CSE 311 Section 4

English Proofs & Number Theory

Announcements & Reminders

- HW2
 - Regrades will open soon
- HW3 due yesterday @ 11:00PM on Gradescope
 - Use late days if you need to!
 - Make sure you tagged pages on gradescope correctly
- HW4
 - Releases tonight

Mod

Imagine a clock with m numbers

Imagine a clock with m numbers

Imagine a clock with m numbers

Imagine a clock with m numbers

So we can say that $a \equiv b \pmod{m}$ where a and b are in the same position in the mod clock

 $1 \equiv 10 \pmod{3}$

What if we "unroll" this clock? So m divides the <u>difference</u> between a and b! 2 2 1 (mod 3) 10 (mod 3) VS Anything interesting? 10 3/10 and 3/1 BUT 3|9 (10-1) = 9 $9 \div 3 = 3 \text{ so } 3 \mid 9$

Formalizing Mod and Divides

Equivalence in modular arithmetic

Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and n > 0. We say $a \equiv b \pmod{n}$ if and only if n | (b - a)

- (i) -3 **=** 3 (mod 3)
- (ii) 0 **≡** 9000 (mod 9)
- (iii) 44 **=** 13 (mod 7)
- (iv) -58 **=** 707 (mod 5)
- (v) 58 **=** 707 (mod 5)

Identify the statements that are true for mod using the equivalence definition!

- (i) -3 **=** 3 (mod 3)
- (ii) 0 **≡** 9000 (mod 9)
- (iii) 44 **=** 13 (mod 7)
- (iv) -58 **=** 707 (mod 5)
- (v) 58 **=** 707 (mod 5)

i. True: 3|(3+3) = 3|6

Identify the statements that are true for mod using the equivalence definition!

- (i) -3 **=** 3 (mod 3)
- (ii) 0 **≡** 9000 (mod 9)
- (iii) 44 **=** 13 (mod 7)
- (iv) -58 **=** 707 (mod 5)
- (v) 58 **=** 707 (mod 5)

i. True: 3|(3+3) = 3|6
ii. True: 9|(9000-0) = 9|9000

- (i) -3 **=** 3 (mod 3)
- (ii) 0 **≡** 9000 (mod 9)
- (iii) 44 **=** 13 (mod 7)
- (iv) -58 **=** 707 (mod 5)
- (v) 58 **=** 707 (mod 5)

- i. True: 3|(3+3) = 3|6
- ii. True: 9|(9000-0) = 9|9000
- iii. False: 7∤(13-44) = 7∤-31

- (i) -3 **=** 3 (mod 3)
- (ii) 0 **≡** 9000 (mod 9)
- (iii) 44 **=** 13 (mod 7)
- (iv) -58 **=** 707 (mod 5)
- (v) 58 **=** 707 (mod 5)

- i. True: 3|(3+3) = 3|6
- ii. True: 9|(9000-0) = 9|9000
- iii. False: 7∤(13-44) = 7∤-31
- iv. True: 5|(707+58) = 5|765

- (i) -3 **=** 3 (mod 3)
- (ii) 0 **≡** 9000 (mod 9)
- (iii) 44 **=** 13 (mod 7)
- (iv) -58 **=** 707 (mod 5)
- (v) 58 **=** 707 (mod 5)

- i. True: 3|(3+3) = 3|6
- ii. True: 9|(9000-0) = 9|9000
- iii. False: 7∤(13-44) = 7∤-31
- iv. True: 5|(707+58) = 5|765
- v. False: 5|(707-58) = 5∤649

Proving Divisibility

"Unwrapping" This expression is generally easier to deal with $a \equiv b \pmod{n} \quad (b-a) \quad (b-a) = n * k$ Equivalence in modular arithmetic Let $a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z}$ and n > 0. We say $x \mid y ("x \text{ divides } y")$ iff

there is an integer *z* such that xz = y.

We say $a \equiv b \pmod{n}$ if and only if n | (b - a)

Problem 2: Division of Labor

In this problem, we will use the predicate "Divides", defined by $Divides(x, y) := \exists k (y = k \cdot x)$. We can use this definition via these two rules:

Def of Divides	Undef Divides
	$\exists k (y = k \cdot x)$ $\therefore \text{ Divides}(x, y)$

Note that, in math, we write Divides(x, y) with the nicer notation " $x \mid y$ ".

Let domain of discourse be the integers. Consider the following claim: $\forall a \forall b((b \mid a) \rightarrow (b^2 \mid a^3))$. In English, this says that if an integer b divides an integer a, then the square of b will divide the cube of a.

 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Problem 2 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

We can verify this:

Problem 2 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

We can verify this: 3 | 9 so

Problem 2 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

We can verify this: 3 | 9 so 3^2 | 9^3 = 9 | 729

Problem 2 $\forall a \forall b((b \mid a) \rightarrow (b^2 \mid a^3))$

We can verify this: 3 | 9 so 3² | 9³ = 9 | 729 We know: 729/9 = 81

Cool!

Problem 2 $\forall a \forall b((b \mid a) \rightarrow (b^2 \mid a^3))$

Attempt proving this with a formal proof!

