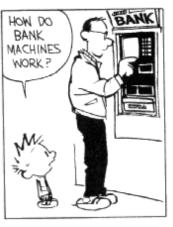
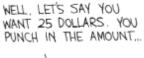
CSE 311: Foundations of Computing

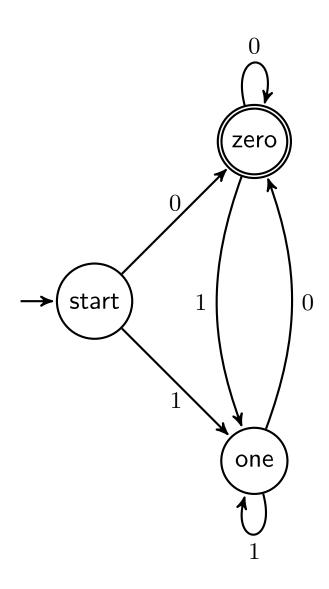
Topic 8: Finite State Machines



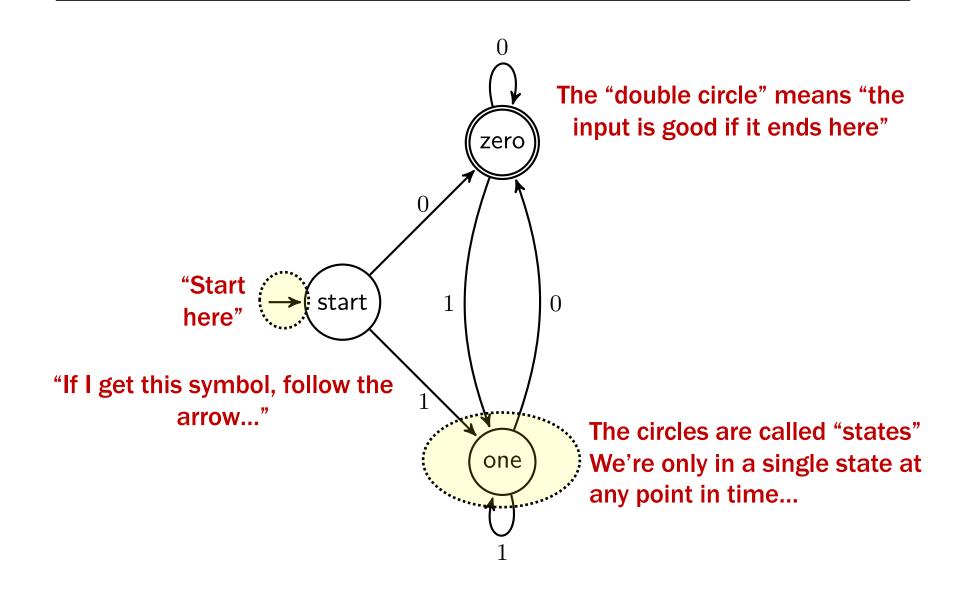




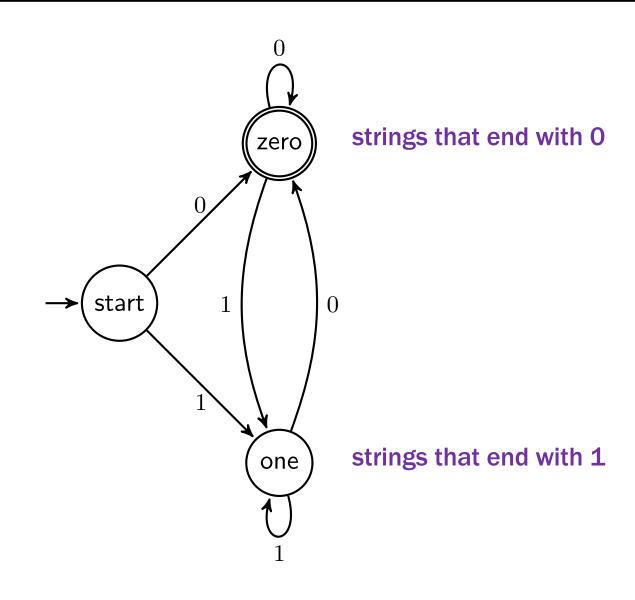
Selecting strings using labeled graphs as "machines"



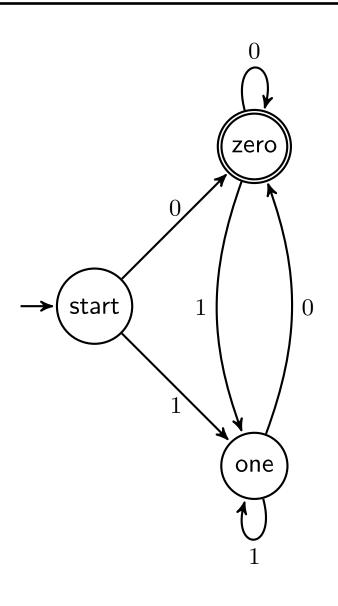
Finite State Machines



Which strings reach each state?



