CSE 311 Section 5

Number Theory & Induction




Announcements & Reminders

e HW4 due yesterday @ 11:00PM on Gradescope

o Use late days if you need to!
o Make sure you tagged pages on gradescope correctly

o HW5
o Releases tonight
o Due Wednesday 5/7 @11:00 PM




Extended Euclid




Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.
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Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd:

gcd(33,7) =

ged(7,5)
gcd(5,2)
gcd(2,1)
gcd(1,0)
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Next, we re-arrange the
equations by solving for the
remainder:

1 =5-2 2

2 =7 -1 e 5

5 =33-4 7



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd: Next, we re-arrange the
gcd(33,7) = gcd(7,5) 33 =4 ¢« 7 + 5 equations by solving for the
= gcd(5,2) 7 =1 ¢ 5 + 2 remainder:
= gcd(2,1) 5 =2 2 +1 1 =5-2 92
= gcd(1,0) 2 =2 ¢1+0 2 =7 -1 e 5

5 =33 -4 47

Now, we backward substitute into the boxed numbers
using the equations:

1 =5-2+2
5= 2 ¢ (7-1-5)
3e5-2¢7
3°(33-4+7)-2-7
3¢33+-14+7



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that 7y = 1 (mod 33). You
should use the extended Euclidean Algorithm. Your answer should be in the range 0 <y < 33.

First, we find the gcd: Next, we re-arrange the
gcd(33,7) = gcd(7,5) 33 =4 ¢« 7 + 5 equations by solving for the
= gcd(5,2) 7 =1 ¢ 5 + 2 remainder:
= gcd(2,1) 5 =2 2 +1 1 =5-2 62
= gcd(1,0) 2 =2 ¢1+0 2 =7 -1 e 5

5=233-4e7
Now, we backward substitute into the boxed numbers
using the equations:

1 =5-2¢2 S0,1=333+-14-
= 5= 2+ (7-1¢5) 7. Thus, 33-14=19
= 3e5-2e¢7 is the multiplicative
= 3¢(33-4+7)-2+7 inverse of 7 mod 33

333+-14+7



Problem 2 - Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That s, find y such that
7y = 1 (mod 33). You should use the extended Euclidean Algorithm. Your
answer should be in therange 0 <y <33.

b) Now, solve 7z = 2 (mod 33) for all of its integer solutions z.

Try this problem with the people around you, and then we’ll go over it together!
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Problem 2 - Extended Euclidean Algorithm

b) Now,solve7z = 2 (mod 33) for all of its integer solutions z.

If we have 7z = 2(mod 33), multiplying both sides by 19, we get:
z=2-19(mod 33) = 5(mod 33).

This means that the set of solutions is {5 + 33k | k € Z}



Introducing Induction (kind of)




Climb the ladder! =

You are scared of heights and there is a prize at the
top of a very very tall ladder.

You do not want to climb this ladder...
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Climb the ladder! =

You are scared of heights and there is a prize at the
top of a very very tall ladder.

You do not want to climb this ladder...

Lets convince your friend to climb it instead!!!




Climb the ladder! Q“‘
h J,\

You Claim: “There are n steps in the ladder. After n steps you
will reach the top!” for n>= 1
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You Claim: “There are n steps in the ladder. After n steps you will reach
the top!”

“If we have a ladder with 1 step. | know you can lift your foot so after 1
step you will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”
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Climb the ladder! =
h ‘L\‘

You Claim: “There are n steps in the ladder. After n steps you will reach the
top!”

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step
you will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’'s suppose that for an arbitrary number of steps j, after j steps you will
reach the top.
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Climb the ladder! =

You Claim: “There are n steps in the ladder. After n steps you will reaFch the tc1)p!”
orn>=

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’s suppose that for an arbitrary number of steps j, after j steps you will reach
the top. For j >= 1

| can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

&

. ==l




Climb the ladder!

