$

(n = 2) $a(2) = 3 = 2 \cdot 2 - 1$

Task 7

So, P(1) and P(2) hold. Inductive Hypothesis: Suppose that P(j) is true for all integers $1 \le j \le k$ for some arbitrary $k \ge 2$. Inductive Step:

We will show P(k+1) holds.

 $\begin{aligned} a(k+1) &= 2a(k) - a(k-1) & \text{[Definition of } a] \\ &= 2(2k-1) - (2(k-1)-1) & \text{[Inductive Hypothesis]} \\ &= 2k+1 & \text{[Algebra]} \\ &= 2(k+1) - 1 & \text{[Algebra]} \end{aligned}$

So, P(k+1) holds.

Conclusion:

Therefore, P(n) holds for all integers $n \ge 1$ by principle of strong induction.

That's All!

I hope you enjoyed it, because I know I did

Written by Aruna & Zareef