Which strings does this machine say are OK?

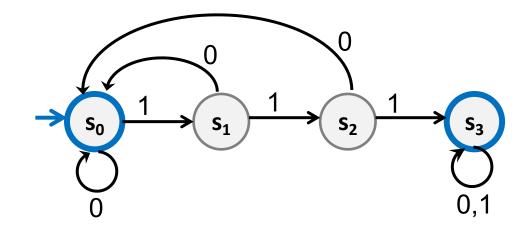


The set of all binary strings that end in 0

Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

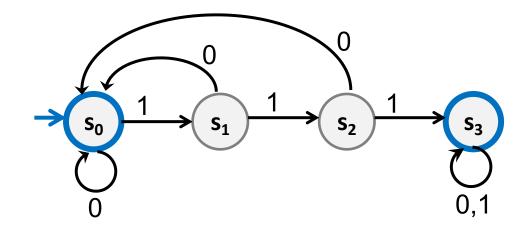
Old State	0	1
s ₀	S ₀	s_1
s ₁	s ₀	s ₂
s ₂	s ₀	S ₃
S ₃	S ₃	S ₃



Finite State Machines

- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ.

Old State	0	1
s ₀	S ₀	S ₁
S ₁	s ₀	S ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃



What strings reach each state?

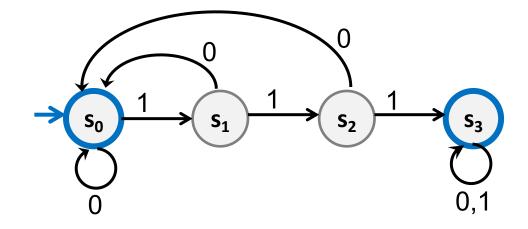
 S_0 strings that end with $O(or \varepsilon)$

S₁ strings that end with 1

S₂ strings that end with 11

S₃ strings that contain 111

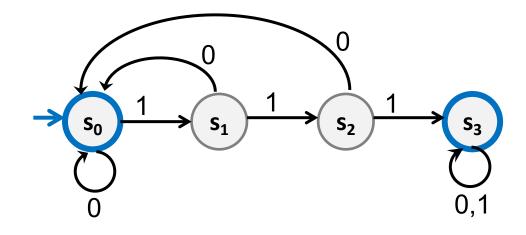
Old State	0	1
s ₀	S ₀	S ₁
S ₁	s ₀	S ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃



What language does this machine recognize?

The set of all binary strings that contain 111 or end with 0 or are ε

Old State	0	1
s ₀	S ₀	S_1
s ₁	s ₀	S ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃



Applications of FSMs (a.k.a. Finite Automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
 - Each agent runs its own FSM
- Design specifications for reactive systems
 - Components are communicating FSMs

Applications of FSMs (a.k.a. Finite Automata)

- Formal verification of systems
 - Is an unsafe state reachable?
- Computer games
 - FSMs implement non-player characters
- Minimization algorithms for FSMs can be extended to more general models used in
 - Text prediction
 - Speech recognition

State Machine Design Recipe

Given a language, how do you design a state machine for it?

Need enough states to:

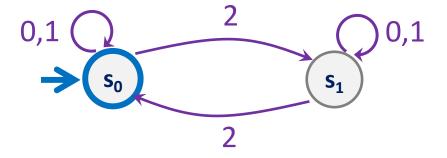
- Decide whether to accept or reject at the end
- Update the state on each new character

Strings over {0, 1, 2}

M₁: Strings with an even number of 2's

Strings over {0, 1, 2}

M₁: Strings with an even number of 2's



State Machine Design Recipe

M₂: Strings where the sum of digits mod 3 is 0

Can we get away with two states?