You Claim: “There are n steps in the ladder. After n steps you will reacrll the top1!”
orn>=

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you will
reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach the

top. For j >= 1

| can prove to you that this claim will still hold for j+1 steps!
Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!
The total number of steps is j+1

Since we know j of the j +1 steps hold, if you started with your foot on the second
step (you skipped a step), you would reach the top! g

A
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You Claim: “There are n steps in the ladder. After n steps you will reacrll the top1!”
orn>=
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Climb the ladder!

You Claim: “There are n steps in the ladder. After n steps you will reaFch the tc1)p!”
orn>=

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’s suppose that for an arbitrary number of steps j, after j steps you will reach
the top. For j >= 1

| can prove to you that this claim will still hold for j+1 steps!
Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1

Since we know j of the j +1 steps hold, if you started with your foot on the second
step (you skipped a step), you would reach the top!

So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

Forn>=1
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WELCOME TO PROOF BY INDUCTION

[

You Claim: “There are n steps in the ladder. After n steps you will reaFch the tc1>p!”] P(n)
orn>=

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach
the top. For j >= 1

| can prove to you that this claim will still hold for j+1 steps!
Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1

Since we know j of the j +1 steps hold, if you started with your foot on the second
step (you skipped a step), you would reach the top!

So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

Forn>=1

“



WELCOME TO PROOF BY INDUCTION

You Claim: “There are n steps in the ladder. After n steps you will reaFch the tc1>p!” ] P(n)
orn>=

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

Base
“So my claim holds for 1 step!” Case
Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach
the top. For j >= 1
| can prove to you that this claim will still hold for j+1 steps!
Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!
The total number of steps is j+1
Since we know j of the j +1 steps hold, if you started with your foot on the second
step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!
THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

Forn>=1
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WELCOME TO PROOF BY INDUCTION

[ You Claim: “There are n steps in the ladder. After n steps you will reach the top!”] P(n)

Forn >=1

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you

. '”
will reach the top of a 1 step ladder! Base
“So my claim holds for 1 step!” Case
Let’'s suppose that for an arbitrary number of steps j, after j steps you W.I|| reach Inductive
the top. Forj>=1 .
Hypothesis
| can prove to you that this claim will still hold for j+1 steps! P()
Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1
Since we know j of the j +1 steps hold, if you started with your foot on the second

step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!
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WELCOME TO PROOF BY INDUCTION

[

You Claim: “There are n steps in the ladder. After n steps you will reach the top!”

Forn >=1

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you

will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

|

Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach

the top.

Forj>=1

|

I can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1

Since we know j of the j +1 steps hold, if you started with your foot on the second

step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER

Forn>=1
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WELCOME TO PROOF BY INDUCTION

[You Claim: “There are n steps in the ladder. After n steps you will reaFch the tc1>p!”
orn>=

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach
the top. Forj>=1

|

| can pr o you that this claim will still hold for j+1 steps!

Goal: P that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The tota ber of steps is j+1
Since we know j of the j +1 steps hold, if you started with your foot on the second

step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER
Forn>=1

| P(m)

Base
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{

Using the
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WELCOME TO PROOF BY INDUCTION

[

You Claim: “There are n steps in the ladder. After steps you will reaclp the tor1)!”
orn>=

| P)

“If we have a ladder with 1 step. | know you can lift your foot so after 1 step you
will reach the top of a 1 step ladder!”

“So my claim holds for 1 step!”

Base
Case

|

Let’'s suppose that for an arbitrary number of steps j, after j steps you will reach
the top. Forj>=1

]Inducﬁve
Hypothesis

[ can prove to you that this claim will still hold for j+1 steps!

Goal: Prove that for j+1 steps in the ladder, after j+1 steps you will reach the top!

The total number of steps is j+1
Since we know j of the j +1 steps hold, if you started with your foot on the second

step (you skipped a step), you would reach the top!
So of course you can reach j+1 steps!