 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

Let's get started!

1. $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Intro ∀

 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

Let's get started!

We can use intro forall twice (though we will state it just once)

1. $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

1.1.1. $(b \mid a)$

Assumption

Now we just unroll definitions...

$$b^{2} \mid a^{3}$$

$$1.1. \quad (b \mid a) \rightarrow (b^{2} \mid a^{3})$$

$$1. \quad \forall a \forall b ((b \mid a) \rightarrow (b^{2} \mid a^{3}))$$

Direct Proof

$$\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$$

Let a, b be arbitrary.

1.1.1. $(b \mid a)$ Assumption1.1.2. $\exists k(a = kb)$ Def of Divides: 1.1.1

$$b^{2} \mid a^{3}$$

$$1.1. \quad (b \mid a) \rightarrow (b^{2} \mid a^{3})$$

$$\downarrow a \forall b ((b \mid a) \rightarrow (b^{2} \mid a^{3}))$$

Direct Proof

 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

 1.1.1.
 $(b \mid a)$ Assumption

 1.1.2.
 $\exists k(a = kb)$ Def of Divides: 1.1.1

 1.1.3.
 a = jb Elim \exists : 1.1.2

$$b^{2} \mid a^{3}$$

$$1.1. \quad (b \mid a) \rightarrow (b^{2} \mid a^{3})$$

$$1. \quad \forall a \forall b ((b \mid a) \rightarrow (b^{2} \mid a^{3}))$$

Direct Proof
$\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

1.1.1. $(b \mid a)$ Assumption1.1.2. $\exists k(a = kb)$ Def of Divides: 1.1.11.1.3.a = jbElim \exists : 1.1.21.1.4. $a^3 = (jb)^3$ Algebra: 1.1.3

$$b^{2} \mid a^{3}$$

$$1.1. \quad (b \mid a) \rightarrow (b^{2} \mid a^{3})$$

$$\downarrow a \forall b ((b \mid a) \rightarrow (b^{2} \mid a^{3}))$$

Direct Proof

Intro \forall

 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

1.1.1. $(b \mid a)$ Assumption1.1.2. $\exists k(a = kb)$ Def of Divides: 1.1.11.1.3.a = jbElim \exists : 1.1.21.1.4. $a^3 = (jb)^3$ Algebra: 1.1.3

...I am not sure where to go... lets work a step backward!

$$b^{2} \mid a^{3}$$

$$1.1. \quad (b \mid a) \rightarrow (b^{2} \mid a^{3})$$

$$1. \quad \forall a \forall b ((b \mid a) \rightarrow (b^{2} \mid a^{3}))$$

Direct Proof

Intro ∀

 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

1.1.1. $(b \mid a)$ Assumption 1.1.2. $\exists k(a = kb)$ Def of Divides: 1.1.1 1.1.3. a = jbElim ∃: 1.1.2 1.1.4. $a^3 = (jb)^3$ Algebra: 1.1.3 Since k is an integer, what if it became (bj^3) ? $\exists k(a^3 = kb^2)$ $b^2 \mid a^3$ Undef of Divides: 1.1.6 1.1. $(b \mid a) \rightarrow (b^2 \mid a^3)$ Direct Proof 1. $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$ Intro ∀

 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

	1.1.1.	$(b \mid a)$	Assumption		
	1.1.2.	$\exists k(a=kb)$	Def of Divides: 1.1.1		
	1.1.3.	a = jb	Elim ∃: 1.1.2	Nice! Now	viust fill in the
	1.1.4.	$a^3 = (jb)^3$	Algebra: 1.1.3	remaining	definitions
	1.1.5.	$a^3 = (bj^3)b^2$	Algebra : 1.1.4		
		$\exists k(a^3 = kb^2)$			
		$b^2 \mid a^3$	Undef of Divides: 1.1.6		
	1.1. $(b \mid a)$ -	$\rightarrow (b^2 \mid a^3)$		Direct Proof	
1.	$orall a orall b \left((b \mid a) \cdot b \right)$	$\rightarrow (b^2 \mid a^3) \big)$			Intro \forall

1.

 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

	1.1.1.	$(b \mid a)$	Assumption		
	1.1.2.	$\exists k(a=kb)$	Def of Divides: 1.1.1		
	1.1.3.	a = jb	Elim ∃: 1.1.2		
	1.1.4.	$a^3 = (jb)^3$	Algebra: 1.1.3		
	1.1.5.	$a^3 = (bj^3)b^2$	Algebra : 1.1.4		
	1.1.6.	$\exists k(a^3 = kb^2)$	Intro ∃: 1.1.5		
	1.1.7.	$b^2 \mid a^3$	Undef of Divides: 1.1.6		
1.1.	$(b \mid a)$	$\rightarrow (b^2 \mid a^3)$		Direct Proof	
$\forall a \forall b$	$((b \mid a)$	$\rightarrow (b^2 \mid a^3) \big)$			Intro \forall

English Proofs

Writing a Proof (symbolically or in English)

- Don't just jump right in!
- 1. Look at the **claim**, and make sure you know:
 - \circ $\,$ What every word in the claim means
 - What the claim as a whole means
- 2. Translate the claim in predicate logic.
- 3. Next, write down the **Proof Skeleton**:
 - Where to start

0

• What your **target** is

4. Then once you know what claim you are proving and your starting point and ending point, you can finally write the proof!

