CSE 311 Section 3

Administrivia & Introductions

Announcements & Reminders

- HW1 out
 - If you think something was graded incorrectly, submit a regrade request!
 - Regrades generally will be open for a week
- HW2 was due yesterday 4/17 on Gradescope
 - Use a late day if you need to!
 - Gradescope: Make sure you <u>select the pages for each question correctly</u>
 - !! Selecting the pages after the deadline won't mark it as late
- HW3
 - Due Wednesday 4/24 @ 11:00pm

Formal Proofs!

Rules to Remember

Rules to Remember

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

Lets get setup:

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

Lets get setup:

1.	$a \rightarrow b$	Given
2.	$c \rightarrow b$	Given
3.	$a \lor (c \land d)$	Given

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

Initial observation:

1.
$$a \rightarrow b$$
Given2. $c \rightarrow b$ Given3. $a \lor (c \land d)$ Given

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

Initial observation: if we get <u>a or c</u>, then can get to b

1.
$$a \rightarrow b$$
Given2. $c \rightarrow b$ Given3. $a \lor (c \land d)$ Given

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

We can work a step back!

1.
$$a \rightarrow b$$
Given2. $c \rightarrow b$ Given3. $a \lor (c \land d)$ Given

$$\begin{array}{c} (a \lor c) \\ b \end{array}$$

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

What is this called?

1.
$$a \rightarrow b$$
Given2. $c \rightarrow b$ Given3. $a \lor (c \land d)$ Given

$$\begin{array}{c} (a \lor c) \\ b \end{array}$$

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

What is this called?

1.
$$a \rightarrow b$$
Given2. $c \rightarrow b$ Given3. $a \lor (c \land d)$ Given

$$\begin{array}{c} (a \lor c) \\ b \end{array}$$

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

How can we get

1.
$$a \rightarrow b$$
Given2. $c \rightarrow b$ Given3. $a \lor (c \land d)$ Given

$$\begin{array}{c} (a \lor c) \\ b \end{array}$$

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

Distributivity!

1.
$$a \rightarrow b$$
Given2. $c \rightarrow b$ Given3. $a \lor (c \land d)$ Given4. $(a \lor c) \land (a \lor d)$ Distributivity: 35. $(a \lor c)$ Cases: × 1, 2

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

What's missing?

1.
$$a \rightarrow b$$
Given2. $c \rightarrow b$ Given3. $a \lor (c \land d)$ Given4. $(a \lor c) \land (a \lor d)$ Distributivity: 35. $(a \lor c)$ Cases: × 1, 2

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

We did it!

1.
$$a \rightarrow b$$
Given2. $c \rightarrow b$ Given3. $a \lor (c \land d)$ Given4. $(a \lor c) \land (a \lor d)$ Distributivity: 35. $(a \lor c)$ Elim \land : 46. b Cases: 5, 1, 2

Given $(a \rightarrow b)$, $(c \rightarrow b)$, $a \lor (c \land d)$, show that b holds.

1.	$a \rightarrow b$	Given
2.	$c \rightarrow b$	Given
3.	$a \lor (c \land d)$	Given
4.	$(a \lor c) \land (a \lor d)$	Distributivity: 3
5.	$(a \lor c)$	Elim A: 4
6.	b	Cases: 5, 1, 2

Direct Proofs!

Direct Proof

 $A \Longrightarrow B$

 $\therefore A \rightarrow B$

Introduce an assumption like a new variable when you are conducting an experiment...

You will typically need this new assumption because your Givens alone are not sufficient

Problem 3b

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

Just the setup:

1.
$$p \lor \neg q$$
[Given]2. $(r \lor s) \rightarrow (q \lor s)$ [Given]3. $\neg s$ [Given]

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

How do we conclude if r then p?

r does not exist alone...

(2) contains r but we <u>cannot</u> elim or here...

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

How do we conclude if r then p?

r does not exist alone...

Could we assume r?

1.
$$p \lor \neg q$$
[Given]2. $(r \lor s) \rightarrow (q \lor s)$ [Given]3. $\neg s$ [Given]

$$r \rightarrow p$$

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

How do we conclude if r then p?

1. $p \lor \neg q$ [Given]2. $(r \lor s) \rightarrow (q \lor s)$ [Given]3. $\neg s$ [Given]

r does not exist alone...

