
CSE 311 Section 7

Set Theory & Structural Induction!

∈
Anxiety 
garfield 



Announcements & Reminders

● Congrats on finishing the midterm! 
○ Please don’t discuss as not everyone has taken it :) 

● Homework 6 due Wednesday @ 11:00pm 
● Book One-on-Ones via the link on the message board!



Sets: Quick Review



Sets



Set Operators



Understand Sets Visually!
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What Set Operation is this? 
Union: A U B
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What Set Operation is this? 
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What Set Operation is this?  
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Understand Sets Visually!
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What Set Operation is this? 
A complement:  

A



Cartesian Product!



Problem 2: Cartesian Product
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Cartesian Product



Cartesian Product (A ∩ B) x C ⊆ A x (C ∪ D)



Cartesian Product

Let x be an arbitrary object.

Since x was arbitrary, we have shown that (A ∩ B) x C ⊆ A x (C ∪ D) by the definition of subset.

(A ∩ B) x C ⊆ A x (C ∪ D)



Cartesian Product

Let x be an arbitrary object.

Suppose that x ∈ (A ∩ B) x C. 

Since x was arbitrary, we have shown that (A ∩ B) x C ⊆ A x (C ∪ D) by the definition of subset.

(A ∩ B) x C ⊆ A x (C ∪ D)

Remember, x is just a 
coordinate point!



Cartesian Product

Let x be an arbitrary object.

Suppose that x ∈ (A ∩ B) x C

Then, by definition of Cartesian product, there is some y ∈ A ∩ B and c ∈ C such that x = (y, c). 

Since x was arbitrary, we have shown that (A ∩ B) x C ⊆ A x (C ∪ D) by the definition of subset.

(A ∩ B) x C ⊆ A x (C ∪ D)
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Let x be an arbitrary object.

Suppose that x ∈ (A ∩ B) x C

Then, by definition of Cartesian product, there is some y ∈ A ∩ B and c ∈ C such that x = (y, c). 

Then, by the definition of intersection, y ∈ A and y ∈ B. 

Since x was arbitrary, we have shown that (A ∩ B) x C ⊆ A x (C ∪ D) by the definition of subset.
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Cartesian Product

Let x be an arbitrary object.

Suppose that x ∈ (A ∩ B) x C

Then, by definition of Cartesian product, there is some y ∈ A ∩ B and c ∈ C such that x = (y, c). 

Then, by the definition of intersection, y ∈ A and y ∈ B. 

Since y ∈ A and c ∈ C ∪ D, we can see that (y, c) ∈ A x (C ∪ D) by the definition of Cartesian product.

Since x was arbitrary, we have shown that (A ∩ B) x C ⊆ A x (C ∪ D) by the definition of subset.

(A ∩ B) x C ⊆ A x (C ∪ D)

Work a step back!



Cartesian Product

Let x be an arbitrary object.

Suppose that x ∈ (A ∩ B) x C

Then, by definition of Cartesian product, there is some y ∈ A ∩ B and c ∈ C such that x = (y, c). 

Then, by the definition of intersection, y ∈ A and y ∈ B. 

Also note that, by the definition of union, we can state that c ∈ C ∪ D since c ∈ C. 

Since y ∈ A and c ∈ C ∪ D, we can see that (y, c) ∈ A x (C ∪ D) by the definition of Cartesian product.

Since x was arbitrary, we have shown that (A ∩ B) x C ⊆ A x (C ∪ D) by the definition of subset.

(A ∩ B) x C ⊆ A x (C ∪ D)



Structural Induction



Idea of Structural Induction
Every element is built up recursively…

So to show 𝑃(𝑠) for all 𝑠…

Show 𝑃(𝑏) for all base case elements 𝑏.

Show for an arbitrary element not in the base case, if 𝑃() holds for every 
named element in the recursive rule, then 𝑃() holds for the new element 
(each recursive rule will be a case of this proof).



