
CSE 311: Foundations of Computing I Winter 2025

Problem Set 4
Due: Wednesday, February 5th by 11:00pm

Instructions

Solutions submission. You must submit your solution via Gradescope. In particular:

– The (a) parts of Tasks 1–5 should be submitted first on Cozy. You must also include your formal
proofs in the PDF you submit on Gradescope so that the grader can confirm that your English
proof properly translates your formal proof. If you are using LATEX, you can copy Cozy’s “Show
LaTeX” output. If you are not using LATEX, a screenshot is fine!

– Cozy provides an English proof translation from a formal proof, but it sounds unnatural (inten-
tionally). It can be used as a starting point for the (b) parts of Tasks 1–5, but any submission
significantly similar to Cozy’s English proofs will receive little or no credit.

– Taks 6 is a formal proof done on paper. It is to be submitted only in GradeScope.

– Submit a single PDF file containing your solutions to Tasks 1–6 (and optionally 7). Follow the
prompt on Gradescope to link tasks to your pages. (There, we will only grade your English
translations in Tasks 1–5, but your formal proof needs to be included in the PDF for reference.)

Task 1 – Even So Soon? [16 pts]

For any predicate for which we have a definition, we have rules that allow us to replace the predicate
with its definition or vice versa. As an example, consider “Even”, defined by Evenpxq :“ Dy px “ 2 ¨ yqq.
We can use this definition via these two rules:

Def of Even

Evenpxq

6 Dy px “ 2 ¨ yq

Undef Even

Dy px “ 2 ¨ yq

6 Evenpxq

For example, if we know Evenp6q holds, then “Def of Even” allows us to infer Dy p6 “ 2 ¨ yq. On the
other hand, if we know that Dy p10 “ 2 ¨ yq, then “Undef Even” allows us to infer Evenp10q.

In English proofs, we do not distinguish between replacing Evenpxq by its definition and vice versa
(both are “by the definition of Even”), but in Cozy, you need to say which direction you are doing by
using defof Even or undef Even.

We will also need to use Cozy’s algebra rule, which lets you infer equations implied by others:

Algebra

x1 “ y1 . . . xn “ yn
6 x “ y (if implied)

1

For example, if you know that 2x “ 3y ` 1 and y “ 2, then you can infer 2x “ 7 by algebra. Cozy
will not infer, from that, that x “ 7{2 because the latter is not an integer. More generally, Cozy will
only add equations and multiply both sides by constants. It will not do division.

To gain some familiarity with these rules, let’s do a proof. . .

Let domain of discourse be the integers. Consider the following claim:

@x@y ppEvenpxq ^ Oddpyqq Ñ Evenp3x` 2yqq

In English, this says that, for any even integer x and odd integer y, the integer 3x` 2y is even.

a) Write a formal proof that the claim holds.

Remember that Cozy (like Java) expects a “*” for multiplication. It will misunderstand if you
write 2a + 2 = 2(a+1). You have to write that as 2*a + 2 = 2*(a+1).

Submit and check your formal proof here:

http://cozy.cs.washington.edu

You must also include your solution (as a screenshot, typeset LATEX, or
rewritten by hand) in the PDF you submit to Gradescope.

b) Translate your formal proof to an English proof.

Keep in mind that your proof will be read by a human, not a computer, so you should explain the
algebra steps in more detail, whereas some of the predicate logic steps (e.g., Elim D) can be skipped.

Note that Cozy will provide an English translation of your formal proof, but this translation is
purposefully bad. It will give you something to start with, but as you will see, it is not well written.

Task 2 – You Only Div Once [16 pts]

In this problem, we will use the predicate “Divides”, defined by Dividespx, yq :“ Dk py “ k ¨ xq. We can
use this definition via these two rules:

Def of Divides

Dividespx, yq

6 Dk py “ k ¨ xq

Undef Divides

Dk py “ k ¨ xq

6 Dividespx, yq

Note that, in math, we write Dividespx, yq with the nicer notation “x | y”.

To gain some familiarity with these rules, let’s do a proof. . .

Let domain of discourse be the integers. Consider the following claim:

@a@b ppp3 | aq ^ p4 | bqq Ñ p12 | 4a´ 6bqq

In English, this says that, for any integer a divisible by 3 and integer b divisible by 4, the integer 4a´ 6b
is divisible by 12.

2

http://cozy.cs.washington.edu

a) Write a formal proof that the claim holds.

Submit and check your formal proof here:

http://cozy.cs.washington.edu

You must also include your solution (as a screenshot, typeset LATEX, or
rewritten by hand) in the PDF you submit to Gradescope.

b) Translate your formal proof to an English proof.