Helpful Tips for English Proofs

- Start by introducing your assumptions
 - Introduce variables with "let"
 - "Let *x* be an arbitrary prime number..."
 - Introduce assumptions with "suppose"
 - "Suppose that $y \in A \land y \notin B...$ "
- When you supply a value for an existence proof, use "Consider"
 - "Consider x = 2..."
- **ALWAYS** state what type your variable is (integer, set, etc.)
- Universal Quantifier means variable must be arbitrary
- Existential Quantifier means variable can be specific

Translating to English...

Let's use the skeleton of the formal proof to help us:

Let a, b be a	rbitrary.	
1.1.1.	$(b \mid a)$	Assumption
1.1.2.	$\exists k(a=kb)$	Def of Divides: 1.1.1
1.1.3.	a = jb	Elim ∃: 1.1.2
1.1.4.	$a^3 = (jb)^3$	Algebra: 1.1.3
1.1.5.	$a^3 = (bj^3)b^2$	Algebra : 1.1.4
1.1.6.	$\exists k(a^3 = kb^2)$	Intro ∃: 1.1.5
1.1.7.	$b^2 \mid a^3$	Undef of Divides: 1.1.6
1.1. $(b \mid a)$	$\rightarrow (b^2 \mid a^3)$	
$\forall a \forall b ((b \mid a))$	$\rightarrow (b^2 \mid a^3))$	

1.

Translating to English...

Let a and b be arbitrary integers

Let a, b be arbitrary.			
	1.1.1.	$(b \mid a)$	Assumption
	1.1.2.	$\exists k(a=kb)$	Def of Divides: 1.1.1
	1.1.3.	a = jb	Elim ∃: 1.1.2
	1.1.4.	$a^3 = (jb)^3$	Algebra: 1.1.3
	1.1.5.	$a^3 = (bj^3)b^2$	Algebra : 1.1.4
	1.1.6.	$\exists k(a^3 = kb^2)$	Intro ∃: 1.1.5
	1.1.7.	$b^2 \mid a^3$	Undef of Divides: 1.1.6
1.1.	$(b \mid a)$	$\rightarrow (b^2 \mid a^3)$	
$\forall a \forall b \left((b \mid a) \to (b^2 \mid a^3) \right)$			
	Ô.		

As a and b were arbitrary, our claim holds

1.

Translating to English...

Let a and b be arbitrary integers

Suppose that a | b

As a and b were arbitrary, our claim holds

Let a, b be arbitrary.

1.

1.1
1.1.6

Translating to English...

Let a and b be arbitrary integers

Suppose that a | b

By the def of divides, we have for some integer j, a = jb 1.1.2. $\exists k(a = kb)$

As a and b were arbitrary, our claim holds

1.1.6. $\exists k(a^3 = kb^2)$ 1.1.7. $b^2 \mid a^3$ 1.1. $(b \mid a) \rightarrow (b^2 \mid a^3)$ 1. $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

1.1.3.

1.1.1. $(b \mid a)$

a = jb

1.1.4. $a^3 = (jb)^3$

1.1.5. $a^3 = (bj^3)b^2$

Assumption Def of Divides: 1.1.1 Elim ∃: 1.1.2 Algebra: 1.1.3 Algebra : 1.1.4 Intro ∃: 1.1.5 Undef of Divides: 1.1.6

Translating to English...

Let a and b be arbitrary integers

Suppose that a | b

By the def of divides, we have for some integer j, a = jb

Cubing both sides, we have that $a^3 = (jb)^3$ Factoring bj³, we see that $a^3 = (bj^3)b^2$

As a and b were arbitrary, our claim holds

1.1.6. $\exists k(a^3 = kb^2)$ Int 1.1.7. $b^2 \mid a^3$ Un 1.1. $(b \mid a) \rightarrow (b^2 \mid a^3)$ 1. $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Let a, b be arbitrary.

1.1.1. $(b \mid a)$ Assumption1.1.2. $\exists k(a = kb)$ Def of Divides: 1.1.11.1.3.a = jbElim \exists : 1.1.21.1.4. $a^3 = (jb)^3$ Algebra: 1.1.31.1.5. $a^3 = (bj^3)b^2$ Algebra : 1.1.41.1.6. $\exists k(a^3 = kb^2)$ Intro \exists : 1.1.51.1.7. $b^2 \mid a^3$ Undef of Divides: 1.1.6

Translating to English...

Let a and b be arbitrary integers

Suppose that a | b

By the def of divides, we have for some integer j, a = jb

Cubing both sides, we have that $a^3 = (jb)^3$ Factoring bj^3 , we see that $a^3 = (bj^3)b^2$

As integers are closed under multiplication, we have that (bj^3) is an integer So for **some** integer k, $a^3 = k b^2$

1.