Could we assume **r**? Yes! Let's use **direct proof rule**!

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

How do we conclude p?

1.
$$p \lor \neg q$$
[Given]2. $(r \lor s) \rightarrow (q \lor s)$ [Given]3. $\neg s$ [Given]4.1. r [Assumption]

$$\begin{array}{c} 4 \\ \hline p \\ \hline p \\ \hline \end{array}$$

[Direct Proof Rule]

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

How do we conclude p?

Since we have r, can we use line 2?

[Given] 1. $p \lor \neg q$ 2. $(r \lor s) \to (q \lor s)$ [Given] [Given] $\neg s$ r[Assumption] 4.1.

[Direct Proof Rule]

$$\begin{array}{c} 4 \\ \hline p \\ \hline p \\ \hline \end{array}$$

3.

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

1.

3.

How do we conclude p?

Since we have r. can we use line 2? Almost! Let's create the left hand side of line 2

[Given] $p \lor \neg q$ 2. $(r \lor s) \to (q \lor s)$ [Given] [Given] $\neg s$ 4.1. [Assumption] r4.2. $r \lor s$ [\lor intro, 4.1]

4 |p|

Direct Proof Rule

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

How do we conclude p?

Next: Modus Ponens!

1.
$$p \lor \neg q$$
[Given]2. $(r \lor s) \rightarrow (q \lor s)$ [Given]3. $\neg s$ [Given]4.1. r [Assumption]4.2. $r \lor s$ [\lor intro, 4.1]

 $\begin{array}{c} 4 \\ \hline p \\ \hline \end{array}$

[Direct Proof Rule]

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

How do we conclude p?

Next: Modus Ponens!

[Given] 1. $p \vee \neg q$ $(r \lor s) \to (q \lor s)$ 2. [Given] [Given] 3. $\neg s$ [Assumption] 4.1. r4.2. $r \lor s$ [\lor intro, 4.1] $q \lor s$ [MP 4.2, 2] 4.3. 4 |p|[Direct Proof Rule]

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

How do we conclude p ?

We should use **q** to get to **p**... How can we get **q** alone?

[Given] 1. $p \lor \neg q$ 2. $(r \lor s) \rightarrow (q \lor s)$ [Given] [Given] 3. $\neg s$ 4.1. r [Assumption] 4.2. $r \lor s$ [\lor intro, 4.1] $q \lor s$ [MP 4.2, 2] 4.3. p[∨elim, 4.5, 1] 4 Direct Proof Rule

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

How do we conclude p?

We should use **q** to get to **p**...

use elim or!

[Given] 1. $p \lor \neg q$ 2. $(r \lor s) \rightarrow (q \lor s)$ [Given] [Given] 3. $\neg s$ 4.1. [Assumption] r4.2. $r \lor s$ [\lor intro, 4.1] 4.3. $q \lor s$ [MP 4.2, 2] $q \quad [\lor elim, 4.3, 3]$ 4.4. 4 |p|

[Direct Proof Rule]

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

1.

2.

3.

How do we conclude p?

We should use **q** to get to **p**...

use double negation!

$p \lor \neg q$			[Given]
$(r \lor s)$	$\rightarrow (q \lor$	s)	[Given]
$\neg s$			[Given]
4.1.	r	[Assumption]	
4.2.	$r \lor s$	$[\lor$ intro, 4.1]	
4.3.	$q \lor s$	[MP 4.2, 2]	
4.4.	\overline{q}	[velim, 4.3, 3]	
4.5.	$\neg \neg q$	[equivalent, 4.4]	
4	[p]		
$r \rightarrow p$			[Direct Proof Rule]

Show that $r \to p$ follows from $p \lor \neg q$, $(r \lor s) \to (q \lor s)$, and $\neg s$.

1.

2.

3.

How do we conclude p?

We should use **q** to get to **p**...

now we can use line 1!