Keep in mind that your proof will be read by a human, not a computer, so you should explain the
algebra steps in more detail, whereas some of the predicate logic steps (e.g., Elim D) can be skipped.

Task 3 – #modgoals [18 pts]

In this problem, we will use “Congruent”, defined by Congruentpa, b,mq :“ Dividespm, a ´ bq (i.e.,
m | a´ b). We can use this definition via these two rules:

Def of Congruent

Congruentpa, b,mq

6 Dividespm, a´ bq

Undef Congruent

Dividespm, a´ bq

6 Congruentpa, b,mq

Note that, in math, we write Congruentpa, b,mq with the nicer notation a ”m b.

To gain some familiarity with these rules, let’s do a proof. . .

Let domain of discourse be the integers. Consider the following claim:

@a@b pppa ”8 5q ^ pa` b ”4 3qq Ñ pa´ b ”4 3qq

In English, this says that, for any integers a and b, if a is congruent to 5 modulo 8 and a`b is congruent
to 3 modulo 4, then a´ b is congruent to 3 modulo 4.

a) Write a formal proof that the claim holds.

Submit and check your formal proof here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.

b) Translate your formal proof to an English proof.

Keep in mind that your proof will be read by a human, not a computer, so you should explain the
algebra steps in more detail, whereas some of the predicate logic steps (e.g., Elim D) can be skipped.

3

http://cozy.cs.washington.edu
http://cozy.cs.washington.edu

Task 4 – Div and Let Div [16 pts]

For any known theorem, we have rules that allow us to cite the fact that the theorem holds and, if the
statement of the theorem is a domain-restricted @, to apply it in one step to specific values.

In this problem, we will use the theorem “DivideEqn”. It says that, if you have the equation ca “ cb
and you know that c ­“ 0, then you can divide both sides of the equation by c to get a “ b. We can
use this theorem in a formal proof via these two rules:

Cite DivideEqn

6 @a@b@c ppca “ cb^ pc “ 0qq Ñ a “ bq

Apply DivideEqn

ca “ cb^ pc “ 0q

6 a “ b

The first rule simply writes down the statement of DivideEqn. To use it, you apply Elim @ to get an
implication and then Modus Ponens to get the conclusion. The second rule does these three things
(Cite, Elim @, Modus Ponens) in a single step.

To gain some familiarity with these rules, let’s do a proof. . .

Let domain of discourse be the integers. Consider the following claim:

@a@b pp3a ”12 15^ 2b ”8 4q Ñ pa´ b ”4 3qq

In English, this says that, for any integers a and b, if 3a is congruent to 15 modulo 12, and 2b is
congruent to 4 modulo 8, then their difference, a´ b, is congruent to 3 modulo 4.

a) Write a formal proof that the claim holds. You are given the facts 2 ­“ 0, 3 ­“ 0, and 4 ­“ 0, so
that you may divide by any of those numbers.

We strongly recommend that you use the first rule above, via “cite DivideEqn” in Cozy. If
you want try using the second rule, you will need to consult the Cozy documentation.

Note that this theorem only applies to an equation that looks like cp. . . q “ cp. . . q for some c.
If your equation doesn’t look exactly like this, then you would need to use Algebra to first put it in
this form. For example, if your equation says ca ` cb “ 5c, then you would need to rewrite it as
cpa` bq “ cp5q with Algebra before applying DivideEqn.

Submit and check your formal proof here:

http://cozy.cs.washington.edu

You must also include your solution (as a screenshot, typeset LATEX, or
rewritten by hand) in the PDF you submit to Gradescope.

b) Translate your formal proof to an English proof.

Keep in mind that your proof will be read by a human, not a computer, so you should explain the
algebra steps in more detail, whereas some of the predicate logic steps (e.g., Elim D) can be skipped.

4

http://cozy.cs.washington.edu

Task 5 – Trying To Hit a Proving Target [16 pts]

As noted above, the Algebra rule mainly just knows how to multiply equations by constants and add
them together. It does also know about the commutativity of multiplication, so it knows that xy “ yx,
and it can perform arithmetic on constants, so it knows that 3 ¨ 4 “ 12. However, it is easily stumped
by algebra that involves multiplication and division (by non-constants).

To handle those situations, we need an even lower-level tool: the ability to substitute one side of an
equation where the other appears. Since the two sides are equal to each other, whatever facts hold for
one side, hold for the other. That reasoning is formalized in the following rule:

Substitute

P pxq x “ y

6 P pyq

For example, if we know Primep2x ` 5q — i.e., that 2x ` 5 is a prime number — and we know that
x “ 2y ` 1, then we can substitute 2y ` 1 for x in the first fact to get Primep2p2y ` 1q ` 5q — i.e.,
that 2p2y ` 1q ` 5 is a prime number. The Algebra rule is able to see that 2p2y ` 1q ` 5 “ 4y ` 7, so
we could then conclude that Primep4y ` 7q — i.e., that 4y ` 7 is prime — by Algebra.

