CSE 311: Foundations of Computing | Winter 2025

Problem Set 7

Due: Wednesday, March 5th by 11:00pm

Instructions

Solutions submission. You must submit your solution via Gradescope. In particular:

— Submit a single PDF file containing your solutions to Tasks 1-4, 6 (and optionally 7). Follow the
prompt on Gradescope to link tasks to your pages.

— Task 5 should be submitted only on grin. The instructions for appear below that problem.

— Task 6 should be submitted first on grin. However, your grammar with explanations also need
to be submitted as part of your PDF in Gradescope.

Task 1 — Weak in the Trees [16 pts]

Recall the definition of rooted binary trees (with no data) from lecture:

Basis Step: ¢ € Tree
Recursive Step: if L € Tree and R € Tree, then Tree(L, R) € Tree.

Note that, in lecture, we drew “Tree(L,R)" as a picture of a tree, whereas here we are using more
normal (functional) notation, which should be easier for calculations.

Next, we define the following operation which swaps the left and right subtrees throughout a tree:

reverse(e) =
reverse(Tree(L, R)) := Tree(reverse(R),reverse(L)) YL,R € Tree

Now, consider the following claim about the mirroring operation:
VT € Tree (reverse(reverse(T)) = T)

Prove this claim by structural induction.



Task 2 — List and Shout [20 pts]

Recall the definition of lists of numbers from lecture:

Basis Step: nil € List
Recursive Step: for any a € Z, if L € List, then a :: L € List.

For example, the list [1,2, 3] would be created recursively from the empty list as 1 :: (2 :: (3 :: nil)).

We will consider “::" to associate to the right, so 1 :: 2 :: 3 :: nil means the same thing.

The next problem uses two recursively-defined functions. The first is len, which calculates the length of
the list. As we saw in lecture, it is defined recursively as follows:

len(nil) := 0
len(a:: L) := 1+4len(L) YaeZ,VL € List

The second function, echo-pos, which drops any non-positive numbers and replaces any positive numbers
with two copies of that number, is defined by:

echo-pos(nil) := nil
echo-pos(a :: L) := echo-pos(L) ifa<0 VaeZ,VL e List
echo-pos(a :: L) := a::a:echo-pos(L) ifa>0 VYaeZ,VL e List
For example, from these definitions, we get echo-pos(—1::2:: =3 ::nil) =2 :: 2 nil.

a) Write a chain of equalities, citing the appropriate definitions, showing that
echo-pos(l:: —2::3::nil)=1:1:3:3:nil
b) Write a chain of equalities, citing the appropriate definitions, showing that
len(1::1::3::3::nil) =4
c) Use structural induction to prove that

VL € List (len(echo-pos(L)) < 2len(L))

Hint: since the definition of echo-pos is split into cases (a > 0 and a < 0), you will likely need to
argue by (the same) cases in your inductive step!

While this is an English proof, remember how cases work formally to prove a proposition Q:
first, prove (a > 0) — @; then, prove (a < 0) — @Q; and finally, state the tautology “a > 0 or
“a < 0" and apply Cases. The only difference in English is that we want to tell the reader that we
will use cases at the beginning of the proof, rather than at the end.

One way to say this in English is “We will argue by cases, a > 0 or a < 0.". After that, we
prove the two implications. Finally, at the end, we state that “Since one of those cases must hold,
we can see that ) holds in general’.’



Task 3 — Long Live the String [18 pts]

Recall the definition of strings over an alphabet X from lecture:

Basis Step: ¢ € X*
Recursive Step: for any a € X, if w € X*, then wa € ¥*.

For example, with ¥ = {a, b, ¢}, the string “abc” would be created recursively as cabc = ((ea)b)c
The string concatenation operator e is defined recursively as follows:
res = I Vo e 3*
xe(wa) = (rew)a VYaeX Vr,weX*
Let X be a fixed alphabet. The following claim says that string concatenation is associative:
Vo,y,2€X* ((zey)ez=m1e(yez))

Prove this claim by structural induction on z.

Task 4 — A Few of My Favorite Strings [12 pts]

For each of the following, write a recursive definition of the set of strings satisfying the given properties.
Briefly justify that your solution is correct. This should be 3-4 sentences per part explaining the intuition
why (1) any string produced by the basis and recursive step is in the described set and (2) any string in
the described set is in the recursive set. You may find the section examples helpful, but your explanations
do not need to be as long as the section solutions.

a) Binary strings that start with 10 and have an even length.

b) Binary strings where every 1 is followed by an even number of 0s. That is, if s contains a 1, meaning
it can be written as s = x1 e g, for some strings x,y, then y must have an even number of Os.

c) Binary strings with an odd number of 1s where every 1 is immediately followed by a 0.

Task 5 — Hope Strings Eternal [10 pts]

For each of the following, construct regular expressions that match the given set of strings:

a) Binary strings that start with 10 and have an even length.

b) Binary strings where every 1 is followed by an even number of 0s. That is, if s contains a 1, meaning
it can be written as s = x1 e g, for some strings x,y, then y must have an even number of Os.

c) Binary strings with an odd number of 1s where every 1 is immediately followed by a 0.

d) Binary strings with at most three 1s.



e) Binary strings with at most three 1s or at least two Os.

Submit and check your answers to this question here:
http://grin.cs.washington.edu

Think carefully about your answer to make sure it is correct before sub-
mitting. You have only 5 chances to submit a correct answer.

Task 6 — Glitz and Grammar [15 pts]

For each of the following, construct a context-free grammar that generates the given set of strings.

If your grammar has more than one variable (also called a non-terminal symbol), write a sentence
describing what sets of strings you expect each variable in your grammar to generate. For example, if
your grammar was:

S—>E|O

O - EC
E—- EE|CC
C—-0]1

You could say “C' generates binary strings of length one, E generates (non-empty) even length binary
strings, and O generates odd length binary strings.” It is also fine to use a regular expression, rather
than English, to describe the strings generated by a variable (assuming such a regular expression exists).
If you only use one variable (i.e., S), an explanation is not required but you should provide the grammar.

a) Binary strings matching the regular expression “1(0 U 10)*0 U 001".
Hint: You can use the technique described in lecture to convert this RE to a CFG.

b) All strings of the form y#x, with =,y € {0,1}* and y a subsequence of x*.

(Here ' means the reverse of . Also, a string w is a subsequence of another string z if you

can delete some characters from z to arrive at w.)

c) All binary strings in the set {0™1" : m,n € N and m > n}.

Submit and check your answers to this question here:
http://grin.cs.washington.edu

Think carefully about your answer to make sure it is correct before sub-
mitting. You have only b chances to submit a correct answer.

Note: You must also include each grammar and sentences describing
each new non-terminal, as described above, in Gradescope.



http://grin.cs.washington.edu
http://grin.cs.washington.edu

Task 7 — Extra Credit: With a Grammar, the Whole World is a Nail [0 pts]

Consider the following context-free grammar.

(Stmt) — (Assign) | {IfThen) | {IfThenElse) | (BeginEnd)
{IfThen) — if condition then (Stmt)

{IfThenElse) — if condition then (Stmt) else (Stmt)
(BeginEnd)  — begin (StmtList) end

(StmtList) — (StmtList)(Stmt) | (Stmt)

(Assign) —a =1

This is a natural-looking grammar for part of a programming language, but unfortunately the grammar
is “ambiguous” in the sense that it can be parsed in different ways (that have distinct meanings).

a) Show an example of a string in the language that has two different parse trees that are meaningfully
different (i.e., they represent programs that would behave differently when executed).

b) Give two different grammars for this language that are both unambiguous but produce different
parse trees from each other.