One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

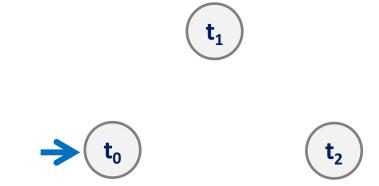
But can't update the state on each new character:

• If you're in the "not 0 mod 3" state, and the next character is 1, which state should you go to?

State Machine Design Recipe

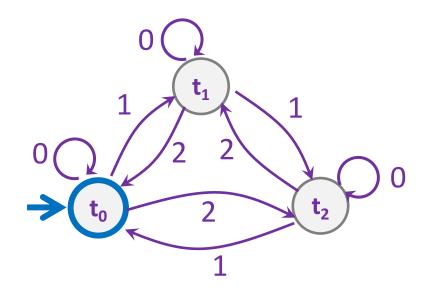
M₂: Strings where the sum of digits mod 3 is 0

So, we need three states: sum of digits mod 3 is 0, 1, or 2



Strings over {0, 1, 2}

M₂: Strings where the sum of digits mod 3 is 0

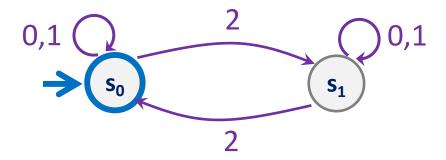


FSM as abstraction of Java code

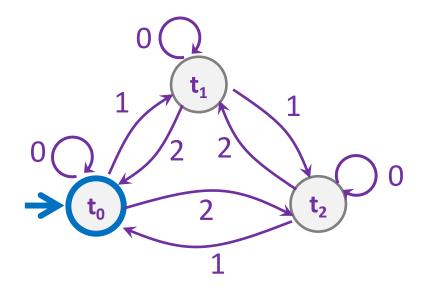
```
boolean sumCongruentToZero(String str) {
   int sum = 0;
   for (int i = 0; i < str.length(); i++) {
      if (str.charAt(i) == '2')
          sum = (sum + 2) \% 3:
      if (str.charAt(i) == '1')
          sum = (sum + 1) \% 3;
      if (str.charAt(i) == '0')
          sum = (sum + 0) \% 3;
   }
                      FSMs can model Java code with
   return sum ==
                    a finite number of fixed-size variables
                     that makes one pass through input
```