$egin{array}{c} p \lor eg q \ (r \lor s) \end{array}$	$\rightarrow (q \lor$	s)	[Given] [Given]
$\neg s$		[A	[Given]
4.1.	r	[Assumption]	
4.2.	$r \lor s$	[vintro, 4.1]	
4.3.	$\boxed{q \lor s}$	[MP 4.2, 2]	
4.4.	\overline{q}	[∨elim, 4.3, 3]	
4.5.	$\neg \neg q$	[equivalent, 4.4]	
4.6.	[p]	[∨elim, 4.5, 1]	
$r \rightarrow p$			[Direct Proof Rule]

1.	$p \lor \neg q$			[Given]
2.	$(r \lor s)$	$\rightarrow (q \lor$	(s)	[Given]
3.	$\neg s$			[Given]
	4.1.	r	[Assumption]	
	4.2.	$r \lor s$	[∨intro, 4.1]	
	4.3.	$q \lor s$	[MP 4.2, 2]	
	4.4.	q	[∨elim, 4.3, 3]	
	4.5.	$\neg \neg q$	[equivalent, 4.4]	
	4.6.	p	[∨elim, 4.5, 1]	
4	$r \rightarrow n$			[Direct P

4. 1 -p [Direct Proof Rule]

Notes on Cozy:

- Video Tutorials are Linked on Course Website
- Important: If you leave Cozy open for hours on one problem, saving errors will

OCCUI (cse cookies only last for a few hours)

Spoof/Proof/Goof

Problem 4a

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Just the setup

Can we jump to $p \rightarrow q$?

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $\underline{p \rightarrow r}$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $\underline{p \rightarrow r}$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Can we jump to $p \rightarrow q$?

No! We need to use the **Definition** of Biconditional + Elim AND 1. $p \leftrightarrow r$ Given2. $(p \rightarrow r) \land (r \rightarrow p)$ Defn Biconditional: 1 $p \rightarrow r$ Elim \land : 2

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

L.	$p \leftrightarrow r$	Given
2.	$(p \to r) \land (r \to p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
	$\neg p$	Given

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

What is the reasoning behind this?

1. $p \leftrightarrow r$ Given 2. $(p \rightarrow r) \land (r \rightarrow p)$ Defn Biconditional: 1 3. $p \rightarrow r$ Elim \land : 2 4. $\neg p$ Given $\underline{\neg p \lor (p \lor r)}$

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Intro OR

1.	$p \leftrightarrow r$	Given
2.	$(p \to r) \land (r \to p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	$\neg p$	Given
	$\neg p \lor (p \lor r)$	Intro v: 4

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Can we jump to $(p \land \neg p) \rightarrow r?$

1. $p \leftrightarrow r$ Given2. $(p \rightarrow r) \land (r \rightarrow p)$ Defn Biconditional: 13. $p \rightarrow r$ Elim \land : 24. $\neg p$ Given $\neg p \lor (p \lor r)$ Intro \lor : 4

$$(p \land \neg p) \to r$$

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Can we jump to $(p \land \neg p) \rightarrow r?$

No! we need a few steps:

1. $p \leftrightarrow r$ Given2. $(p \rightarrow r) \land (r \rightarrow p)$ Defn Biconditional: 13. $p \rightarrow r$ Elim \land : 24. $\neg p$ Given $\neg p \lor (p \lor r)$ Intro \lor : 4

$$(p \land \neg p) \to r$$

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

1.

2.

3.

4.

5.

6.

Can we jump to $(p \land \neg p) \rightarrow r?$

No! we need a few steps:

Associativity

$p \leftrightarrow r$	Given
$(p \to r) \land (r \to p)$	Defn Biconditional: 1
$p \rightarrow r$	Elim A: 2
$\neg p$	Given
$ eg p \lor (p \lor r)$	Intro v: 4
$(\neg p \lor p) \lor r$	Associativity: 5

 $(p \land \neg p) \to r$

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Can we jump to $(p \land \neg p) \rightarrow r?$

No! we need a few steps:

Working a step back now...

Given
Defn Biconditional: 1
Elim A: 2
Given
Intro ∨: 4
Associativity: 5
Law of Implication:

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Can we jump to $(p \land \neg p) \rightarrow r?$

No! we need a few steps:

Looks Like Demorgan's! We need Double negation first...

1.	$p \leftrightarrow r$	Given
2.	$(p \to r) \land (r \to p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	eg p	Given
5.	$\neg p \lor (p \lor r)$	Intro ∨: 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
	$ eg (p \land \neg p) \lor r$	
	$(p \land \neg p) \to r$	Law of Implication: 9

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Can we jump to $(p \land \neg p) \rightarrow r?$

No! we need a few steps:

Now DeMorgan's!

