
CSE 311: Foundations of Computing I Winter 2025

Problem Set 3
Due: Wednesday, January 29th by 11:00pm

Instructions

Solutions submission. You must submit your solution via Gradescope. In particular:

- Submit a single PDF file containing your solutions to tasks 2, 4, 6 (and optionally 7). Follow the
prompt on Gradescope to link tasks to your pages.

- The instructions for submitting tasks 1, 3, and 5 appear below those individual problems.

Task 1 – Make the First Prove [20 pts]

For each of the following, complete a formal proof that the claim holds.

a) Given S ^R, U , and pR^ Uq Ñ pQ^ P q, it follows that S ^ P holds.

Your proof is only allowed to use the rules Modus Ponens, Intro ^, Elim ^.

b) Given P ^Q, Q_R, and pR_ Qq Ñ S. it follows that P ^ S holds.

Your proof is only allowed to use Modus Ponens, Intro ^, Elim ^, Intro _, and Equivalent.
(Hint: One of the known equivalences will be useful!)

c) Given Q, pP _Qq Ñ pS _Rq, RÑ pU ^ V q, and S Ñ pU ^ V q. it follows that V ^ U holds.

Your proof is only allowed to use the rules Modus Ponens, Intro ^, Elim ^, Intro _, and Cases.

d) Given P _Q, P ^R, and QÑ S. it follows that R^ S holds.

Your proof is only allowed to use Modus Ponens, Intro ^, Elim ^, Intro _, Cases, and Equivalent.

e) Given pP Ñ Rq ^ pQ_ P q, Q^ R, and RÑ pS _ T q. it follows that RÑ pS ^ T q holds.

Your proof is only allowed to use Modus Ponens, Intro ^, Elim ^, Intro _, Elim _, Cases,
Principium Contradictionis, and Ex Falso. (Hint: Focus on using those last two!)

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.

1

http://cozy.cs.washington.edu

Task 2 – Cat Goes “Meow”, Dog Goes “Proof” [18 pts]

For each of the following, complete a formal proof that the claim holds.

a) Given A^ pB ^Dq and B Ñ C, it follows that pC _Dq ^ pC _ Eq holds.

Your proof is only allowed to use the rules Modus Ponens, Elim ^, Intro ^, Elim _, and Intro _.

b) Given pB ^Dq Ñ C, B Ñ p D _Aq, and C. it follows that A_ E holds.

Your proof is only allowed to use Modus Ponens, Elim ^, Intro ^, Elim _, Intro _, and
Equivalent. (Hint: Multiple known equivalences will be useful!)

c) Given AÑ pB _Dq, pB _Dq Ñ C, and pA_ Cq ^ D. it follows that B holds.

Your proof is only allowed to use the rules Modus Ponens, Elim ^, Intro ^, Elim _, Intro _,
Equivalent, and Cases.

2

Task 3 – Provin’ Right Along [20 pts]

For each of the following, complete a formal proof that the claim holds.

a) Given Q^ R, P Ñ pR_ Sq, and pQ^ Sq Ñ T , it follows that P Ñ T .

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, and Elim _. (Hint: Direct Proof will be needed!)

b) Given Q^ pS Ñ Rq, QØ S, and pP ^Rq Ñ T , it follows that P Ñ T .

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, Elim _, and Equivalent. Note that there are no rules for “Ø”! To use the second fact,
you will need to rewrite it as an equivalent statement with only “Ñ”s.

c) Given R^ S, S _ U , and pR^ Uq Ñ V , it follows that V holds.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, Elim _, and the Latin Rules. Note, in particular, that Equivalent is not allowed.

Note that S _ U is equivalent to S Ñ U . Since we know S (from R ^ S), we could then get
that U holds by Modus Ponens. However, in this problem, we don’t have Equivalent, so that plan
won’t work as stated. Alternatively, since S _ U is given as an “_”, we can instead try Elim _

(which is secretly just Modus Ponens wearing a fake mustache).

