CSE 311: Foundations of Computing I

English Proof Cheatsheet

Propositional Logic: Workhorse Rules

Given	
A is given	
\therefore A	

We are given that A holds.

(Write this where A is <u>first used</u>. Not at the start of the proof.)

Modus Ponens				
		A	$A \rightarrow B$	
			В	

Since A holds, we can see that B must hold.

Direct Proof	
$\frac{A \Rightarrow B}{\therefore A \to B}$	

Suppose A holds. ... Thus, B holds. (end of paragraph)

(That is the English for the subproof. Direct Proof itself is skipped.)

Elin	$\mathbf{m} \wedge$	
$A \wedge$	$\smallsetminus B$	
$\therefore A$	B	

Skip

(In English, knowing A and B is the same as knowing $A \wedge B$.)

Intro \wedge	
A B	
$\overrightarrow{.}$ $A \wedge B$	

Skip

Proof By Cases		
	$A \lor B \ A \to C \ B \to C$	
-	\therefore C	

Int	ro V
1	4
$\therefore A \lor B$	$B \lor A$

Since we know that either A or B is true, it follows that C holds.

Since A holds, we know that $A \lor B$ holds.

(Avoid writing " $A \lor B$ " if at all possible, e.g., if we can instead say "Since A holds, we can see that the claim holds.")

Propositional Logic: Alternative Rules

Tautology	
$A \equiv \top$	

We know that A holds since it is a tautology

(Skip this altogether if it is $A \lor \neg A$, i.e., Excluded Middle.)

Equivalent				
	$A \equiv B$	В		
	A		_	

Equivalently, we have shown that A holds.

Principium Contradictionis			

[[Proof of A.]]				
[[Proof of $\neg A$.]]	This contracts	the fact	that A	holds

Reductio Ad Absurdum	
$\begin{array}{c} A \Rightarrow \bot \\ \hline \vdots & \neg A \end{array}$	

Suppose A holds. ... This is a contradiction. Thus, our assumption that A holds must have been false.

Ex Falso Quodlibet
$\therefore A$

Since false is true, anything is true. In particular, \boldsymbol{A} is true.

Ad Litteram Ve	rum
т	

Skip

Predicate Logic

$\mathbf{Elim} \forall$	
$\forall x, P(x)$	

 $\therefore P(a)$ for any object a

$\mathbf{Intro} \forall$	
Let a be arbitrary $\Rightarrow P(a)$	
$\therefore \forall x, P(x)$	

Elim \exists
$\exists x, P(x)$
$\therefore P(c)$ for a <i>new</i> name c

Intro \exists	
P(c) for some c	
$\therefore \exists x, P(x)$	

Since P(x) holds for any x, we know that P(a) holds

Let a be an arbitrary integer. \ldots Since a was arbitrary, we have shown that P(a) holds for every integer a.

(That is the English for the subproof. Intro \forall itself is skipped.)

P(c) holds for some integer c.

(Avoid writing " $\exists x, P(x)$ ". Instead, immediately eliminate the \exists and write down P(c) for some new variable c.)

We have shown that there exists an x such that P(x) holds.

(Avoid writing " $\exists x, P(x)$ " if at all possible, e.g., if we can instead say "Thus, we can see that the claim holds.")

Theorems and Definitions

Cite T

$$\overline{\therefore \forall x, P(x) \to Q(x)}$$

Theorem T tells us that P(x) implies Q(x), for all x.

(Use Apply instead whenever possible. It sounds more natural.)

Since P(c) holds, it follows from Theorem T that Q(c) holds.

	Apply T	
$\frac{P}{\therefore}$	(c) for some $cQ(c)$	_

$\mathbf{Def} \ \mathbf{of} \ f$
Р
$\therefore P[f(c) / (\exists y, c = g(y))]$

Undef f
$P[f(c) / (\exists y, c = g(y))]$
\therefore P

This can be written equivalently as $P[f(c)\,/\,(\exists\,y,c=g(y)),$ by the definition of f.

This can be written equivalently as P, by the definition of f.