Structural Induction Template
Let 𝑃(𝑥) be “<predicate>”. We show 𝑃(𝑥) holds for all 𝑥 by structural induction.

Base Case: Show 𝑃(𝑥) 
[Do that for every base cases 𝑥.]

Inductive Hypothesis: Suppose 𝑃(𝑥) for an arbitrary x
[Do that for every 𝑥 listed as in 𝑆 in the recursive rules.]

Inductive Step: Show 𝑃() holds for 𝑦.
[You will need a separate case/step for every recursive rule.]

Therefore 𝑃(𝑥) holds for all 𝑥 by the principle of induction.



Problem 5 - Structural Induction
Let P(L) be “”.
We show P(L) holds for all L … by structural induction on L.

Base Case: Show P(L) (for all L in the basis rules)

Inductive Hypothesis: Suppose P(L) (for all L in the recursive rules), 
i.e. (IH in terms of P(L))

Inductive Step: Goal: Show that P(?) holds. (IS goal in terms of P(?))

Conclusion: Therefore P(L) holds for all L ∈ S by the principle of induction.



Problem 5 - Structural Induction
Let P(L) be “len(echo-pos(L)) ≤ 2 len(L)”.
We show P(L) holds for all lists L by structural induction on L.
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Inductive Step: Goal: Show that P(?) holds. (IS goal in terms of P(?))

Conclusion: Therefore P(L) holds for all L ∈ S by the principle of induction.



Problem 5 - Structural Induction
Let P(L) be “len(echo-pos(L)) ≤ 2 len(L)”.
We show P(L) holds for all lists L by structural induction on L.

Base Case: Show P(nil)
len(echo-pos(nil)) = len(nil)

So P(nil) holds.

Inductive Hypothesis: Suppose P(L) (for all L in the recursive rules), 
i.e. (IH in terms of P(L))

Inductive Step: Goal: Show that P(?) holds. (IS goal in terms of P(?))

Conclusion: Therefore P(L) holds for all L ∈ S by the principle of induction.



Problem 5 - Structural Induction
Let P(L) be “len(echo-pos(L)) ≤ 2 len(L)”.
We show P(L) holds for all lists L by structural induction on L.

Base Case: Show P(nil)
len(echo-pos(nil)) = len(nil)

So P(nil) holds.

Inductive Hypothesis: Suppose P(L) holds for an arbitrary L ∊ List

Inductive Step: Goal: Show that P(?) holds. (IS goal in terms of P(?))

Conclusion: Therefore P(L) holds for all L ∈ S by the principle of induction.



Problem 5 - Structural Induction
Let P(L) be “len(echo-pos(L)) ≤ 2 len(L)”.
We show P(L) holds for all lists L by structural induction on L.

Base Case: Show P(nil)
len(echo-pos(nil)) = len(nil)

So P(nil) holds.

Inductive Hypothesis: Suppose P(L) holds for an arbitrary L ∊ List

Inductive Step: Goal: Show that P(a::L) holds. 

Conclusion: Therefore P(L) holds for all L ∈ S by the principle of induction.



Problem 5 - Structural Induction
Let P(L) be “len(echo-pos(L)) ≤ 2 len(L)”.
We show P(L) holds for all lists L by structural induction on L.

Base Case: Show P(nil)
len(echo-pos(nil)) = len(nil)

So P(nil) holds.

Inductive Hypothesis: Suppose P(L) holds for an arbitrary L ∊ List

Inductive Step: Goal: Show that P(a::L) holds. Let a ∊ Z be arbitrary.

Conclusion: Therefore P(L) holds for all L ∈ S by the principle of induction.



Problem 5 - Structural Induction
Let P(L) be “len(echo-pos(L)) ≤ 2 len(L)”.
We show P(L) holds for all lists L by structural induction on L.

Base Case: Show P(nil)
len(echo-pos(nil)) = len(nil)

So P(nil) holds.

