CSE 311 Section 2

Logic and Equivalences

Administrivia & Introductions

Announcements & Reminders

e Sections are Graded
o You will be graded on section participation, so please try to come ©
o If you cannot attend you will need to submit ALL the section problems to
gradescope

e HW1 due YESTERDAY (4/9) @ 11:00 PM on Gradescope
o Homework is usually due Wednesdays @ 11:00pm, released Thursday evening
o Remember, you only have 3 late days to use throughout the quarter
o You can use only 1 late days on any 1 assignment

e Check the course website for OH times!

e Concept Checks!
o Absolute deadline on Thursdays @ 11:59 pm

Task 1: Gates

Task 1

In this problem, we will represent NAND using function syntax, meaning NAND (p, q¢) = —(p A q).

p q NAND(p,q)
T T F
T F T
F T T
F F T

We can construct any gate using only NAND gates 1. For example, we can construct NOT by using
the same input for both sides of a NAND.

a) Show —p =NAND(p, p) holds using a truth table.

Task 1

a) Show —p =NAND(p, p) holds using a truth table.

Task 1

a) Show —p =NAND(p, p) holds using a truth table.

Task 1

a) Show —p =NAND(p, p) holds using a truth table.

p P P _PAPD
T F T T
- T F o F

Task 1

a) Show —p =NAND(p, p) holds using a truth table.

p —p p pAp —(pADp)
T F T T F
F T F F T

Task 1

a) Show —p =NAND(p, p) holds using a truth table.

p —p p pAp —(pADp)
T F T T F
F T F F T

Task 1

b) Show we can express p A ¢ with only NAND gates by a chain of equivalences.

(P A Q)= NAND (p,q) = —(p A q).

NAND (p, q) = — |
Task 1 (p, q) (p A Q)

b) Show we can express p A ¢ with only NAND gates by a chain of equivalences.

PADEF(CPADA (PA |
a))

NAND(p, ¢) = — .
Task 1 (p, q) (p A q)

b) Show we can express p A g with only NAND gates by a chain of equivalences.

PADEF(CPADA (PA |
q))

So our goal is: NAND((NAND(p.q). NAND(p.q))

Task 1

b) Show we can express p A g with only NAND gates by a chain of equivalences.

PAqg=——(pAQ) Double Negation

= NAND(NAND(p, q), NAND(p, q)) Definition of NAND

Task 1

b) Show we can express p A g with only NAND gates by a chain of equivalences.

pAqg=——(pAgQ) Double Negation
= —NAND(p, q) Definition of NAND

= NAND(NAND(p, q), NAND(p, q)) Definition of NAND

Task 1

b) Show we can express p A g with only NAND gates by a chain of equivalences.

pAg=——(pAQq) Double Negation
= —NAND(p, q) Definition of NAND
= —=NAND(p, q) v =NAND(p, q) |dempotency

= NAND(NAND(p, q), NAND(p, q)) Definition of NAND

Task 1

b) Show we can express p A g with only NAND gates by a chain of equivalences.

PDANQG=

——(p A q)

—NAND(p, q)

—~NAND(p,) v =NAND(p, q)
—(NAND(p, q) A NAND(p, q))
NAND(NAND(p, q), NAND(p, q))

Double Negation
Definition of NAND
I[dempotency

De Morgan
Definition of NAND

—p =NAND
ks p (p, p)

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

(pvQq)=

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

Remember:

Demorgan’s: 7(p V q) = p A g —p ENAND(Z?,P)

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

Remember:

Demorgan’s: (p V q)=p A 7q —p =NAND(p, p)

(p V q) = intuitively, how would you use
these rules?

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

Remember:

Demorgan’s: 7(p V q) = p A g —p ENAND(Z?,P)

(PVa=s (pA 9

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

Remember:

Demorgan’s: 7(p V q) = p A g —p ENAND(Z?,Z?)

(P Va)=(p A mq)
= NAND(=p, 7q)

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

Remember:

Demorgan’s: 7(p V q) = p A g —p ENAND(Z?,Z?)

(P Va)=(p A mq)
= NAND(7p, 7q)

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

Remember:

Demorgan’s: 7(p V q) = p A g —p ENAND(Z?,Z?)

(p V q)=(p A ~qr—— Whatis this step called?
= NAND(7p, 7q)
= NAND(NAND(p,p) A NAND(q,q))

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

Remember:

Demorgan’s: 7(p V q) = p A g —p ENAND(Z?,Z?)

