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Announcements & Reminders

e Congrats on finishing the midterm!
o Please don’t discuss as not everyone has taken it :)

e Homework 6 due Wednesday @ 11:00pm
e Book One-on-Ones via the link on the message board!



Sets: Quick Review




Sets

e Asetisan unordered group of distinct elements
o Setvariable names are capital letters, with lower-case letters for
elements

o Set Notation:
o a€A:“aisinA”or“aisanelementof A”
o AC B:“AisasubsetofB”, everyelementofAisalsoin B
o @:“emptyset”, a unique set containing no elements
o P(A):“powersetof A”, the set of all subsets of 4 including the empty
setand A itself



Set Operators

Subset: ACB=Vx(x€A—-x€B)

Equality: A=B=Vx(x€EA—>x€B)=ASCBABCA
Union: AUB={x:x € AVx € B}

Intersection: ANB={x:x € AANx € B}

Complement: A={x:x & A

Difference: A\B={x:x € ANx & B}

Cartesian Product: AX B ={(a,b):a € AAND € B}



Understand Sets Visually!
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Cartesian Product!




Problem 2: Cartesian Product

Let A, B, C, and D be sets. Consider the following claim:
(AnB)xCc<c Ax (CuD)

a) Suppose that A = {1,2}, B ={1,2,3},C = {3,4}, D = {2}.
Calculate the values of the sets (A n B) x C and A x (C'u D). Check whether the claim holds.
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a) Suppose that A = {1,2}, B ={1,2,3},C = {3,4}, D = {2}.
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An B =1{1,2}
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Let A, B, C, and D be sets. Consider the following claim:
(AnB)xCc<c Ax (CuD)
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Let A, B, C, and D be sets. Consider the following claim:
(AnB)xCc<c Ax (CuD)
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AnB=1{1,2}
(An B) xC={(1,3),(1,4),(2,3),(2,4)}
CuD ={23,4)



Cartesian Product

Let A, B, C, and D be sets. Consider the following claim:
(AnB)xCc<c Ax (CuD)

a) Suppose that A = {1,2}, B ={1,2,3},C = {3,4}, D = {2}.
Calculate the values of the sets (A n B) x C and A x (C'u D). Check whether the claim holds.

An B =1{1,2}
(AnB) x C =1{(1,3),(1,4),(2,3),(2,4)}
G & D = 42840
Ax (CuD)=1{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4)}



Cartesian Product

Let A, B, C, and D be sets. Consider the following claim:
(AnB)xCc<c Ax (CuD)

a) Suppose that A = {1,2}, B ={1,2,3},C = {3,4}, D = {2}.
Calculate the values of the sets (An B) x C and A x (C u D). Check whether the claim holds.

AnB=1{1,2}
(An B) x C ={(1,3),(1,4),(2,3),(2,4)}
CuD ={23,4)
Ax (CuD)=1{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4)}

We can see that (A n B) x C € A x (C u D). The claim holds.



Cartesian Product (ANB)xCC Ax(Cu D)

c) Write an English proof that the claim holds.
Follow the structure of our template for subset proofs.

Note: even though we want you to write your proof directly in English, it must still look like the
translation of a formal proof. In particular, you must include all steps that would be required of a
formal proof, excepting only those that we have explicitly said are okay to skip in English proofs.



Cartesian Product (ANB)xCC Ax(Cu D)

Let x be an arbitrary object.

Since x was arbitrary, we have shown that (A N B) x C € A x (C U D) by the definition of subset.



Cartesian Product (ANB)xCC Ax(CuD)

d € f B

Remember! XIS JUSt a A (a,d) (ae) (a.f)

coordinate point! a
Let x be an arbitrary object. b | (0,d) (be) (b,f) AxB

€l (c,d) (cie):(c.f)

Suppose that x e (AN B) x C.

Since x was arbitrary, we have shown that (A N B) x C € A x (C U D) by the definition of subset.