Let
$$a, b$$
 be arbitrary.
1.1.1. $(b \mid a)$ Assumption
 $= jb$ 1.1.2. $\exists k(a = kb)$ Def of Divides: 1.1.1
1.1.3. $a = jb$ Elim \exists : 1.1.2
1.1.4. $a^3 = (jb)^3$ Algebra: 1.1.3
1.1.5. $a^3 = (bj^3)b^2$ Algebra : 1.1.4
1.1.6. $\exists k(a^3 = kb^2)$ Intro \exists : 1.1.5
1.1.7. $b^2 \mid a^3$ Undef of Divides: 1.1.6
1.1. $(b \mid a) \rightarrow (b^2 \mid a^3)$
 $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

As a and b were arbitrary, our claim holds

Translating to English...

Let a and b be arbitrary integers

Suppose that a | b

By the def of divides, we have for some integer j, a = jb

Cubing both sides, we have that $a^3 = (jb)^3$ Factoring bj^3 , we see that $a^3 = (bj^3)b^2$

As integers are closed under multiplication, we have that (bj^3) is an integer So for some integer k, $a^3 = k b^2$

By the definition of divides, $b^2 | a^3$

As a and b were arbitrary, our claim holds

Let a, b be arbitrary. 1.1.1. $(b \mid a)$ Assumption 1.1.2. $\exists k(a = kb)$ Def of Divides: 1.1.1 1.1.3. a = jbElim 3: 1.1.2 1.1.4. $a^3 = (jb)^3$ Algebra: 1.1.3 1.1.5. $a^3 = (bj^3)b^2$ Algebra : 1.1.4 1.1.6. $\exists k(a^3 = kb^2)$ Intro ∃: 1.1.5 1.1.7. $b^2 \mid a^3$ Undef of Divides: 1.1.6 $(b \mid a) \rightarrow (b^2 \mid a^3)$ 1.1. 1. $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Translating to English...

Let a and b be arbitrary integers

Suppose that a | b

By the def of divides, we have for some integer j, a = jb

Cubing both sides, we have that $a^3 = (jb)^3$ Factoring bj^3 , we see that $a^3 = (bj^3)b^2$

As integers are closed under multiplication, we have that (bj^3) is an integer So for some integer k, $a^3 = k b^2$

By the definition of divides, $b^2 | a^3$

As a and b were arbitrary, our claim holds

Let a, b be arbitrary. 1.1.1. $(b \mid a)$ Assumption 1.1.2. $\exists k(a = kb)$ Def of Divides: 1.1.1 1.1.3. a = jbElim ∃: 1.1.2 1.1.4. $a^3 = (jb)^3$ Algebra: 1.1.3 1.1.5. $a^3 = (bj^3)b^2$ Algebra : 1.1.4 1.1.6. $\exists k(a^3 = kb^2)$ Intro ∃: 1.1.5 1.1.7. $b^2 \mid a^3$ Undef of Divides: 1.1.6 1.1. $(b \mid a) \rightarrow (b^2 \mid a^3)$ 1. $\forall a \forall b ((b \mid a) \rightarrow (b^2 \mid a^3))$

Translating to English...

Let a and b be arbitrary integers

Suppose that a | b

By the def of divides, we have for some integer j, a = jb

Cubing both sides, we have that $a^3 = (jb)^3$ Factoring bj^3 , we see that $a^3 = (bj^3)b^2$

As integers are closed under multiplication, we have that (bj^3) is an integer So for some integer k, $a^3 = k b^2$

By the definition of divides, $b^2 | a^3$

As a and b were arbitrary, our claim holds

a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.

1. $x \equiv_7 y$ Given

- a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.
 - 1. $x \equiv_7 y$ Given2. $7 \mid x y$ Def of Congruent: 1

- a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.
 - 1. $x \equiv_7 y$ Given2. $7 \mid x y$ Def of Congruent: 13. $\exists k, x y = k7$ Def of Divides: 2

- a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.
 - 1. $x \equiv_7 y$ Given2. $7 \mid x y$ Def of Congruent: 13. $\exists k, x y = k7$ Def of Divides: 24. x y = k7Elim $\exists: 3$

lets work a few steps back as well!

- a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.
 - 1. $x \equiv_7 y$ Given2. $7 \mid x y$ Def of Congruent: 13. $\exists k, x y = k7$ Def of Divides: 24. x y = k7Elim $\exists: 3$

lets work a few steps back as well!

 $7 \mid y - x$ $y \equiv_7 x$ Undef Congruent: 7

a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.

1.	$x \equiv_7 y$	Given	
2.	$7 \mid x-y$	Def of Congruent: 1	
3.	$\existsk,x-y=k7$	Def of Divides: 2	
4.	x - y = k 7	Elim ∃: 3	lets work a few steps back as well!
	$\existsk,y-x=k7$		
	$7 \mid y-x$	Undef Divides: 6	
	$y\equiv_7 x$	Undef Congruent: 7	

a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.