Strings over {0, 1, 2}

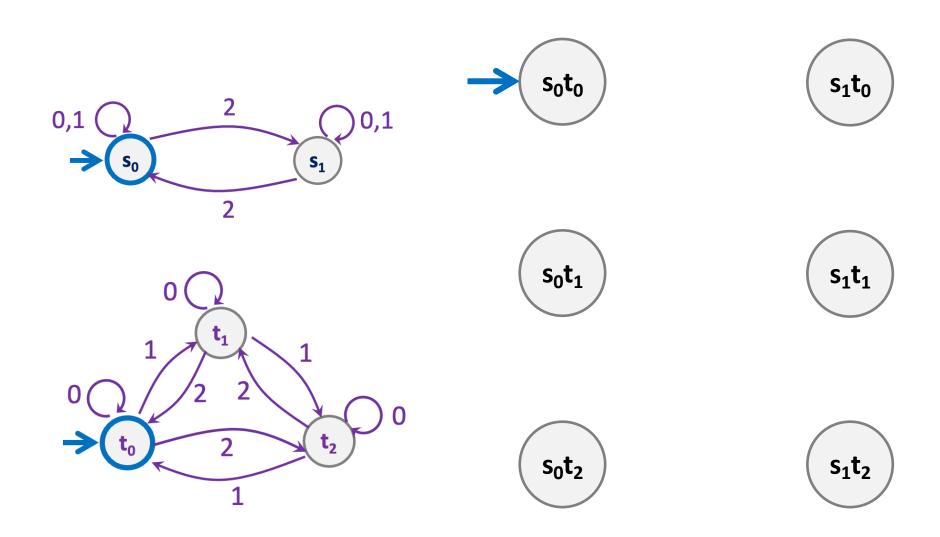
M₁: Strings with an even number of 2's



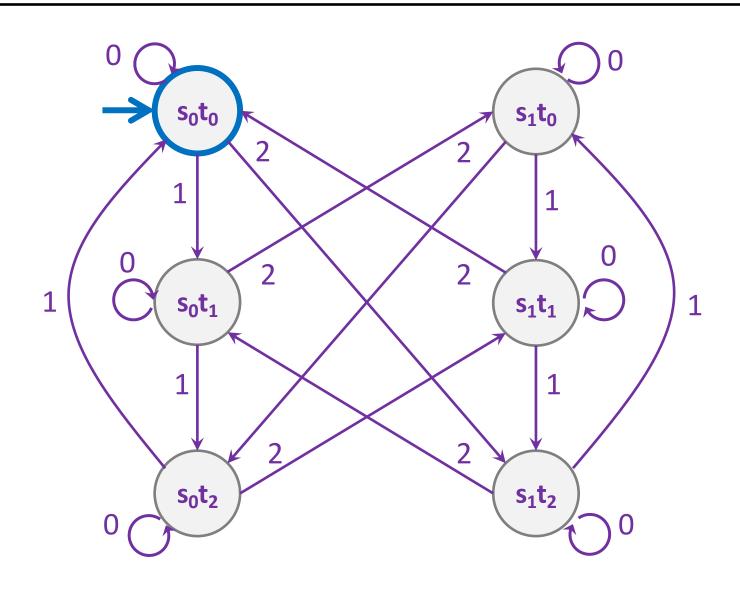
M₂: Strings where the sum of digits mod 3 is 0



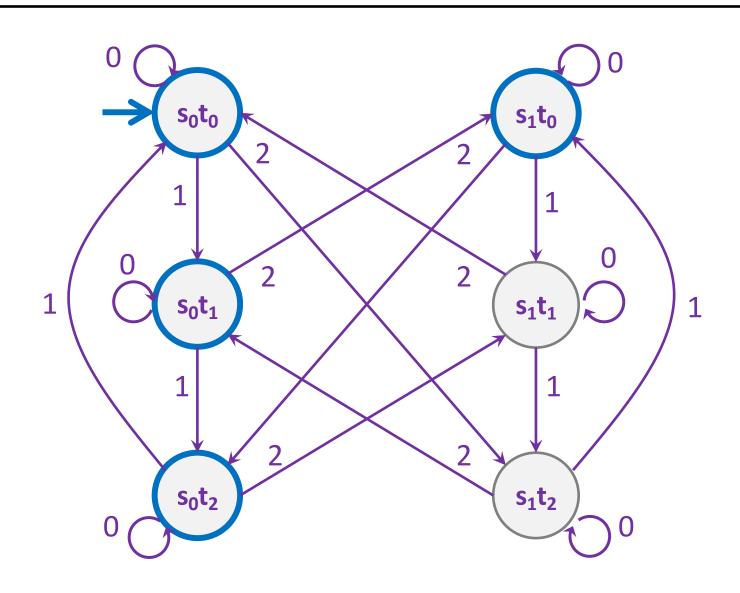
Strings over {0,1,2} w/ even number of 2's AND mod 3 sum 0



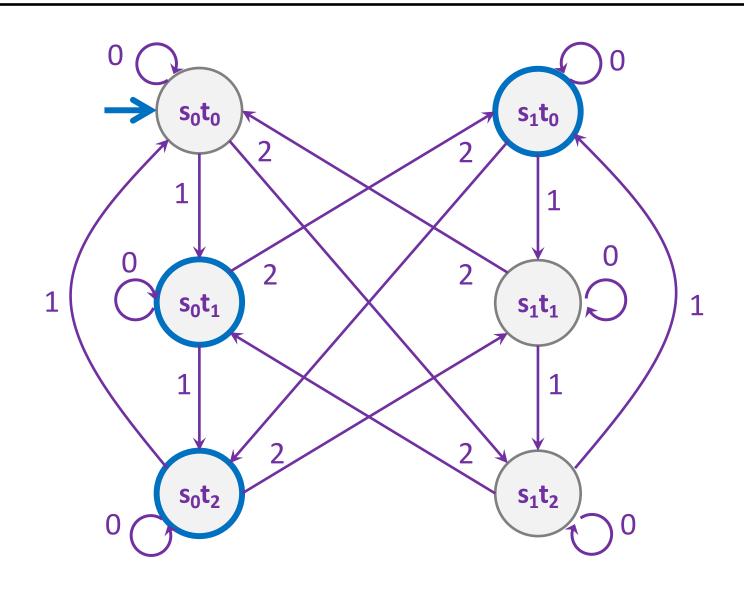
Strings over {0,1,2} w/ even number of 2's AND mod 3 sum 0