1.	$p \leftrightarrow r$	Given
2.	$(p \to r) \land (r \to p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	eg p	Given
5.	$ eg p \lor (p \lor r)$	Intro v: 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
8.	$ eg (p \land \neg p) \lor r$	DeMorgans: 7
9.	$(p \land \neg p) \to r$	Law of Implication: 8

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

What rule is this using?

1.	$p \leftrightarrow r$	Given
2.	$(p \to r) \land (r \to p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	$\neg p$	Given
5.	$ eg p \lor (p \lor r)$	Intro v: 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
8.	$ eg (p \land \neg p) \lor r$	DeMorgans: 7
9.	$(p \land \neg p) \rightarrow r$	Law of Implication: 8
	$\neg p \rightarrow r$	

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

What rule is this using?

Elim AND?

1.	$p \leftrightarrow r$	Given
2.	$(p \to r) \land (r \to p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	$\neg p$	Given
5.	$ eg p \lor (p \lor r)$	Intro v: 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
8.	$ eg (p \land \neg p) \lor r$	DeMorgans: 7
9.	$(p \land \neg p) \rightarrow r$	Law of Implication: 8
	$\neg p \rightarrow r$	Elim A: 9

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

What rule is this using?

1.	$p \leftrightarrow r$	Given
2.	$(p \to r) \land (r \to p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	eg p	Given
5.	$ eg p \lor (p \lor r)$	Intro v: 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
8.	$ eg (p \land \neg p) \lor r$	DeMorgans: 7
9.	$(p \land \neg p) \rightarrow r$	Law of Implication: 8
	$\neg p \rightarrow r$	Elim A: 9

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

What rule is this using?

Modus Ponens!

1.	$p \leftrightarrow r$	Given
2.	$(p \to r) \land (r \to p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	$\neg p$	Given
5.	$ eg p \lor (p \lor r)$	Intro v: 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
8.	$\neg (p \land \neg p) \lor r$	DeMorgans: 7
9.	$(p \land \neg p) \rightarrow r$	Law of Implication: 8
	$_p \rightarrow r$	Elim A: 9
l1.	r	Modus Ponens: 4, 10

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

But is this proof correct?

1.	$p \leftrightarrow r$	Given
2.	$(p \to r) \land (r \to p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	$\neg p$	Given
5.	$ eg p \lor (p \lor r)$	Intro \lor : 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
8.	$ eg (p \land \neg p) \lor r$	DeMorgans: 7
9.	$(p \land \neg p) \to r$	Law of Implication: 8
10.	$\neg p \rightarrow r$	Elim ∧: 9
11.	r	Modus Ponens: 4, 10

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

Elim AND is used on a subexpression which is incorrect

1.	$p \leftrightarrow r$	Given
2.	$(p \to r) \land (r \to p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	eg p	Given
5.	$ eg p \lor (p \lor r)$	Intro v: 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
8.	$ eg (p \land \neg p) \lor r$	DeMorgans: 7
9.	$(p \land \neg p) \to r$	Law of Implication: 8
10.	$\neg p \rightarrow r$	Elim A: 9
11.	r	Modus Ponens: 4, 10

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

1

Is the conclusion correct?

1.	$p \leftrightarrow r$	Given
2.	$(p \rightarrow r) \land (r \rightarrow p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	$\neg p$	Given
5.	$ eg p \lor (p \lor r)$	Intro \lor : 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
8.	$ eg (p \land \neg p) \lor r$	DeMorgans: 7
9.	$(p \land \neg p) \to r$	Law of Implication: 8
0.	$\neg p \rightarrow r$	Elim ∧: 9
1.	r	Modus Ponens: 4, 10

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

1

Is the conclusion correct?