PVag==a(p A qr— This is actu,al'ly double negation and then
= NAND(=p, =q) Demorgan’s!
= NAND(NAND(p,p) A NAND(q,q))

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

pvg=-—-—(pvq) Double Negation

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

pvg=-—-—(pvq) Double Negation

—(—p A —q) De Morgan

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

—=(p v q) Double Negation

pvg

—(—p A —q) De Morgan
NAND(—p, —q) Definition of NAND

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English
why your expression works.

pvg=——(pvq)

S

N
N

(—p A —q)
AND(—p, —q)
AND(NAND(p, p), —q)

Double Negation
De Morgan
Definition of NAND
Part a

Task 1

c) Use what we learned in (a) plus Double Negation to write an expression for p v q. Explain in English

why your expression works.

pvg=——(pvq)

= NAND(—p, —q)

= NAND(NAND
= NAND(NAND

(
(

p,p), —q)
p,p), NAND(q, q))

Double Negation
De Morgan
Definition of NAND
Part a

Part a

Task 3: Symbolic Proofs

Task 3 - Equivalences

b) - p->(@-or)=q->(pVr)

is this true?

Task 3 - Equivalences

Yes! Truth values match!

=q—->(Vr)

p—2(q7)

b)

q— (pvr)

—p—(q—r)

(pvr)

(g ==7)

—p

T

F

T T T

T
T F T

F

T

F T T T

=
F F T T

s

T

Task 3 - Equivalences

b) - p->(@-or)=q->(pVr)

These identities hold for all propositions p, q,

* |dentity * Associative * DeMorgan’s Laws
*pAT=p * (v Vvr=pv(gVvr) * a(pVvq) =-pAq
Remember - pVF=p s WAQAT=pA(qQAT) s a(pAQ@)=—-pV—q
these identities! ° Domination * Distributive * Double Negation
* pVT=T s pA(@qVr)=(@AqQV(pAT) e 9—p=Dp
* pAF=F *pVv@Ar)=(@EVEA(PVT)
* Idempotent * Absorption * Law of Implication
*pPVP=p *pV(PAQ =D *P->q=-pVq
*PAP=D *pA(PVQ =D
* Commutative * Negation * Contrapositive
*pPVqa=qVp *pVp=T *P2q=-q9—>p

* PAQ=qAD * pAp=F

Task 3 - Equivalences

b) - p->(@-or)=q->(pVr)

Task 3 - Equivalences

b) - p->(@-or)=q->(pVr)

—p— (q—r) = —-—pv(g—r) Law of Implication

—qVv(pvr)
qg— (pvr) Law of Implication

Task 3 - Equivalences

b) - p->(@-or)=q->(pVr)

—p== (g—=r) = —-—pv(g—rT) Law of Implication
= pvi(g—or) Double Negation
= —qvi(pvr)

qg— (pvr) Law of Implication

Task 3 - Equivalences

b) - p->(@-or)=q->(pVr)

—p—(g—r)

——pVv(g—r)
pv(g—r)
pv(—gvr)

—qv (pvr)
qg— (pvr)

Law of Implication
Double Negation

Law of Implication

Law of Implication

Task 3 - Equivalences

b) - p->(@-or)=q->(pVr)

—p—(g—r)

——pvVv(g—r)
pv(g—r)
pv(—qvr)
(pv—q)vr

—qv (pvr)
qg— (pvr)

Law of Implication
Double Negation
Law of Implication

Associativity

Law of Implication

Task 3 - Equivalences

b) - p->(@-or)=q->(pVr)

—p—(g—r)

——pvVv(g—rT)
pv(g—r)
pv(—qvr)
(pv—q)vr
(—gvp)vr
—q Vv (pvr)
g—(vr)

Law of Implication
Double Negation
Law of Implication
Associativity

Commutativity

Law of Implication

Task 3 - Equivalences

b) - p->(@-or)=q->(pVr)

—p—(g—r)

——pvVv(g—rT)
pv(g—r)
pv(—qvr)
(pv—q)vr
(—gvp)vr
—qv (pvr)
g—(vr)

Law of Implication
Double Negation
Law of Implication
Associativity
Commutativity
Associativity

Law of Implication

Task 5: Translate to English

Translate these system specifications into English where F'(p) is “Printer p is out of service”, B(p) is
“Printer p is busy”, L(j) is “Print job j is lost,” and Q(j) is "Print job j is queued”. Let the domain
be all printers and all print jobs.

a) Ip (F(p) A B(p)) — 35 L(j)

b) (Vi B(j)) — (Ip Q(p))

Translate these system specifications into English where F'(p) is “Printer p is out of service”, B(p) is
“Printer p is busy”, L(j) is “Print job j is lost,” and Q(j) is "Print job j is queued”. Let the domain
be all printers and all print jobs.

a) Jp (F(p) » B(p)) — 3j L(j)

If at least one printer is busy and out of service, then at least one job is lost.

b) (Vi B(j)) — (3pr Q(p))

Translate these system specifications into English where F'(p) is “Printer p is out of service”, B(p) is
“Printer p is busy”, L(j) is “Print job j is lost,” and Q(j) is “Print job j is queued”. Let the domain
be all printers and all print jobs.

a) 3p (F(p) A B(p)) — 3j L(j)
If at least one printer is busy and out of service, then at least one job is lost.
b) (Vi B(4)) — (Ir Q(p))

If all printers are busy, then there is a queued job.