THE CLAIM HOLDS YOUR FRIEND IS CLIMBING THE LADDER P(n)
Forn>=1

{

Using the
IH
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Induction: How it actually works




(Weak) Induction Template

Let P(n) be “(whateveryou’re trying to prove)”.
We show P(n) holds for alln € N by induction on n

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




(Weak) Induction Template

« ) . ”» Note: often you will
Let P(n) be “(whatevervyou’re trying to prove)”. y
(n) ( y yInstop ) conditionn here, like

We show P(n) holds for allm &€ N by induction on n «_\| n5tural numbers n”
or‘n=>0"

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.
Match the earlier condition onn in your conclusion!




(Weak) Induction Template

Let P(n) be “(whateveryou’re trying to prove)”. A Eg‘%'ﬁgggfg A%AJELLTE
We show P(n) holds for alln € N by induction o NOT A NUMERICAL ONE

Base Case: Show P(b) is true.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




(Weak) Induction Template

Let P(n) be “(whateveryou’re trying to prove)”. A Eg‘%f Qggfg A%AJELLTE

We show P(n) holds for alln € N by induction o NOT A NUMERICAL ONE

Base Case: Show P(b) is true. YOU MUST INTRODUCE
AN ARBITRARY
VARIABLE IN YOUR IH

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.




P(n) IS A PREDICATE, IT

HAS A BOOLEAN VALUE
(Weak) Induction Template NOT A NUMERICAL ONE

YOU MUST INTRODUCE
« ; : » !2: AN ARBITRARY
Let P(n) be “(whateveryou’re trying to prove)”. VARIABLE IN YOUR IH

We show P(n) holds for allm € N by induction on n f START WITH LHS OF

EXPRESSION AND END
WITH RHS (FOR BASE

Base Case: Show P(b) is true. CASE AND IS)

Inductive Hypothesis: Suppose P (k) holds for an arbitrary k = b.

Inductive Step: Show P(k + 1) (i.e.get P(k) - P(k + 1))

Conclusion: Therefore, P(n) holds for all n by the principle of induction.
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Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):

6-6+6=

Always start with something
on the left hand side like this!
And go down in equivalences
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Base Case (n = 6):
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Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be < We will prove P(n) for all integers n > 6 by induction on n

Base Case (n = 6):

< 64
&)

so P(6) holds.



Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be < We will prove P(n) for all integers n > 6 by induction on n

Base Case (n = 6): B t h tf dd th o)
(e ut what if we did this?
- Isn’t this easier?
-&
so P(6) holds. 6(6) + 6 < 26



Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be [6n + 6)<[2""] We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6): .
i NO! This is backwards

- reasoning (WRONG)
&)
so P(6) holds. 6(6) + 6 < 26

This uses the rule you are proving

rather than justifying it using algebra

\_ v




Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):
6-6+6=42
< 64
=26
so P(6) holds.
Inductive Hypothesis: Assume that<for an arbitrary integer k > 6.



Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):
6-64+6 =42
< 64
= 96
so P(6) holds.
Inductive Hypothesis: Assume that<for an arbitrary integer k > 6. It,S alwayS gOOd tO

Inductive Step: |Goal: Show(6(k + 1) + 6 |<[2k+1] write out the goa”




Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):
6-6+6=42
< 64
=26
so P(6) holds.

Inductive Hypothesis: Assume that<for an arbitrary integer k > 6.
Inductive Step: |Goal: Show 6(k + 1) + 6 < 2FF!

6(k+1)+6=

2k+1



Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):
6-6+6=42
< 64
=26
so P(6) holds.

Inductive Hypothesis: Assume that<for an arbitrary integer k > 6.
Inductive Step: |Goal: Show 6(k + 1) + 6 < 2FF!

6(k+1)+6=6k+6+6

2k+1



Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):

6-64+6=42
< 64
= 96

so P(6) holds.
Inductive Hypothesis: Assume that for an arbitrary integer k = 6.