Hint: Prove that S holds using Reductio Ad Absurdum. Then, you can apply Elim _.

d) Given P ^ U and pQ_ Sq Ñ R, it follows that pP Ñ Qq Ñ pR^ Uq.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, and Elim _. Equivalent is not allowed.

e) Given P ^ U and pQ_ Sq Ñ R, it follows that P Ñ pQÑ pR^ Uqq.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, and Elim _. Equivalent is not allowed.

Note that the only difference from part (d) is that we have moved the parentheses. We went
from pP Ñ Qq Ñ pR _ Uq to P Ñ pQ Ñ pR ^ Uqq, but these are two very different statements!
The former is an implication with another implication in its premise, while this is an implication with
another implication in its conclusion. In part (d), using Direct Proof gives us an assumption that is
an implication. Here, Direct Proof will give us P as an assumption, which is simpler, but since the
conclusion is another implication, we need to use another Direct Proof, nested within the first one!

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.

3

http://cozy.cs.washington.edu

Task 4 – One False Prove [12 pts]

For each of the claims below, (1) translate the English proof into a formal proof and (2) say which of
the following categories describes the formal proof:

Proof The proof is correct.

Goof The claim is true but the proof is wrong.

Spoof The claim is false.

Finally, (3) if it is a goof, point out the errors in the proof and explain how to correct them, and if
it is a spoof, point out the first error in the proof and then show that the claim is false by giving a
counterexample. (If it is a correct proof, then skip part (3).)

Be careful! We want you to translate the English proof to a formal proof as closely as possible,
including translating the mistake(s), if any! Also, an incorrect proof does not necessarily mean the
claim is false, i.e., a goof is not a spoof!

Note that English proofs often skip steps that would be required in formal proofs. (That is fine as
long as it is easy for the reader to see what needs to be filled in.) Skipped steps do not mean that the
proof is incorrect. The proof is incorrect when it asserts a fact that is not necessarily true or does not
follow by the reason given.

Hint: To give a counterexample to a claim in propositional logic, describe what truth values each
atomic variable should have so that all the givens are true but the result is false.

a) Claim: Given a^ b and a^ bÑ c, it follows that c holds.

Proof or Spoof : Since a holds from the first given, we have a_ b is true. Observe that this is
equivalent to pa ^ bq. The contrapositive of the second given is pa ^ bq Ñ c. Therefore, c
must follow.

b) Claim: Given p_ r, pÑ q and q Ø r, it follows that p‘ r holds.

Proof or Spoof : First, we show pp^ rq holds. For contradiction, assume p^ r is true. Since p is
true, q follows from the second given. Since we have q, it must be that r holds from the third
given. Since both r and r holds, we have a contradiction! Thus, pp^ rq holds. Combined with
the first given, this is equivalent to p‘ r.

Hint: At least one of the Latin rules might be useful!

4

Task 5 – Get a Prove On [20 pts]

For each of the following, write a formal proof that the claim holds.

Your proof is allowed to use the basic six rules of Propositional Logic (Modus Ponens, Direct Proof,
Intro ^, Elim ^, Intro _, and Elim _ or Cases), Equivalent, and the four rules for Predicate Logic
(Intro @, Elim @, Intro D, Elim D).

Let P pxq, Q(x), and Rpx, yq be predicates defined in some fixed domain of discourse, and let c be
some well-known constants in that domain.

a) Given Dx, P pxq, @x, pRpx, cq Ø Rpc, xqq, and @x, pP pxq Ñ Rpc, xqq, it follows that we must have
D d, pRpd, cq ^Rpc, dqq.

b) Given @x, pP pxq ^Rpx, cqq and @x,@ y, pRpx, yq Ñ Rpy, xqq, it follows that @x, D y,Rpy, xq.

c) Given @x, D y, pP pxq ^Rpx, yqq, it follows that @x, pP pxq ^ pD y,Rpx, yqqq.