Task 6: Translate to Logic

Task 6

Express each of these system specifications using predicates, quantifiers, and logical connectives. For
some of these problems, more than one translation will be reasonable depending on your choice of

predicates.

a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in the group if the file system is locked.

Task 6

Express each of these system specifications using predicates, quantifiers, and logical connectives. For
some of these problems, more than one translation will be reasonable depending on your choice of

predicates.

a) Every user has access to an electronic mailbox.

Let the domain be users and mailboxes. Let User(x) be “x is a user”, let Mailbox(y) be
“y is a mailbox”, and let Access(x,y) be "z has access to y".

Task 6

Express each of these system specifications using predicates, quantifiers, and logical connectives. For
some of these problems, more than one translation will be reasonable depending on your choice of

predicates.

a) Every user has access to an electronic mailbox.

Let the domain be users and mailboxes. Let User(x) be “x is a user”, let Mailbox(y) be
“y is a mailbox”, and let Access(x,y) be "z has access to y".

Vz (User(xz) — (Jy (Mailbox(y) A Access(z,y))))

Task 6

Express each of these system specifications using predicates, quantifiers, and logical connectives. For
some of these problems, more than one translation will be reasonable depending on your choice of

predicates.

b) The system mailbox can be accessed by everyone in the group if the file system is locked.

Task 6

Express each of these system specifications using predicates, quantifiers, and logical connectives. For
some of these problems, more than one translation will be reasonable depending on your choice of

predicates.

b) The system mailbox can be accessed by everyone in the group if the file system is locked.

Let the domain be people and mailboxes and use Access(z,y) as defined in
the solution to part (a), and then also add InGroup(z) for “z is in the group”, and let
SystemMailBox be the name for the system mailbox. Then the translation becomes

FileSystemLocked — Vz (InGroup(xz) — Access(z,SystemMailBox)).

Task 6

Express each of these system specifications using predicates, quantifiers, and logical connectives. For
some of these problems, more than one translation will be reasonable depending on your choice of

predicates.

b) The system mailbox can be accessed by everyone in the group if the file system is locked.

Let the domain be people in the group. Let CanAccessSM(x) be “z has access
to the system mailbox". Let p be the proposition “the file system is locked.”

p — Vz CanAccessSM(x).

That's All, Folks!

Thanks for coming to section this week!
Any questions?

Task 4: CNF and Simplification

Task 4b — Canonical Forms

b) Write the CNF expressions for G(A,B,C)

Work on part (b) with the people
around you, and then we’ll go over it
together!

A B C G(AB,C)
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0

Task 4b — Canonical Forms

b) Write the CNF expressions for G(A,B,C)

(A+B+C)(A+B’+C)(A+B+C)

A B C G(AB,C)

11 1 1

110 1

10 1 1
(A+B+C) [1100 0

0 1 | 1 1
A+B+C) 0 1 0 0

0 0 1 1
(A+B+C) 0 0 0 0

Task 4¢ — Canonical Forms

(AA+B+C)YA+B +C)(A+ B+ C)

Identity Domination
ANT=A AVT=T
AVF=A AANF=F
Idempotency Commutativity
AVA=A AVB=BVA
ANA=A ANB=BAA
Associativity Distributivity
(AVB)VC=AV (BVC) AAN(BVC)=(AAB)V(AAC)
(AAB)AC=AAN(BAC) AV(BAC)=(AVB)A(AVO)
[Absorption Negation
AV(AANB)=A AV-A=T
AAN(AVB)=A AN-A=F

Task 4¢ — Canonical Forms

(AA+B+C)YA+B +C)(A+ B+ C)

Task 4¢ — Canonical Forms

(AA+B+C)YA+B +C)(A+ B+ C)

=(A'+B+C)(A+B' +C)(A+B+C)(A+B+C) |dempotency

Task 4¢ — Canonical Forms

(AA+B+C)YA+B +C)(A+ B+ C)

