CSE 311: Foundations of Computing I

Modular Arithmetic: Definitions and Properties

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ with $a \neq 0$:

$$\boxed{a \mid b \leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)}$$

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with d > 0, there exist unique integers q, r with $0 \le r < d$, such that a = dq + r.

To put it another way, if we divide d into a, we get a unique quotient (q = a div d) and non-negative remainder smaller than d (r = a mod d).

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0:

$$a \equiv_m b \leftrightarrow m \mid (a - b)$$

Properties of mod

- Let a,b,m be integers with m>0. Then, $a\equiv_m b$ if and only if $a \mod m=b \mod m$.
- Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.
- Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.
- Let a, b, m be integers with m > 0. Then, $(ab) \mod m = ((a \mod m)(b \mod m)) \mod m$.
 - You can derive this using the Multiplication Property of Congruences; note that $a \equiv_m (a \mod m)$ and $b \equiv_m (b \mod m)$.

GCD and Euclid's algorithm

- gcd(a, b) is the largest integer d such that $d \mid a$ and $d \mid b$.
- **Euclid's algorithm:** To efficiently compute gcd(a, b), you can repeatedly apply these facts:
 - $-\gcd(a,b) = \gcd(b, a \bmod b)$
 - $-\gcd(a,0)=a$

Bézout's Theorem and Multiplicative Inverses

- **Bézout's Theorem:** If a and b are positive integers, then there exist integers s and t such that gcd(a,b) = sa + tb.
 - To find s and t, you can use the Extended Euclidean Algorithm. See slides for a full walkthrough.
- The multiplicative inverse mod m of $a \mod m$ is $b \mod m$ iff $ab \equiv_m 1$.
- Suppose $\gcd(a,m)=1$. By Bézout's Theorem, there exist integers s and t such that sa+tm=1. Taking the mod of both sides, we get $(sa+tm) \bmod m=1 \bmod m=1$, so $sa\equiv_m 1$. Thus, $s \bmod m$ is the multiplicative inverse of a.