No! You cannot conclude r

you can only conclude **¬r** (using ¬p)

1.	$p \leftrightarrow r$	Given
2.	$(p \rightarrow r) \land (r \rightarrow p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	$\neg p$	Given
5.	$ eg p \lor (p \lor r)$	Intro \lor : 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
8.	$ eg (p \land \neg p) \lor r$	DeMorgans: 7
9.	$(p \land \neg p) \rightarrow r$	Law of Implication: 8
0.	$\neg p \rightarrow r$	Elim A: 9
1.	r	Modus Ponens: 4, 10

Proof, Goof, or Spoof: Since we are given that $p \leftrightarrow r$, we know $p \rightarrow r$. We are also given that $\neg p$ holds, so it must be the case that $\neg p \lor (p \lor r)$ holds. This claim is equivalent to $(p \land \neg p) \rightarrow r$. Since this last claim starts by assuming both p and $\neg p$, we can infer that this holds with just $\neg p$, giving us $\neg p \rightarrow r$. Since we were given that $\neg p$ holds, we get that r holds.

This is Spoof!

Counterexample:

p := false r := false ¬p := true p ↔ r := true

1.	$p \leftrightarrow r$	Given
2.	$(p \rightarrow r) \land (r \rightarrow p)$	Defn Biconditional: 1
3.	$p \rightarrow r$	Elim A: 2
4.	$\neg p$	Given
5.	$\neg p \lor (p \lor r)$	Intro v: 4
6.	$(\neg p \lor p) \lor r$	Associativity: 5
7.	$(\neg p \lor \neg \neg p) \lor r$	Double Negation: 6
8.	$ eg (p \land \neg p) \lor r$	DeMorgans: 7
9.	$(p \land \neg p) \to r$	Law of Implication: 8
10.	$\neg p \rightarrow r$	Elim A: 9
11.	r	Modus Ponens: 4, 10

Additional Time: Predicate Logic Proofs

Problem 5b

Given $\forall x \exists y (T(x) \rightarrow S(y, x))$, we wish to prove $\exists x (T(x) \rightarrow \forall y S(y, x))$.

$\forall x \exists y (T(x) \to S(y, x)) \qquad \qquad$		
2.1. $T(a)$		1
Let b be arbitrary		
$2.2.1. \exists x (T(x) \to S(b, x)) $		
$2.2.2. T(a) \rightarrow S(b,a)$		
2.2.3. $S(b,a)$		
2.2. $\forall y S(y, a)$		
$T(a) \to \forall y S(y, a) \qquad $		
$\exists x (T(x) \to \forall y S(y, x)) \qquad \qquad _$		
	$ \begin{array}{c c} \forall x \exists y \left(T(x) \rightarrow S(y, x) \right) & \underline{} \\ \hline 2.1. \ T(a) & \\ \hline 2.2.1. \ \exists x \left(T(x) \rightarrow S(b, x) \right) & \\ 2.2.2. \ T(a) \rightarrow S(b, a) & \\ 2.2.3. \ S(b, a) & \\ \hline 2.2. \ \forall y S(y, a) & \\ \hline T(a) \rightarrow \forall y S(y, a) & \\ \hline \exists x \left(T(x) \rightarrow \forall y S(y, x) \right) & \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Given $\forall x \exists y (T(x) \rightarrow S(y, x))$, we wish to prove $\exists x (T(x) \rightarrow \forall y S(y, x))$.

L.	$x \exists y (T(x) \rightarrow S(y, x))$ Given	
	2.1. T(a)	
	Let b be arbitrary	
	2.2.1. $\exists x (T(x) \rightarrow S(b, x))$	
	2.2.2. $T(a) \rightarrow S(b, a)$	
	2.2.3. $S(b,a)$	
	2.2. $\forall y S(y,a)$	
2.	$S(a) \rightarrow \forall y S(y, a)$	-
3.	$x (T(x) \rightarrow \forall y S(y, x))$ Intro $\exists: 2$	-

Given $\forall x \exists y (T(x) \rightarrow S(y, x))$, we wish to prove $\exists x (T(x) \rightarrow \forall y S(y, x))$.

