
CSE 311 Section 08

Regular Expressions,
CFGs, Relations

Administrivia

Announcements & Reminders
● Midterm grades will be released shortly
● Homework 6 was due Wednesday (2/26)
● Homework 7 will be due Wednesday (3/5)
● Check your section participation grade on gradescope

○ If it different than what you expect, let your TA know

Regular Expressions

Regular Expressions

Task 1 – Regular Expressions

We will do (b) together, then work on c

Task 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

base-10 numbers:
Our everyday numbers!
Notice we have 10 symbols
(0-9) to represent numbers.

256: (2 * 102) + (5 * 101) + (6 * 100)

base-2 numbers: (binary)

10: (1 * 21) + (0 * 20)

Task 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:

Task 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗

Task 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

Task 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0

Task 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗

Task 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

Task 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

All possible strings using numbers 0-9 that never start with 0 or is 0

Task 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

All possible strings using numbers 0-9 that never start with 0 or is 0

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7
∪ 8 ∪ 9)∗)

Task 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should

be no leading zeroes).

Representing numbers all possible strings using numbers 0-9:
(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗
⚠ “0101” or “091” are not Base-10 numbers

All possible strings using numbers 0-9 that never start with 0
(1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7

∪ 8 ∪ 9)∗
⚠ “0” is a Base-10 number not considered

All possible strings using numbers 0-9 that never start with 0 or is 0

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7
∪ 8 ∪ 9)∗)

✅Generates only all possible Base-10 numbers

Task 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Task 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

Task 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
✅Generates only all possible Base-3 numbers

Task 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
Generates only all possible Base-3 numbers

…divisible by 3

Task 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
Generates only all possible Base-3 numbers

…divisible by 3

Hint: you know that Base-10 numbers are divisible by 10 when they end in 0 (10, 20, 30, 40…)

Task 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible

by 3.

Write a regular expression that matches all base-3 numbers

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗)
Generates only all possible Base-3 numbers

…divisible by 3

Hint: you know that Base-10 numbers are divisible by 10 when they end in 0 (10, 20, 30, 40…)

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)
✅all possible Base-3 numbers divisible by 3

Task 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

Task 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

Task 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

Task 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

Task 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)*

Task 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

Task 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)*

Task 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* ⚠ Generates “000” like “00 01 111”

Task 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)* ⚠ The Kleene-star has us generating any number of 0’s

…without the substring “000”

Use careful case-work to modify this and produce only 0,1,or two 0’s

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)* ⚠ Cannot produce 1’s with “0” or “00” like “1011101”

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* ⚠ Generates “000” like “00 01 111”

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)✅ all binary strings with “111” and without “000”

Task 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the

substring “111”, but not the substring “000”.

all binary strings that contain the substring “111”

(0 ∪ 1)* 111 (0 ∪ 1)*

…without the substring “000”

(0 ∪ 00 ∪ ε) (1)* 111 (0 ∪ 00 ∪ ε) (1)*

(0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)* 111 (0 ∪ 00 ∪ ε) (01 ∪ 001 ∪ 1)*

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)

⚠ The Kleene-star has us generating any number of 0’s

Use careful case-work to modify this and produce only 0,1,or two 0’s

⚠ Cannot produce 1’s with “0” or “00” like “1011101”

⚠ Generates “000” like “00 01 111”

✅ all binary strings with “111” and without “000”

(01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε) 111 (01 ∪ 001 ∪ 1)* (0 ∪ 00 ∪ ε)

Context-Free Grammars

Context-Free Grammars
A context free grammar (CFG) is a finite set of production rules over:

● An alphabet Σ of “terminal symbols”
● A finite set 𝑉 of “nonterminal symbols”
● A start symbol (one of the elements of 𝑉) usually denoted 𝑆

Always think back to Regex!

CFGs

Regex

Always think back to Regex!

CFGs

Regex

CFG or Regex?
“equal number of 0’s and 1’s” (ex. 011010)

Always think back to Regex!

CFGs

Regex

“equal number of 0’s and 1’s”

Task 2 – CFGs
Write a context-free grammar to match each of these languages.

a) All binary strings that start with 11.

b) All binary strings that contain at most one 1.

Work on this problem with the people around you.

Task 2 – CFGs
a) All binary strings that start with 11.

Task 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

Task 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

11 (0 ∪ 1)*

Task 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

11 (0 ∪ 1)*

Now generate the CFG…

Task 2 – CFGs
a) All binary strings that start with 11.

Thinking back to regular expressions…

11 (0 ∪ 1)*

Now generate the CFG…

S → 11T
T → 1T | 0T | ε

Task 2 – CFGs
b) All binary strings that contain at most one 1.

Task 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

Task 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Task 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

Task 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

S → ABA
A → 0A | ε
B → 1 | ε

Task 2 – CFGs
b) All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

S → ABA
A → 0A | ε
B → 1 | ε

Alternative solution:

S → 0S | S0| 1 | 0 | ε

Relations

Relations

Task 4b

Task 4b

We can graph the
points of R

Task 4b

If all points on the
line of y = x are in the
relation then the
relation is reflexive

Task 4b

If all points on the
line of y = x are in the
relation then the
relation is reflexive

The relation is
reflexive!

Task 4b

If all points that are
reflected across y = x
are also in the
relation, then the
relation is symmetric

Task 4b

If all points that are
reflected across y = x
are also in the
relation, then the
relation is symmetric

The relation is
symmetric!

Task 4b

If all points that are
reflected across y = x
are not in the
relation, then the
relation is
antisymmetric

Task 4b

If all points that are
reflected across y = x
are not in the
relation, then the
relation is
antisymmetric

The relation is not
antisymmetric!

Task 4b

Proving Relations!

Task 6

Task 6

It can be helpful to convert
definitions to formal logic so

you know precisely what
you are proving and where

to get started.

Task 6

Task 6

Task 6

Task 6

We want to show that
(a,b) ∊ R ○ R. So we need
to show that there is
some c such that (a,c) is
in R and (c,b) in R

Task 6

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