Inductive Step: | Goal: Show 6(k + 1) + 6 < 2F*!

6(k+1)+6=|6k+6H6

2k+1



Task 5

Prove that 6n + 6 < 2" for all integers n > 6.

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n

Base Case (n = 6):
6-6+6=42
< 64
=26

so P(6) holds.

Inductive Hypothesis: Assume that<or an arbitrary integer k = 6.

Inductive Step: |Goal: Show 6(k + 1) + 6 < 2F+1

6(k+1)+6=6k+6+6

< 6 [Inductive Hypothesis|

Hint: use the fact that
you are proving an
inequality!



Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):

6-6+6=42
< 64
=26
so P(6) holds.
Inductive Hypothesis: Assume that 6k + 6 < 2* for an arbitrary integer k > 6.

Inductive Step: |Goal: Show 6(k + 1) + 6 < 2F+1

6(k+1)+6=6k+6+6
<216 [Inductive Hypothesis]

< O 2k [Since 2¥ > 6, since k > 6]

2k+1



Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):

6-6+6=42
< 64
= 96
so P(6) holds.
Inductive Hypothesis: Assume that 6k + 6 < 2* for an arbitrary integer k > 6.

Inductive Step: |Goal: Show 6(k + 1) + 6 < 2F+1

6(k+1)+6=6k+6+6

<216 [Inductive Hypothesis]
< O 42k [Since 2¥ > 6, since k > 6]
=g
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Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):

6-6+6=42
< 64
= 96
so P(6) holds.
Inductive Hypothesis: Assume that 6k + 6 < 2* for an arbitrary integer k > 6.

Inductive Step: |Goal: Show 6(k + 1) + 6 < 2F+1

6(k+1)+6=6k+6+6

<216 [Inductive Hypothesis]
< OF ok [Since 2k > 6, since k > 6]
=2.2%
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Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):

6-6+6=42
< 64
= 96
so P(6) holds.
Inductive Hypothesis: Assume that 6k + 6 < 2* for an arbitrary integer k > 6.

Inductive Step: |Goal: Show 6(k + 1) + 6 < 2F+1

6(k+1)+6=6k+6+6

<216 [Inductive Hypothesis]

< 2k 4 ok [Since 2k > 6, since k > 6]
=Dk

=[2 1

So P(k + 1) is true.



Prove that 6n + 6 < 2" for all integers n > 6.

Task 5

Let P(n) be “6n + 6 < 2™". We will prove P(n) for all integers n > 6 by induction on n
Base Case (n = 6):

6-6+6=42
< 64
=26
so P(6) holds.
Inductive Hypothesis: Assume that 6k + 6 < 2* for an arbitrary integer k > 6.

Inductive Step: |Goal: Show 6(k + 1) + 6 < 2F+1

6(k+1)+6=6k+6+6

<216 [Inductive Hypothesis]
<Ok ok [Since 2% > 6, since k > 6]
e

~{E
So P(k + 1) is true.

Conclusion: P(n) holds for all integers n = 6 by the principle of induction.
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For all n € N, prove that 2 i = En(n +1)(2n +1).

Task 4

Let P(n) be the statement “Y." (i? = gn(n + 1)(2n + 1)" defined for all n € N. We
prove that P(n) is true for all n € N by induction on n.

Base Case.
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n
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For all n € N, prove that 2 i = En(n +1)(2n +1).

Task 4

Let P(n) be the statement [ , zf!=[%n(n +1)(2n + 1}” defined for all n € N. We
prove that P(n) is true for all m € N by induction on 7.

n
St
1=0

Base Case.
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For all n € N, prove that 2 i = En(n +1)(2n +1).

Task 4

Let P(n) be the statement “Y; (i = gn(n + 1)(2n + 1)" defined for all n € N. We
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Conclusion: Therefore, P(n) is true for all n € N by induction.



That's All!

| hope you enjoyed it, because | know | did
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