Quiz Section 5: Number Theory and Induction

Review

5 Steps to an Induction Proof: To prove $\forall n \in \mathbb{N} \ P(n)$ (or equivalently $\forall n \ge 0 \ P(n)$ for $n \in \mathbb{Z}$).

- 1. "Let P(n) be $\langle \text{fill in} \rangle$. We will show that P(n) is true for every $n \in \mathbb{N}$ (or equivalently integer $n \ge 0$) by induction."
- 2. "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis: Suppose P(k) is true for some arbitrary integer $k \ge 0$ "
- 4. "Inductive Step:" Prove that P(k+1) is true.

Use the goal to figure out what you need. Make sure you are using I.H. and point out where you are using it. (Don't assume P(k + 1)!)

5. "Conclusion: The claim follows by induction"

Task 1 – This is Really Mod

Let n and m be positive integers satisfying $n \mid m$.

Write an **English proof** of the following claim: for any integers a and b, if $a \equiv_m b$, then $a \equiv_n b$.

Task 2 – Extended Euclidean Algorithm Practice

a) Find the multiplicative inverse of y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$, You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y < 33$.

b) Now solve $7z \equiv 2 \pmod{33}$ for all of its integers solutions z.

Task 3 – Formal Induction

We can use mathematical induction to prove that P(n) holds for integers $n \ge b$ via the following rule:

	Induction
	$P(b) \forall n \left(P(n) \to P(n+1) \right)$
-	$\therefore \forall n ((n \ge b) \to P(n))$

In other words, if we know that P(b) holds and we know that, whenever P(n) holds, so does P(n+1), then it must be the case that P(n) is true for all integers $n \ge b$.

To gain some familiarity with this rule (called "induction" in Cozy), let's do a proof...

Prove, by induction, that $n^2 + n$ is even, or in other words, that $2 \mid n^2 + n$ holds for all integers $n \ge 0$.

Write a **formal** proof that the claim holds in cozy. https://tinyurl.com/cozysec5task3

Task 4 – Induction with Equality

a) For all $n \in \mathbb{N}$, prove that $\sum_{i=0}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1).$

Prove that $6n + 6 < 2^n$ for all integers $n \ge 6$.

Task 6 – Strong Induction

Consider the function a(n) defined for $n \ge 1$ recursively as follows.

$$\label{eq:alpha} \begin{split} a(1) &= 1 \\ a(2) &= 3 \\ a(n) &= 2a(n-1) - a(n-2) \text{ for } n \geqslant 3 \end{split}$$

Use strong induction to prove that a(n) = 2n - 1 for all integers $n \ge 1$.