=(A'+B+C)(A+B' +C)(A+B+C)(A+B+C) |dempotency
= (A+B+C)(A+B+C)(A+B'+C)(A+B+C) Commutativity x 2

Task 4¢ — Canonical Forms

(AA+B+C)YA+B +C)(A+ B+ C)

=(A'+B+C)(A+B' +C)(A+B+C)(A+B+C) |dempotency
= (A+B+C)(A+B+C)(A+B'+C)(A+B+C) Commutativity x 2
=(A'+B+C)(A+B+C)(A+C+B)(A+C+ B) Commutativity x 2

Task 4¢ — Canonical Forms

(AA+B+C)YA+B +C)(A+ B+ C)

'+ B+C)(A+B' +C)(A+B+C)(A+B+C
A+B+C)(A+B+C)A+B +C)(A+B+C
A+B+C)(A+B+C)(A+C+B)YA+C+B
B+C+AYB+C+AA+C+B)YA+C+B

N N’ N, Nmed”

= (A
=
=
= |

Idempotency
Commutativity x 2
Commutativity x 2

Commutativity x 2

Task 4¢ — Canonical Forms

(AA+B+C)(A+B' +C)(A+ B+ C)

'+ B+C)YA+B +C)(A+B+C)(A+B+C
A+B+C)(A+B+C)A+B +C)(A+B+C
) (

)

B+C+ A (B+C+A)(A+C+B

= (4)
=1,)
=(A"+B+C)(A+B+C)(A+C+ B
= |,)
=[(B+C)+ (4" A)][(A+C) + (B B)

(
(
(
(
|

A+C+B
A+C+B

ldempotency
Commutativity x 2
Commutativity x 2
Commutativity x 2
Distributivity x2

Task 4¢ — Canonical Forms

(AA+B+C)(A+B' +C)(A+ B+ C)

'+ B+C)(A+B' +C)(A+B+C)(A+B+C
(A+ B+C)YA+B +C)(A+B+C
((

= (4))(
=(A'+B+0))(
=(A+B+C)(A+B+C)(A+C+ B)(
w+C+AMB+C+mm+C+Bx
=[(B+C)+ (A A][(A+C)+ (B B)]
=[(B+C)+0][(A+ C) + 0]

A+C+B
A+C+B

Idempotency
Commutativity x 2
Commutativity x 2
Commutativity x 2

Distributivity x2

Negation x 2

Task 4¢ — Canonical Forms

(AA+B+C)(A+B' +C)(A+ B+ C)

A+B+C)(A+B +C)Y(A+B+C)(A+B+0C)
A+B+C)(A+B+C)(A+B +C)(A+B+0C)
A+B+C)A+B+C)(A+C+ B)(A+C+B)

)()
B)]

=1
=
=
w+C+A%B+C+MM+C+B’A+C+B
|
|
= [B

S SUTES A S SR ST e SO

(B+C)+(A"- A)[(A+C) + (B
(B+C)+0][(A+C)+0]
+ C|[A + C]

|dempotency
Commutativity x 2
Commutativity x 2
Commutativity x 2
Distributivity x2
Negation x 2
|dentity

Task 4¢ — Canonical Forms

(A+B+C)(A+B' +C)(A+ B+ C)

=(A+B+C)A+B' +C)(A+B+C)(A+ B +0C)
=(A+B+C)A+B+C)(A+B +C)(A+ B +0C)
=(A+B+C)(A+B+C)(A+C+ B")(A+C + B)
w+C+AMB+C+mm+C+BXA+C+m
= [(B+C) + (4~ A][(A+C) + (B - B)]

|
=
=

(B+C)+0][(A+ C) + 0]
B+ Cl[A+ (]
[C+ A

C + B]]

Idempotency
Commutativity x 2
Commutativity x 2
Commutativity x 2

Distributivity x2

Negation x 2

Identity

Commutativity

Task 4¢ — Canonical Forms

(AA+B+C)Y A+ B +C)(A+ B+ C)

=(A+B+C)A+B +C)(A+B+C)(A+ B +0C)
=(A+B+C)A+B+C)(A+B +C)(A+ B +C)
=(A+B+C)(A+B+C)(A+C+ B)(A+C + B)
w+C+AMB+C+MM+C+BMA+C+m
| B)]
|
= |l

(B4 0) +(A - 4)][(A +0)+ (B
(B+C)+0][(A+C)+0]
B+ C]|[A+C]

= [C + B][C + A]

=C+B-A

Idempotency
Commutativity x 2
Commutativity x 2
Commutativity x 2
Distributivity x2
Negation x 2
Identity
Commutativity

Distributivity