Strings over {0,1,2} w/ even number of 2's OR mod 3 sum 0

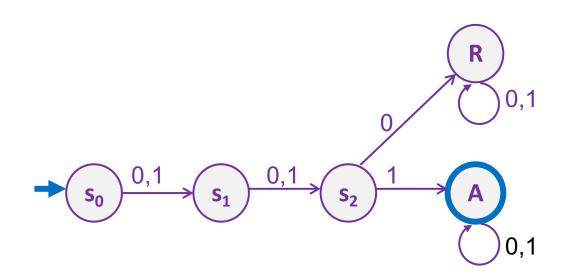


Strings over {0,1,2} w/ even number of 2's XOR mod 3 sum 0

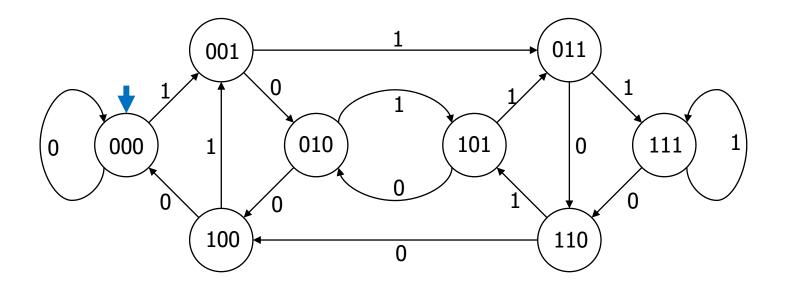


The set of binary strings with a 1 in the 3rd position from the start

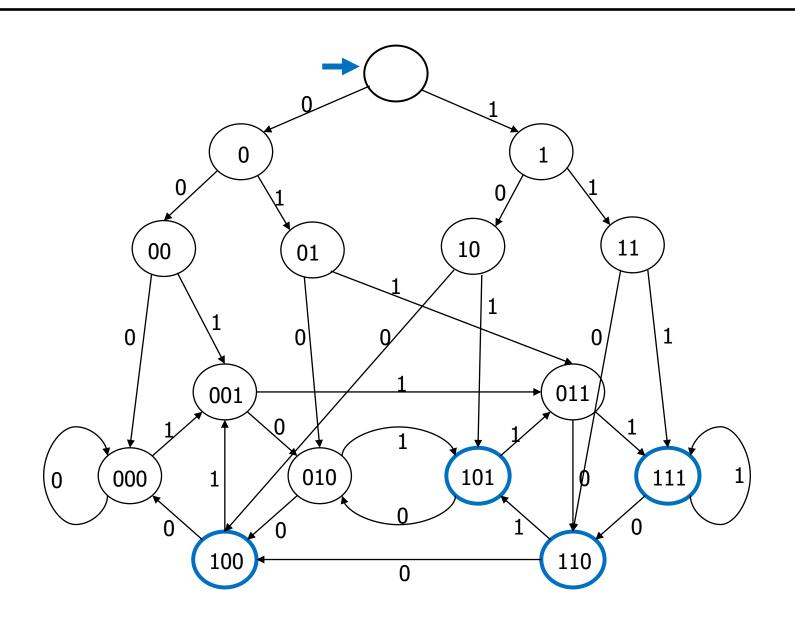
The set of binary strings with a 1 in the 3rd position from the start



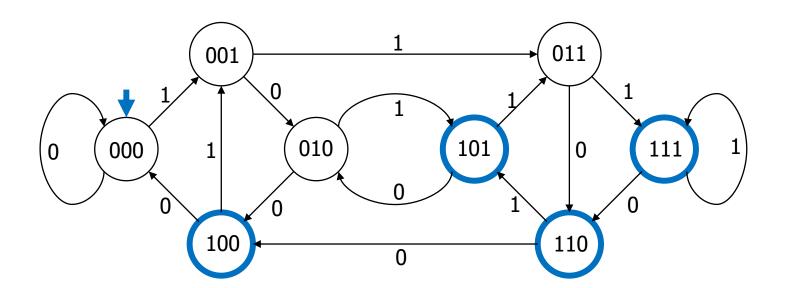
The set of binary strings with a 1 in the 3rd position from the end