$\forall x \exists y (T(x) \to S(y, x)) \qquad _$	Given
2.1. $T(a)$	Assumption
Let b be arbitrary	
$2.2.1. \exists x (T(x) \to S(b, x))$)
2.2.2. $T(a) \rightarrow S(b,a)$	
2.2.3. $S(b, a)$	
2.2. $\forall y S(y, a)$	
$T(a) \rightarrow \forall y S(y,a)$	Direct Proof: 2.2.1-2.2.3
$\exists x (T(x) \to \forall y S(y, x)) \qquad _$	Intro ∃: 2
	$ \forall x \exists y (T(x) \to S(y, x)) = $ $ 2.1. T(a) $ $ Let b be arbitrary $ $ 2.2.1. \exists x (T(x) \to S(b, x)) $ $ 2.2.2. T(a) \to S(b, a) $ $ 2.2.3. S(b, a) $ $ 2.2. \forall y S(y, a) $ $ T(a) \to \forall y S(y, a) $ $ \exists x (T(x) \to \forall y S(y, x)) $

Given $\forall x \exists y (T(x) \rightarrow S(y, x))$, we wish to prove $\exists x (T(x) \rightarrow \forall y S(y, x))$.

1.	$\forall x \exists y (T(x) \to S(y, x)) \qquad _$	Given
	2.1. $T(a)$	Assumption
	Let b be arbitrary 2.2.1. $\exists x (T(x) \rightarrow S(b, x))$	Elim ∀: 1
	2.2.2. $T(a) \rightarrow S(b,a)$	
	2.2.3. $S(b, a)$	
	2.2. $\forall y S(y, a)$	
2.	$T(a) \to \forall y S(y,a) \qquad \qquad _$	Direct Proof: 2.2.1-2.2.3
3.	$\exists x (T(x) \to \forall y S(y, x)) \qquad _$	Intro 3: 2

Given $\forall x \exists y (T(x) \rightarrow S(y, x))$, we wish to prove $\exists x (T(x) \rightarrow \forall y S(y, x))$.

L.	$\forall x \exists y (T(x) \to S(y, x)) \qquad _$	Given
	2.1. $T(a)$	Assumption
	Let b be arbitrary 2.2.1. $\exists x (T(x) \rightarrow S(b, x))$ 2.2.2. $T(a) \rightarrow S(b, a)$ 2.2.3. $S(b, a)$)Elim ∀: 1 Elim ∃: 2.2.1
	2.2. $\forall y S(y, a)$	
2.	$T(a) \rightarrow \forall y S(y, a)$	Direct Proof: 2.2.1-2.2.3
3.	$\exists x \left(T(x) \to \forall y S(y, x) \right) \qquad _$	Intro ∃: 2

Given $\forall x \exists y (T(x) \rightarrow S(y, x))$, we wish to prove $\exists x (T(x) \rightarrow \forall y S(y, x))$.

1.	$\forall x \exists y (T(x) \to S(y, x)) \qquad \qquad$	Given
	2.1. $T(a)$	Assumption
	Let b be arbitrary 2.2.1. $\exists x (T(x) \rightarrow S(b, x))$	Elim ∀: 1
	$\begin{array}{c} 2.2.2. & 2.2.(1 \ (a) \\ 2.2.2. & T(a) \\ \end{array} \rightarrow S(b, a) \end{array}$	Elim ∃: 2.2.1
	2.2.3. $S(b, a)$	Modus Ponens: 2.1, 2.2.2
	$2.2. \forall y S(y,a)$	
2.	$T(a) \to \forall y S(y, a) $	Direct Proof: 2.2.1-2.2.3
3.	$\exists x (T(x) \to \forall y S(y, x)) $	Intro ∃: 2

Given $\forall x \exists y (T(x) \rightarrow S(y, x))$, we wish to prove $\exists x (T(x) \rightarrow \forall y S(y, x))$.

1.	$\forall x \exists y (T(x) \to S(y, x)) \qquad \qquad$	Given
	2.1. T(a)	Assumption
	Let b be arbitrary 2 2 1 $\exists x (T(x) \rightarrow S(b, x))$	Elim ∀: 1
	$\begin{array}{c} 2.2.2.1 & \exists x (1 (x) \to S(0, x)) \\ 2.2.2. & T(a) \to S(b, a) \\ \end{array}$	Elim ∃: 2.2.1
	2.2.3. $S(b,a)$	Modus Ponens: 2.1, 2.2.2
	$2.2. \forall y S(y,a) \qquad \qquad _$	Intro ∀
2.	$T(a) \to \forall y S(y, a) $	Direct Proof: 2.2.1-2.2.3
3.	$\exists x (T(x) \to \forall y S(y, x)) \qquad \qquad$	Intro 3: 2

That's All, Folks!

Thanks for coming to section this week! Any questions?

slides by: aruna