1.	$x\equiv_7 y$	Given	
2.	$7 \mid x-y$	Def of Congruent: 1	
3.	$\existsk,x-y=k7$	Def of Divides: 2	
4.	x - y = k 7	Elim ∃: 3	This gap looks easier to
	y - x = (-k) 7	Algebra: 4	close!
	$\existsk,y-x=k7$	Intro ∃: 5	
	$7 \mid y-x$	Undef Divides: 6	
	$y\equiv_7 x$	Undef Congruent: 7	

a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.

1.	$x\equiv_7 y$	Given
2.	$7 \mid x-y$	Def of Congruent: 1
3.	$\existsk,x-y=k7$	Def of Divides: 2
4.	x - y = k 7	Elim ∃: 3
5.	$y-x=\left(-k ight) 7$	Algebra: 4
6.	$\existsk,y-x=k7$	Intro ∃: 5
7.	$7 \mid y-x$	Undef Divides: 6
8.	$y \equiv_7 x$	Undef Congruent: 7

Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.

Now for the english proof!

$x \equiv_7 y$	Given
$7 \mid x-y$	Def of Congruent:
$\existsk,x-y=k7$	Def of Divides: 2
x - y = k 7	Elim ∃: 3
y - x = (-k) 7	Algebra: 4
$\existsk,y-x=k7$	Intro ∃: 5
$7 \mid y-x$	Undef Divides: 6
$y \equiv_7 x$	Undef Congruent:

a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.

Let x, y be arbitrary integers. Suppose that $x \equiv y \pmod{7}$.

More implicit than before!

Given
Def of Congruent
Def of Divides: 2
Elim ∃: 3
Algebra: 4
Intro ∃: 5
Undef Divides: 6
Undef Congruent:

a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.

Let x, y be arbitrary integers.		
Suppose that $x \equiv y \pmod{7}$.	$x \equiv_7 y$	Given
Py definition of congruence we get that 7 by	$\fbox{7} x-y$	Def of Congruent
By demnition of congruence, we get that 7 x - y	$\exists k, x - y = k 7$	Def of Divides: 2
	x - y = k 7	Elim ∃: 3
	y - x = (-k) 7	Algebra: 4
	$\existsk,y-x=k7$	Intro ∃: 5
	$7 \mid y-x$	Undef Divides: 6
	$y \equiv_7 x$	Undef Congruent:

- a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.
- Let x, y be arbitrary integers. Suppose that $x \equiv y \pmod{7}$. By definition of congruence, we get that $7 \mid x - y$ By the definition of divides is 7k = x - y for some integer k. x

$x \equiv_7 y$	Given
$7 \mid x-y$	Def of Congruent:
$\exists k, x-y = k 7$	Def of Divides: 2
x - y = k 7	Elim ∃: 3
y - x = (-k) 7	Algebra: 4
$\existsk,y-x=k7$	Intro ∃: 5
$7 \mid y-x$	Undef Divides: 6
$y \equiv_7 x$	Undef Congruent:

- a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.
- Let x, y be arbitrary integers. Suppose that $x \equiv y \pmod{7}$.
- By definition of congruence, we get that 7 | x yBy the definition of divides is 7k = x - y for some integer k.

Multiplying both sides by -1 gives 7(-k) = y - x.

$$x \equiv_7 y$$
Given $7 \mid x - y$ Def of Congruent: $\exists k, x - y = k7$ Def of Divides: 2 $x - y = k7$ Elim \exists : 3 $y - x = (-k)7$ Algebra: 4 $\exists k, y - x = k7$ Intro \exists : 5 $7 \mid y - x$ Undef Divides: 6 $y \equiv_7 x$ Undef Congruent:

a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.

Let x, y be arbitrary integers. Suppose that $x \equiv y \pmod{7}$.

By definition of congruence, we get that 7 | x - yBy the definition of divides is 7k = x - y for some integer k.

Multiplying both sides by -1 gives 7(-k) = y - x.

Since (-k) is an integer, by the definition of divides, 7 | y - x holds

$x \equiv_7 y$	Given
$7 \mid x-y$	Def of Congruent:
$\existsk,x-y=k7$	Def of Divides: 2
x - y = k 7	Elim ∃: 3
y - x = (-k) 7	Algebra: 4
$\existsk,y-x=k7$	Intro ∃: 5
$7 \mid y-x$	Undef Divides: 6
$y \equiv_7 x$	Undef Congruent:

- a) Write a formal proof in cozy of the following claim: if $x \equiv_7 y$, then $y \equiv_7 x$.
- Let x, y be arbitrary integers. Suppose that $x \equiv y \pmod{7}$.

By definition of congruence, we get that 7 | x - yBy the definition of divides is 7k = x - y for some integer k.

Multiplying both sides by -1 gives 7(-k) = y - x.