Cartesian Product (ANB)xCC Ax(Cu D)

Let x be an arbitrary object.

Suppose that x € X

Then, by definition of Cartesian product, there is some y e@and c E@such that x = (y, c).

Since x was arbitrary, we have shown that (A N B) x C € A x (C U D) by the definition of subset.



Cartesian Product (ANB)xCC Ax(Cu D)

Let x be an arbitrary object.
Suppose that x € X

Then, by definition of Cartesian product, there is some y e@and c E@such that x = (y, c).

Then, by the definition of intersection, y; ; and@.

Since x was arbitrary, we have shown that (A N B) x C € A x (C U D) by the definition of subset.



Cartesian Product (ANB)xCC Ax(Cu D)

Work a step back!
Let x be an arbitrary object.
Suppose that x € X

Then, by definition of Cartesian product, there is some y e@and c E@such that x = (y, c).

Then, by the definition of intersection, y; ; and@.

Since[ygand @ we can see that (y, ¢) € A x (C U D) by the definition of Cartesian product.

Since x was arbitrary, we have shown that (A N B) x C € A x (C U D) by the definition of subset.



Cartesian Product (ANB)xCC Ax(Cu D)

Let x be an arbitrary object.

Suppose that x € X

Then, by definition of Cartesian product, there is some y e@and Cc E@such that x = (y, c).

Then, by the definition of intersection,@and@.

Also note that, by the definition of union, we can state that @ since ¢ e@.

Since@and @ we can see that (y, ¢) € A x (C U D) by the definition of Cartesian product.

Since x was arbitrary, we have shown that (A N B) x C € A x (C U D) by the definition of subset.



Structural Induction




Idea of Structural Induction

Every element is built up recursively...

So to show P(s) for all s...

Show P(b) for all base case elements b.

Show for an arbitrary element not in the base case, if P() holds for every

named element in the recursive rule, then P() holds for the new element
(each recursive rule will be a case of this proof).



Structural Induction Template

Let P(x) be “<predicate>". We show P(x) holds for all x by structural induction.

Base Case: Show P(x)
[Do that for every base cases x.]

Inductive Hypothesis: Suppose P(x) for an arbitrary x
[Do that for every x listed as in S in the recursive rules.]

Inductive Step: Show P() holds for y.
[You will need a separate case/step for every recursive rule.]

Therefore P(x) holds for all x by the principle of induction.



Problem 5 - Structural Induction

Let P(L) be .
We show P(L) holds for all L ... by structural induction on L.

Base Case: Show P(L) (for all L in the basis rules)

Inductive Hypothesis: Suppose P(L) (for all L in the recursive rules),
i.e. (IH in terms of P(L))

Inductive Step: Goal: Show that P(?) holds. (IS goal in terms of P(?))

Conclusion: Therefore P(L) holds for all L € S by the principle of induction.



Problem 5 - Structural Induction

Let P(L) be “len(echo-pos(L)) < 2 len(L)”.
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We show P(L) holds for all lists L by structural induction on L.
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len(echo-pos(nil)) = len(nil)
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Conclusion: Therefore P(L) holds for all L € S by the principle of induction.



Problem 5 - Structural Induction

Let P(L) be “len(echo-pos(L)) < 2 len(L)”.
We show P(L) holds for all lists L by structural induction on L.

Base Case: Show P(nil)
len(echo-pos(nil)) = len(nil)
So P(nil) holds.

Inductive Hypothesis: Suppose P(L) holds for an arbitrary L € List

Inductive Step: Goal: Show that P(?) holds. (IS goal in terms of P(?))

Conclusion: Therefore P(L) holds for all L € S by the principle of induction.
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We show P(L) holds for all lists L by structural induction on L.

Base Case: Show P(nil)
len(echo-pos(nil)) = len(nil)
So P(nil) holds.

Inductive Hypothesis: Suppose P(L) holds for an arbitrary L € List

Inductive Step: Goal: Show that P(a::L) holds.