Inductive Hypothesis: Suppose P(L) holds for an arbitrary L ∊ List

Inductive Step: Goal: Show that P(a::L) holds. Let a ∊ Z be arbitrary.
Suppose that a ≤ 0

Suppose that a > 0

Conclusion: Therefore P(L) holds for all L ∈ S by the principle of induction.

We can do casework!



Problem 5 - Structural Induction
Inductive Step: Goal: Show that P(a::L) holds. Let a ∊ Z be arbitrary.
Suppose that a ≤ 0

Suppose that a > 0
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Suppose that a ≤ 0

len(echo-pos(a::L)) = len(a::echo-pos(L)) Def of echo-pos (since a 
≤ 0)

Suppose that a > 0
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Problem 5 - Structural Induction
Inductive Step: Goal: Show that P(a::L) holds. Let a ∊ Z be arbitrary.
Suppose that a ≤ 0

len(echo-pos(a::L)) = len(a::echo-pos(L)) Def of echo-pos (since a 
≤ 0)

= 1 + len(echo-pos(L)) Def of len
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= 2(1 + len(L))
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Suppose that a > 0
len(echo-pos(a::L)) = len(a::a::echo-pos(L)) Def of echo-

pos (since a ≤ 0)
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Since these cases are exhaustive, P(a::L) holds.

Conclusion: Therefore P(L) holds for all L ∈ List by the principle of induction.



That’s all Folks!

By: Aruna



Extra time: Powerset English Proof



Problem 4
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Problem 4



Problem 4



Given A ⊆ B, we want P(A) ⊆ P(B)

P(A) P(B)



To show P(A) ⊆ P(B), show that the (set) 
elements of P(A) can be found in P(B)

P(A) P(B)



Subset proof strategy: take an arbitrary 
element x of P(A)...

P(A)

x

P(B)



Subset proof strategy: … and show that it’s 
in P(B)

P(A)

x

P(B)

x

How do we show x is in P(B)?



Well, x is in P(A), so x ⊆ A by definition of 
powerset. Our target is showing x is in P(B), i.e., x ⊆

B.

P(A)

x

A

x

L is a set, so it has 
elements in it!



Well, x is in P(A), so x ⊆ A. Our target is 
showing x is in P(B), i.e., x ⊆ B.

P(A)

x

A

x

Since L ⊆ A, A has 
those elements too 
(and maybe more stuff!)



Well, x is in P(A), so x ⊆ A. Our target is 
showing x is in P(B), i.e., x ⊆ B.

P(A)

x

A

x

A ⊆ B, so B has all the 
elements of A (and 
maybe more!)

B



To show x ⊆ B, we do the subset strategy 
again: take an arbitrary y in x…

P(A)

x

A

x
y

B



To show x ⊆ B, we do the subset strategy 
again: Since x ⊆ A, y is in A…

P(A)

x

A

x
y

B

y



To show x ⊆ B, we do the subset strategy 
again: And finally since A ⊆ B, y is in B.

P(A)

x

A

x
y

B

y

y
x ⊆ B! So x is in 
P(B).



Cozy Set Proofs



Using Cozy For Sets

● A U B: A Union B- “A cup B” 
● A ∩ B: “A cap B”
● A ∊ B: “A in B” 
● A \ B: “A \ B”
● B complement- “~B” (Only one Argument)
● A\B\C is implicitly (A\B)\C



Problem 2a – Subsets

For any sets A, 𝐵, and  𝐶, show that it holds that 𝐴∖𝐵 ⊆ 𝐴∪𝐶
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Problem 2a – Subsets

For any sets A, 𝐵, and  𝐶, show that it holds that 𝐴∖𝐵 ⊆ 𝐴∪𝐶



Problem 2a – Cozy (posted with solutions) 

For any sets A, 𝐵, and  𝐶, show that it holds that 𝐴∖𝐵⊆𝐴∪𝐶