To gain some familiarity with this new rule, let’s do a proof. . .

Let domain of discourse be the integers. Consider the following claim:

@a@b@c ppp2a | bq ^ p3b | cqq Ñ p6a | cqq

In English, this says that, for any integer a, b, and c, where 2a divides b and 3b divides c, it must be
the case that 6a divides c.

a) Write a formal proof that the claim holds.

Submit and check your formal proof here:

http://cozy.cs.washington.edu

You must also include your solution (as a screenshot, typeset LATEX, or
rewritten by hand) in the PDF you submit to Gradescope.

b) Translate your formal proof to an English proof.

Keep in mind that your proof will be read by a human, not a computer, so you should explain the
algebra steps in more detail, whereas some of the predicate logic steps (e.g., Elim D) can be skipped.

5

http://cozy.cs.washington.edu

Task 6 – When All Is Said and One [16 pts]

In this problem, in addition to the theorem “DivideEqn” we saw in Task 4, we will also use the theorem
“Units”, which says that 1 and -1 are the only numbers that multiply together to give you 1. We can
use this theorem in a formal proof via these two rules:

Cite Units

6 @a@b pab “ 1Ñ pa “ 1_ a “ ´1qq

Apply Units

ab “ 1

6 a “ 1_ a “ ´1

The first rule simply writes down the statement of Units. To use it, you apply Elim @ to get an
implication and then Modus Ponens to get the conclusion. The second rule does these three things
(Cite, Elim @, Modus Ponens) in a single step.

To gain some familiarity with these rules, let’s do a proof. . .

Let domain of discourse be the integers. Consider the following claim:

@a@b pppa | bq ^ pb | aq ^ pb “ 0qq Ñ pa “ b_ a “ ´bqq

In English, this says that, for any integers a and b, if a divides b and b divides a, then you must have
either a “ b or a “ ´b.

Consider the following English proof of the claim:

Let a and b be arbitrary integers.
Suppose that a | b, b | a, and b ‰ 0. By the definition of divides, we have a “ jb

and b “ ka for some integers j, k. Combining these equations, we see that b “ ka “
kpjbq “ bpjkq. Since b ‰ 0, we can divide both sides by b to see that jk “ 1.

Since jk “ 1, the theorem Units tells us that j “ 1 or j “ ´1. If the first holds,
then we have a “ jb “ b. If the second holds, then we have a “ jb “ ´b. Hence, in
either case, we have a “ b or a “ ´b.

Since a and b were arbitrary, we have proven the claim.

Translate this English proof into a formal proof that claim holds.

Hint: You will likely need several tools introduced in earlier problems, e.g., the theorems DivideEqn
and Units and Substitute rule.

6

Task 7 – Extra Credit: Walk Like an Encryption [0 pts]

We know that we can reduce the base of an exponent modulo m : ak ”m pa mod mqk. But the same
is not true of the exponent! That is, we cannot write ak ”m ak mod m. This is easily seen to be false
in general. Consider, for instance, that 210 mod 3 “ 1 but 210 mod 3 mod 3 “ 21 mod 3 “ 2.

The correct law for the exponent is more subtle. We will prove it in steps....

(a) Let R “ tn P Z : 1 ď n ď m ´ 1 ^ gcdpn,mq “ 1u. Define the set aR “ tax mod m : x P Ru.
Prove that aR “ R for every integer a ą 0 with gcdpa,mq “ 1.

(b) Consider the product of all the elements in R modulo m and the elements in aR modulo m.
By comparing those two expressions, conclude that, for all a P R, we have aφpmq ”m 1, where
φpmq “ |R|.

(c) Use the last result to show that, for any b ě 0 and a P R, we have ab ”m ab mod φpmq.

(d) Finally, prove the following two facts about the function φ above. First, if p is prime, then φppq “
p ´ 1. Second, for any primes a and b with a ­“ b, we have φpabq “ φpaqφpbq. (Or slightly more
challenging: show this second claim for all positive integers a and b with gcdpa, bq “ 1.)

The second fact of part (d) implies that, if p and q are primes, then φppqq “ pp ´ 1qpq ´ 1q. That
along with part (c) prove the final claim from (forthcoming) lecture about RSA, completing the proof
of correctness of the algorithm.

7