The fact that we can move the D outside of the ^ was noted (but not proven) in lecture. In this
problem, you will prove that you can sometimes move an D inside of a ^.

d) Given @x, pP pxq Ñ Qpxqq, it follows that p@x, P pxqq Ñ p@x,Qpxqq.

In Homework 2 Task 6, you were asked to explain why the latter fact follows from the former
one. In this problem, you are asked to prove it using our rules!

Hints: The claim to be proven is an “Ñ”, so your last step should be Direct Proof. The conclusion
of that implication is a “@”’, so your second to last step should be Intro @. This means that your
proof will have a subproof within a subproof!

e) Given @x, pP pxq Ñ Rpc, xqq and @x,@ y, ppRpx, yq ^ Rpy, xqq Ñ Qpyqq, it must be the case that
p@x, pP pxq ^Rpx, cqqq Ñ p@x,Qpxqq.

Hints: As in part (d), the claim to be proven is an “Ñ” with a “@” in its conclusion, so your last
two steps should be Intro @ and Direct Proof. Once again, you will have subproofs nested two deep.

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.

Important: Cozy uses low precedence quantifiers “@x,” and “Dx,”, rather than the high precedence
version shown in the lecture slides. The extra “,” is an indicator of the difference.

5

http://cozy.cs.washington.edu

Task 6 – Bust a Prove [12 pts]

For each of the claims below, (1) translate the English proof into a formal proof and (2) say which of
the following categories describes the formal proof:

Proof The proof is correct.

Goof The claim is true but the proof is wrong.

Spoof The claim is false.

Finally, (3) if it is a goof, point out the errors in the proof and explain how to correct them, and if
it is a spoof, point out the first error in the proof and then show that the claim is false by giving a
counterexample. (If it is a correct proof, then skip part (3).)

Be careful! We want you to translate the English proof to a formal proof as closely as possible,
including translating the mistake(s), if any! Also, an incorrect proof does not necessarily mean the
claim is false, i.e., a spoof is not a goof!

Note that English proofs often skip steps that would be required in formal proofs. (That is fine as
long as it is easy for the reader to see what needs to be filled in.) Skipped steps do not mean that the
proof is incorrect. The proof is incorrect when it asserts a fact that is not necessarily true or does not
follow by the reason given.

Hint: To give a counterexample to a claim in predicate logic, describe a domain of discourse and
definitions for all predicates such that all the givens are true but the result is false.

a) For this part, let the domain of discourse be the integers.

Claim: Given Dx Dy P px, yq and @x@y pP px, yq Ñ Qpx, yqq, it must follow that Dx@y Qpx, yq

Proof or Spoof : We know P pa, bq from the first given for some integers a and b. Then, Qpa, bq
follows from the second given. Since the second given says P px, yq Ñ Qpx, yq for all integers x and
y, we have Qpa, yq for all integers y. Finally, we conclude that there’s some integer x such that for
all integers y, Qpx, yq holds.

b) Claim: Given @y pQpyq Ñ DxRpx, yqq and @x pP pxq Ñ @y Spx, yqq, it must follow that @x
`

pP pxq^
Qpxqq Ñ Dz pRpx, zq ^ Spz, xqq

˘

.

Proof or Spoof : Let a be an arbitrary P that is also a Q. By the second given, since a is a P ,
there exists b such that Spa, bq. By the first given, since a is a Q, we also have Rpb, aq. Since a was
arbitrary, the claimed result follows.

6

Task 7 – Extra Credit: Put That In Your Type and Smoke It [0 pts]

In this problem, we will extend the machinery we used in Homework 1’s extra credit problem in two ways.
First, we will add some new instructions. Second, and more importantly, we will add type information
to each instruction.

Rather than having a machine with single bit registers, we will imagine that each register can store
more complex values such as

Primitives These include values of types int, long, float, boolean, char, and String.

Pairs of values The type of a pair is denoted by writing “ˆ” between the types of the two parts. For
example, the pair p1, trueq has type “int ˆ boolean” since the first part is an int and the second
part is a boolean.