Since (-k) is an integer, by the definition of divides, 7 | y - x holds

By the definition of Congruence, $y \equiv x \pmod{7}$. Since x and y were arbitrary, the claim holds

$x \equiv_7 y$	Given		
$7 \mid x-y$	Def of Congruent:		
$\existsk,x-y=k7$	Def of Divides: 2		
x - y = k 7	Elim ∃: 3		
y - x = (-k) 7	Algebra: 4		
$\exists k, y-x = k 7$	Intro ∃: 5		
$7 \mid y-x$	Undef Divides: 6		
$y \equiv_7 x$	Undef Congruent:		

Problem 4:

In this problem, we will use the theorem "DivideEqn". It says that, if you have the equation ca = cb and you know that $c \neq 0$, then you can divide both sides of the equation by c to get a = b. We can use this theorem in a formal proof via these two rules:

Cite DivideEqn

$$\therefore \quad \forall a \,\forall b \,\forall c \,((ca = cb \land \neg (c = 0)) \to a = b)$$

Apply DivideEqn
$$ca = cb \land \neg (c = 0)$$
 $\therefore a = b$

In this problem, we will use the theorem "DivideEqn". It says that, if you have the equation ca = cb and you know that $c \neq 0$, then you can divide both sides of the equation by c to get a = b. We can use this theorem in a formal proof via these two rules:

$$\forall a \,\forall b \,\forall m \, (5a \equiv_{5m} 5b \to a \equiv_m b)$$

 $\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

- 1. $\neg(5=0)$
- 2. $\forall a, \forall b, \forall c, ca = cb \land \neg(c = 0) \rightarrow a = b$

Let a, b, and m be arbitrary.

Given Cite DivideEqn

 $\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.
$$\neg(5=0)$$

2. $\forall a, \forall b, \forall c, c a = c b \land \neg (c = 0) \rightarrow a = b$

Let a, b, and m be arbitrary.

3.1.1. $5 a \equiv_{5m} 5 b$

Given Cite DivideEqn

Assumption

3.1. $5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$ $\forall a, \forall b, \forall m, 5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$

 $\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.
$$\neg (5 = 0)$$

2. $\forall a, \forall b, \forall c, ca = cb \land \neg (c = 0) \rightarrow a =$
Let $a, b, and m$ be arbitrary.
3.1.1. $5a \equiv_{5m} 5b$
3.1.2. $5m \mid 5a - 5b$

 \boldsymbol{b}

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1

 $\begin{array}{lll} 3.1. & 5\,a \equiv_{5\,m} 5\,b \rightarrow a \equiv_m b \\ \forall\,a,\forall\,b,\forall\,m,5\,a \equiv_{5\,m} 5\,b \rightarrow a \equiv_m b \end{array}$

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.	$\neg(5=0)$	
2.	$\forall a, \forall b, \forall c, c a$	$= c b \land \neg (c = 0) \to a = b$
	Let a , b ,	and m be arbitrary.
	3.1.1.	$5 a \equiv_{5m} 5 b$
	3.1.2.	$5 m \mid 5 a - 5 b$
	3.1.3.	$\exists k,5a-5b=k5m$

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2

 $\begin{array}{lll} 3.1. & 5\,a \equiv_{5\,m} 5\,b \rightarrow a \equiv_m b \\ \forall\,a,\forall\,b,\forall\,m,5\,a \equiv_{5\,m} 5\,b \rightarrow a \equiv_m b \end{array}$

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.	$\neg(5=0)$
2.	$\foralla,\forallb,\forallc,ca=cb\wedge\neg(c=0)\rightarrow a=b$
	Let a , b , and m be arbitrary.
	3.1.1. $5 a \equiv_{5m} 5 b$
	3.1.2. $5m \mid 5a-5b$
	3.1.3. $\exists k, 5a-5b = k5m$
	3.1.4. $5a - 5b = i5m$
2.	$\forall a, \forall b, \forall c, ca = cb \land \neg (c = 0) \rightarrow a = b$ Let a, b, and m be arbitrary. 3.1.1. $5a \equiv_{5m} 5b$ 3.1.2. $5m \mid 5a - 5b$ 3.1.3. $\exists k, 5a - 5b = k5m$ 3.1.4. $5a - 5b = i5m$

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2 Elim ∃: 3.1.3

3.1. $5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$ $\forall a, \forall b, \forall m, 5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

$\neg(5=0)$	
$\forall a, \forall b, \forall c, c a$	$= c b \land \neg (c = 0) \to a = b$
Let a , b ,	and m be arbitrary.
3.1.1.	$5 a \equiv_{5 m} 5 b$
3.1.2.	$5m \mid 5a - 5b$
3.1.3.	$\exists k,5a-5b=k5m$
3.1.4.	5 a - 5 b = i 5 m
	abla(5 = 0) $\forall a, \forall b, \forall c, c a$ Let a, b, 3.1.1. 3.1.2. 3.1.3. 3.1.4.

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2 Elim ∃: 3.1.3

Now we work back a bit...