Conclusion: Therefore P(L) holds for all L € S by the principle of induction.
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Base Case: Show P(nil)
len(echo-pos(nil)) = len(nil)
So P(nil) holds.

Inductive Hypothesis: Suppose P(L) holds for an arbitrary L € List

Inductive Step: Goal: Show that P(a::L) holds. Let a € Z be arbitrary.

Conclusion: Therefore P(L) holds for all L € S by the principle of induction.



Problem 5 - Structural Induction

Let P(L) be “len(echo-pos(L)) < 2 len(L)”.
We show P(L) holds for all lists L by structural induction on L.

Base Case: Show P(nil)
len(echo-pos(nil)) = len(nil)
So P(nil) holds.

Inductive Hypothesis: Suppose P(L) holds for an arbitrary L € List

Inductive Step: Goal: Show that P(a::L) holds. Let a € Z be arbitrary.
Suppose thata<0

We can do casework!

Suppose thata >0

Conclusion: Therefore P(L) holds for all L € S by the principle of induction.
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Suppose thata<0

Suppose thata >0
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That's all Folks!




Extra time: Powerset English Proof
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that X € P(B), or equivalently, that X < B.
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that X € P(B), or equivalently, that X < B.

Since X was an arbitrary set, any set in P(A) is in P(B), or, by definition of subset,
P(A) < P(B). We have shown the claim.
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P(A) < P(B). We have shown the claim.
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Let A and B be sets. Prove that P(A) < P(B) follows from A < B.

Let X be an arbitrary set in P(A). By definition of power set, X < A. We need to show
that X € P(B), or equivalently, that X < B.
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Let A and B be sets. Prove that P(A) < P(B) follows from A < B.

Let X be an arbitrary set in P(A). By definition of power set, X < A. We need to show
that X € P(B), or equivalently, that X < B.

Let = be an arbitrary element of X. Since X < A, it must be the case that x € A. We
were given that A € B. By definition of subset, any element of A is an element of B. So,

it must also be the case that =z € B.

Since x was arbitrary, we know any element of X is an element of B.

Since X was an arbitrary set, any set in P(A) is in P(B), or, by definition of subset,
P(A) < P(B). We have shown the claim.



Problem 4

Let A and B be sets. Prove that P(A) < P(B) follows from A < B.

Let X be an arbitrary set in P(A). By definition of power set, X < A. We need to show
that X € P(B), or equivalently, that X < B.

Let x be an arbitrary element of X. Since X < A, it must be the case that x € A. We
were given that A < B. By definition of subset, any element of A is an element of B. So,
it must also be the case that z € B.

Since x was arbitrary, we know any element of X is an element of B. By definition of
subset, X € B. By definition of power set, X € P(B).

Since X was an arbitrary set, any set in P(A) is in P(B), or, by definition of subset,
P(A) < P(B). We have shown the claim.



Given A € B, we want P(A) <€ P(B)




To show P(A) € P(B), show that the (set)
elements of P(A) can be found in P(B)




Subset proof strategy: take an arbitrary
element x of P(A)...




Subset proof strategy: ... and show that it's
in P(B)

How do we show x is in P(B)?




Well, x is in P(A), so x € A by definition of
powerset. Our target is showing x is in P(B), l.e., x ©
B.

L is a set, so it has
elements in it!




Well, x is in P(A), so x € A. Our target is
showing x is in P(B), i.e., x € B.

Since L € A, A has
those elements too
(and maybe more stuff!)




Well, x is in P(A), so x € A. Our target is
showing x is in P(B), i.e., x € B.

A € B, so B has all the
elements of A (and
maybe more!)



To show x € B, we do the subset strategy
again: take an arbitrary y in x...




To show x € B, we do the subset strategy
again: Since x € A, yisinA...




To show x € B, we do the subset strategy
again: And finally since A € B, y is in B.




