CSE 311: Foundations of Computing I

Modular Arithmetic: Definitions and Properties

Definition: "a divides b"

For $a \in \mathbb{Z}, b \in \mathbb{Z}$ (usually with $b \neq 0$): $b \mid a \leftrightarrow \exists q \in \mathbb{Z} \ (a = qb)$

Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}$ with d > 0, there exist *unique integers* q, r with $0 \le r < d$, such that a = dq + r.

To put it another way, if we divide d into a, we get a unique quotient (q = a div d) and non-negative remainder smaller than d $(r = a \mod d)$.

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0: $a \equiv_m b \leftrightarrow m \mid (a - b)$

Properties of mod

- Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.
- Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.
- Let m be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.
- Let a, b, m be integers with m > 0. Then, $(ab) \mod m = ((a \mod m)(b \mod m)) \mod m$.
 - You can derive this using the Multiplication Property of Congruences; note that $a \equiv_m (a \mod m)$ and $b \equiv_m (b \mod m)$.

GCD and Euclid's algorithm

- gcd(a, b) is the largest integer d such that $d \mid a$ and $d \mid b$.
- Euclid's algorithm: To efficiently compute gcd(a, b), you can repeatedly apply these facts:
 - $\operatorname{gcd}(a, b) = \operatorname{gcd}(b, a \mod b)$
 - $-\gcd(a,0)=a$

Bézout's Theorem and Multiplicative Inverses

Bézout's Theorem: If a and b are positive integers, then there exist integers s and t such that gcd(a, b) = sa + tb.

- To find s and t, you can use the Extended Euclidean Algorithm. See slides for a full walkthrough.

- The multiplicative inverse mod m of $a \mod m$ is $b \mod m$ iff $ab \equiv_m 1$.
- Suppose gcd(a, m) = 1. By Bézout's Theorem, there exist integers s and t such that sa + tm = 1. Taking the mod of both sides, we get $(sa + tm) \mod m = 1 \mod m = 1$, so $sa \equiv_m 1$. Thus, $s \mod m$ is the multiplicative inverse of a.