3.1. $5a \equiv_{5m} 5b \rightarrow a \equiv_m b$ $\forall a, \forall b, \forall m, 5a \equiv_{5m} 5b \rightarrow a \equiv_m b$

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.	$\neg(5=0)$	
2.	$\forall a, \forall b, \forall c, c a$	$a = c b \land \neg (c = 0) \to a = b$
	Let a , b	, and m be arbitrary.
	3.1.1.	$5 a \equiv_{5m} 5 b$
	3.1.2.	$5m \mid 5a-5b$
	3.1.3.	$\existsk,5a-5b=k5m$
	3.1.4.	5 a - 5 b = i 5 m

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2Elim $\exists: 3.1.3$

$$a \equiv_m b$$

3.1. $5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$
 $\forall a, \forall b, \forall m, 5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.	$\neg(5=0)$	
2.	$\forall a, \forall b, \forall c, c a$	$a = c b \land \neg (c = 0) \to a = b$
	Let a , b ,	, and m be arbitrary.
	3.1.1.	$5 a \equiv_{5m} 5 b$
	3.1.2.	$5m \mid 5a - 5b$
	3.1.3.	$\existsk,5a-5b=k5m$
	3.1.4.	5 a - 5 b = i 5 m

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2Elim $\exists: 3.1.3$

$$\begin{array}{c|c} m & a - b \\ a \equiv_m b \end{array}$$
3.1.
$$5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$$

$$\forall a, \forall b, \forall m, 5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$$

Undef Congruent: Direct Proof Intro ∀

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.	$\neg(5=0)$	
2.	$\forall a, \forall b, \forall c, c a$	$a=cb\wedge \neg (c=0) ightarrow a=b$
	Let a , b ,	and m be arbitrary.
	3.1.1.	$5 a \equiv_{5m} 5 b$
	3.1.2.	$5m \mid 5a-5b$
	3.1.3.	$\existsk,5a-5b=k5m$
	3.1.4.	5 a - 5 b = i 5 m

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2Elim $\exists: 3.1.3$

$$\exists k, a - b = k m$$
$$m \mid a - b$$
$$a \equiv_m b$$
$$3.1. \quad 5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$$
$$\forall a, \forall b, \forall m, 5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$$

Undef Divides: Undef Congruent: Direct Proof Intro ∀

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.	$\neg(5=0)$
2.	$\forall a, \forall b, \forall c, c a = c b \land \neg(c = 0) \rightarrow a = b$
	Let a , b , and m be arbitrary.
	3.1.1. $5 a \equiv_{5m} 5 b$
	3.1.2. $5m \mid 5a-5b$
	3.1.3. $\exists k, 5a - 5b = k5m$
	3.1.4. $5 a - 5 b = i 5 m$

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2Elim \exists : 3.1.3

$$a - b = i m$$

$$\exists k, a - b = k m$$

$$m \mid a - b$$

$$3.1.11. \quad a \equiv_m b$$

$$3.1. \quad 5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$$

$$\forall a, \forall b, \forall m, 5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$$

Intro ∃: Undef Divides: Undef Congruent: Direct Proof Intro ∀

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.	eg(5=0)	
2.	$\forall a, \forall b, \forall c, c a$	$a = c b \land \neg (c = 0) \to a = b$
	Let a , b ,	, and m be arbitrary.
	3.1.1.	$5 a \equiv_{5m} 5 b$
	3.1.2.	$5m \mid 5a - 5b$
	3.1.3.	$\existsk,5a-5b=k5m$
	3.1.4.	5 a - 5 b = i 5 m
	3.1.5.	5(a-b) = 5im

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2 Elim ∃: 3.1.3 Algebra: 3.1.4

$$a - b = i m$$

$$\exists k, a - b = k m$$

$$m \mid a - b$$

$$3.1.11. \quad a \equiv_m b$$

$$3.1. \quad 5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$$

$$\forall a, \forall b, \forall m, 5 a \equiv_{5m} 5 b \rightarrow a \equiv_m b$$

Intro ∃: Undef Divides: Undef Congruent: ↓ Direct Proof Intro ∀

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.	$\neg(5=0)$	
2.	$\forall a, \forall b, \forall c, c a$	$= c b \wedge \neg (c = 0) \to a = b$
	Let a , b ,	and m be arbitrary.
	3.1.1.	$5 a \equiv_{5m} 5 b$
	3.1.2.	$5 m \mid 5 a - 5 b$
	3.1.3.	$\exists k, 5 a - 5 b = k 5 m$
	3.1.4.	5 a - 5 b = i 5 m
	3.1.5.	5(a-b) = 5im
	3.1.6.	$5(a-b) = 5im \land \neg(5=0)$

$$a - b = im$$

$$\exists k, a - b = km$$

$$m \mid a - b$$

$$3.1.11. \quad a \equiv_m b$$

$$3.1. \quad 5a \equiv_{5m} 5b \rightarrow a \equiv_m b$$

$$\forall a, \forall b, \forall m, 5a \equiv_{5m} 5b \rightarrow a \equiv_m b$$

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2 Elim \exists : 3.1.3 Algebra: 3.1.4 Intro \land : 3.1.5, 1