Functions The type of a function is denoted by writing a “Ñ” between the input and output types.
For example, a function that takes an int and returns a String is written “int Ñ String”.

We add type information, describing what is stored in each each register, in an additional column
next to the instructions. For example, if R1 contains a value of type int and R2 contains a value of type
int Ñ pString ˆ intq, i.e., a function that takes an int as input and returns a pair containing a String
and an int, then we could write the instruction

R3 :“ CALLpR1, R2q Stringˆ int

which calls the function stored in R2, passing in the value from R1 as input, and stores the result in R3,
and write a type of “Stringˆ int” in the right column since that is the type that is now stored in R3.

In addition to CALL, we add new instructions for working with pairs. If R1 stores a pair of type
Stringˆ int, then LEFTpR1q returns the String part and RIGHTpR1q returns the int part. If R2 contains
a char and R3 contains a boolean, then PAIRpR2, R3q returns a pair of containing a char and a boolean,
i.e., a value of type charˆ boolean.

a) Complete the following set of instructions so that they compute a value of type int ˆ float in the
last register assigned (RN for some N):

R1 intˆ boolean

R2 char

R3 pbooleanˆ charq Ñ pStringˆ floatq

R4 :“

The first three lines show the types already stored in registers R1, R2, and R3 at the start, before
your instructions are executed. You are free to use the values in those registers in later instructions.

Store into a new register on each line. Do not reassign any registers.

b) Compare the types listed next to these instructions to the propositions listed on the lines of your
proof in Task 1(a). Give a collection of text substitutions, such as replacing all instances of “P” by
“float” (these can include substitutions for atomic propositions and for operators), that will make
the sequence of propositions in Task 1(a) exactly match the sequence of types in part (a).

Note: You may need to change your solution to part (a) slightly to make this work!

7

c) Now, let’s add another way to form new types. If A and B are types, then A` B will be the type
representing values that can be of either type A or type B. For example, String ` int would be a
type of values that can be strings or integers.

To work with this new type, we need some new instructions. First, if R1 has type A, then the
instruction LCASEpR1q returns the same value but now having type A ` B and RCASEpR1q returns
the same value but now having type B`A (Note that we can pick any type B that we want here.)

Second, if R2 stores a value of type A ` B, R3 stores a function of type A Ñ C (a function
taking an A as input and returning a value of type C), and R4 stores a function of type B Ñ C,
then the instruction SWITCHpR2, R3, R4q returns a value of type C: it looks at the value in R2, and,
if it is of type A, it calls the function in R3 and returns the result, whereas, if it is of type B, it calls
the function in R4 and returns the result. In either case, the result is something of type C.

Complete the following set of instructions so that they compute a value of type longˆ char in
the last register assigned:

R1 String

R2 pfloat` Stringq Ñ pint` booleanq

R3 boolean Ñ pcharˆ longq

R4 int Ñ pcharˆ longq

R5 :“

The first three lines again show the types of values already stored in registers R1, R2, and R3. As
before, do not reassign any registers. Use a new register for each instruction’s result.

d) Compare the types listed next to these instructions to the propositions listed on the lines of your
proof in Task 1(c). Give a collection of text substitutions, such as replacing all instances of “P” by
“float” (these can include substitutions for atomic propositions and for operators), that will make
the sequence of propositions in Task 1(c) exactly match the sequence of types in part (c). (You may
need to change your solution to part (c) slightly to make this work!)

e) Now that we see how to match up the propositions in our earlier proofs with types in the code above,
let’s look at the other two columns. Describe how to translate each of the rules of inference used in
the proofs from both Task 1(a) and (c) so that they turn into the instructions in parts (a) and (c).

f) One of the important rules not used in Task 1(a) or (c) was Direct Proof. What new concept would
we need to introduce to our assembly language so that the similarities noted above apply could also
to proofs that use Direct Proof?

8