Cozy Set Proofs




Using Cozy For Sets

A U B: A Union B- “A cup B”

A NB:“AcapbB’

AeB:“AinB’

A\B: “A\B’

B complement- “~B” (Only one Argument)
A\B\C is implicitly (A\B)\C




Problem 2a - Subsets

For any sets 4, B, and C, show that it holds that A\B € AUC
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1.1.1. #eA\B assumption
1.1.2. ze AA—(xeB) Def of Set Difference 1.1.1
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For any sets 4, B, and C, show that it holds that A\B € AUC

Let x be arbitrary.

1.1.1. ze A\B assumption

1.1.2. ze AA—(z€ B) Def of Set Difference 1.1.1
113. z€A Elim And 1.1.2

1.14. zreAvzxeB Intro or 1.1.3

1.15. ze AuB Def of Union 1.1.4



Problem 2a - Subsets

For any sets 4, B, and C, show that it holds that A\B € AUC

Let x be arbitrary.

1.1.1. ze€ A\B assumption

1.1.2. ze AA—(z€ B) Def of Set Difference 1.1.1
1.13. z€ A Elim And 1.1.2

114. z€eAvzeB Intro or 1.1.3

115. ze AuB Def of Union 1.1.4

11. zeA\B—>z€AuUB Direct Proof



Problem 2a - Subsets

For any sets 4, B, and C, show that it holds that A\B € AUC

Let x be arbitrary.

1 5 s
i 8 3
1.1.3.
1.1.4.
1100 1 ;

|1

z € A\B
z€AA—(ze B)
x€EA
rxreAvzeB
reAuUB

re AB—>ze€AuUB

Ve,xr € AAB—>x€AuB

assumption

Def of Set Difference 1.1.1
Elim And 1.1.2

Intro or 1.1.3

Def of Union 1.1.4

Direct Proof

Intro forall



Problem 2a - Subsets

For any sets 4, B, and C, show that it holds that A\B € AUC

Let x be arbitrary.

e i
L2
| P %
1.1.4.
IL1.5

[ 8

xz € A\B
z€AA—(ze B)
reEA
rxreAvzeB
xreAuB

xe AB—>ze€AuUB

Vr,xe AB—>z€AuB
AABC AuB

assumption

Def of Set Difference 1.1.1
Elim And 1.1.2

Intro or 1.1.3

Def of Union 1.1.4

Direct Proof

Intro forall
Def of Subset 1



Problem 2a - Subsets

For any sets 4, B, and C, show that it holds that A\B € AUC

Let x be arbitrary.

1.1.1. ze A\B assumption
1.1.2. ze AA—(z€ B) Def of Set Difference 1.1.1
113. z€A Elim And 1.1.2
114. zeAvzeB Intro or 1.1.3
1.15. zeAuB Def of Union 1.1.4

1.1. zeAB—>zxz€AuB Direct Proof

. Vz,zre AB—>z€eAUB Intro forall
2. ABC AuUB Def of Subset 1

Let « be an arbitrary object. Suppose that x € A\B. By definition, this means that z € A

and z ¢ B. Since x € A, we have x € A U C by the definition of U. Since x was arbitrary,
this shows AAB< A u C.



Problem 2a - Cozy (posted with solutions)

For any sets 4, B, and C, show that it holds that A\BSAUC

Let x be arbitrary.

1.1.1. x in A \ B assumption
1l 2 x in A and not (x in B) defof \ {A} {B} 1.1.1
) P 8- 5 x in A elim and 1.1.2 left
1.1.4. x in A or x in B intro or 1.1.3 (x in B) right
1:1.5: X in A cup B undef cup {A} {B} 1.1.4 %
1.1. x in A\ B -> x in A cup B direct proof (x in A \ B -> x in A cup B) %
1. forall x, x in A\ B -> x in A cup B intro forall (forall x, x in A \ B -> x in A cup B) X

2, A \ B subset A cup B undef subset {A \ B} {A cup B} 1 %