Intro∃: Undef Divides: Undef Congruent: ↓ Direct Proof Intro ∀

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.	$\neg(5=0)$		
2.	$\forall a, \forall b, \forall c, c a$	$a=cb\wedge \neg (c=0) ightarrow a=b$	
	Let a , b	, and m be arbitrary.	
	3.1.1.	$5 a \equiv_{5m} 5 b$	As
	3.1.2.	$5m \mid 5a - 5b$	D
	3.1.3.	$\existsk,5a-5b=k5m$	D
	3.1.4.	5 a - 5 b = i 5 m	EI
	3.1.5.	5(a-b) = 5im	A
	3.1.6.	$5(a-b)=5im\wedge eg(5=0)$	In
	3.1.7.	$5(a-b) = 5im \land \neg(5=0) \to a-b = im$	EI
		n h inn	
		a - o = i m	
		$\exists k, a-b = k m$	
		$m \mid a-b$	
	3.1.11	$a \equiv_m b$	
	3.1. $5a \equiv$	$5m 5b \to a \equiv_m b$	
	orall a, orall b, orall m	$,5 a \equiv_{5m} 5b \to a \equiv_m b$	

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2 Elim \exists : 3.1.3 Algebra: 3.1.4 Intro \land : 3.1.5, 1 Elim \forall : 2

Intro∃: Undef Divides: Undef Congruent: ↓ Direct Proof Intro ∀

$\forall a \,\forall b \,\forall m \,(5a \equiv_{5m} 5b \to a \equiv_m b)$

1.	$\neg(5=0)$	
2.	$\forall a, \forall b, \forall c, c a = c b \land \neg(c = 0) \rightarrow a = b$	
	Let a , b , and m be arbitrary.	
	3.1.1. $5 a \equiv_{5m} 5 b$	Assum
	3.1.2. $5m \mid 5a-5b$	Def of
	3.1.3. $\exists k, 5 a - 5 b = k 5 m$	Def of
	3.1.4. $5a - 5b = i5m$	Elim ∃
	3.1.5. $5(a-b) = 5im$	Algebr
	3.1.6. $5(a-b) = 5im \land \neg(5=0)$	Intro /
	3.1.7. $5(a-b) = 5im \land \neg (5=0) \to a-b = im$	Elim ∀
	3.1.8. $a - b = im$	Mod
	$3.1.9. \exists \ k,a-b=k \ m$	Intro
	$3.1.10. m \mid a-b$	Und
	$3.1.11. a \equiv_m b$	Und
	3.1. $5a \equiv_{5m} 5b \rightarrow a \equiv_m b$	
	$\forall a, \forall b, \forall m, 5 a \equiv_{5 m} 5 b \rightarrow a \equiv_m b$	

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2 Elim \exists : 3.1.3 Algebra: 3.1.4 Intro \land : 3.1.5, 1 Elim \forall : 2

Modus Ponens: 3.1.6, 3.1.7 Intro ∃: 3.1.8 Undef Divides: 3.1.9 Undef Congruent: 3.1.10 Direct Proof Intro ∀

$\neg(5=0)$	
$\forall a, \forall b, \forall c, c a$	$a=cb\wedge \neg (c=0) ightarrow a=b$
Let a , b	, and m be arbitrary.
3.1.1.	$5 a \equiv_{5m} 5 b$
3.1.2.	$5m \mid 5a - 5b$
3.1.3.	$\existsk,5a-5b=k5m$
3.1.4.	5 a - 5 b = i 5 m
3.1.5.	5(a-b) = 5im
3.1.6.	$5(a-b) = 5im \land \neg(5=0)$
3.1.7.	$5(a-b) = 5im \land \neg(5=0) \to a-b = im$
3.1.8.	a-b=im
3.1.9.	$\exists k, a-b=k m$
3.1.10.	$m \mid a-b$
3.1.11.	$a \equiv_m b$
3.1. $5a \equiv_{5m}$	$b 5 b \rightarrow a \equiv_m b$
$\foralla,\forallb,\forallm,5$	$a \equiv_{5m} 5b \to a \equiv_m b$
	$\neg (5 = 0) \forall a, \forall b, \forall c, c a Let a, b 3.1.1.3.1.2.3.1.3.3.1.4.3.1.5.3.1.6.3.1.7.3.1.8.3.1.9.3.1.10.3.1.11.3.1. 5 a \equiv_{5m}\forall a, \forall b, \forall m, 5$

Given Cite DivideEqn

Assumption Def of Congruent: 3.1.1 Def of Divides: 3.1.2 Elim ∃: 3.1.3 Algebra: 3.1.4 Intro A: 3.1.5, 1 Elim ∀: 2 Modus Ponens: 3.1.6, 3.1.7 Intro ∃: 3.1.8 Undef Divides: 3.1.9 Undef Congruent: 3.1.10 Direct Proof Intro ∀

English proof for reference...

Let a, b, and m be arbitrary integers.

Suppose that $5a \equiv_{5m} 5b$. This tells us, by definition of congruence, that 5m | 5a - 5b, which means that 5a - 5b = i(5m) for some integer *i*, by definition of divides. We can rewrite that equivalently as 5(a-b) = 5(im). Using this and the fact that $5 \neq 0$, we can apply DivideEqn to get that a - b = im, which tells us that m | a - b, by the definition of divides, and the latter tells us that $a \equiv_m b$, by the definition of congruence.

Since a, b, and m were arbitrary, we proven the claim.

That's All Folks

Written by Aruna & Zareef