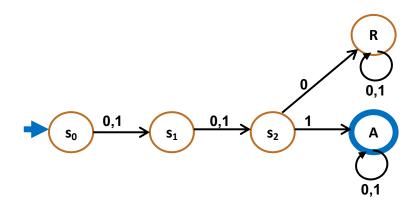
The set of binary strings with a 1 in the 3rd position from the end

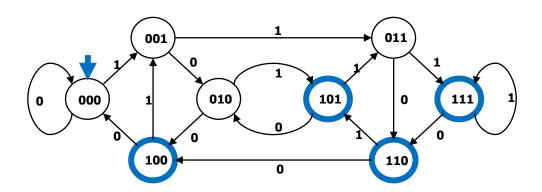


The set of binary strings with a 1 in the 3rd position from the end



The beginning versus the end

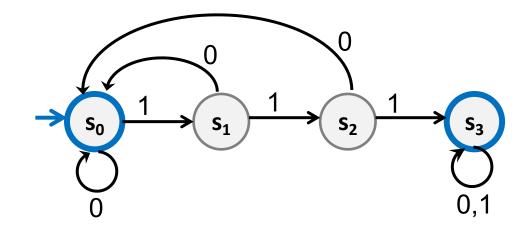




Recall: Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

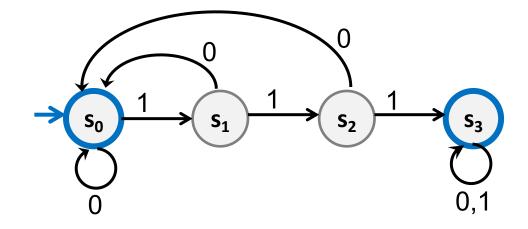
Old State	0	1
s ₀	S ₀	S ₁
s ₁	s ₀	s ₂
s ₂	s ₀	S ₃
S ₃	S ₃	S ₃



Recall: Finite State Machines

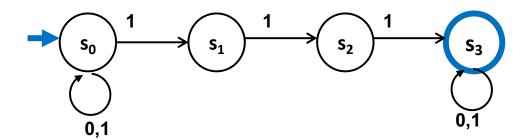
- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ.
- Also called "Deterministic Finite Automata" (DFAs)

Old State	0	1
s ₀	s ₀	s ₁
s ₁	s ₀	S ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃

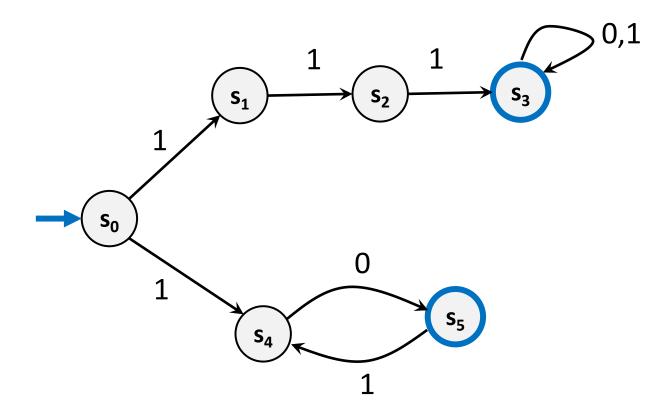


Nondeterministic Finite Automata (NFA)

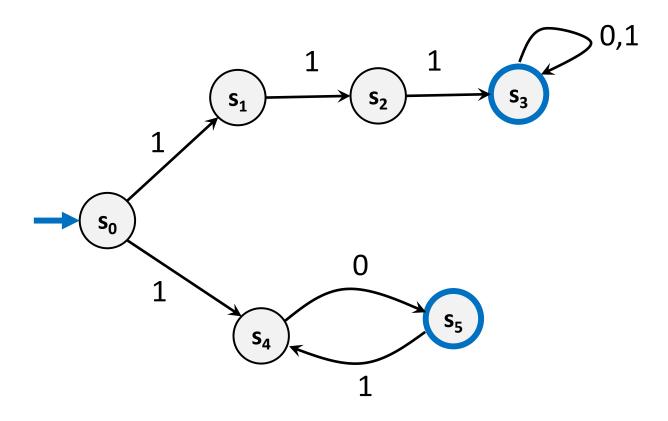
- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state
 labeled by each symbol— can have 0 or >1
 - Also can have edges labeled by empty string ε
- Definition: x is in the language recognized by an NFA if and only if <u>some</u> valid execution of the machine gets to an accept state



Consider This NFA

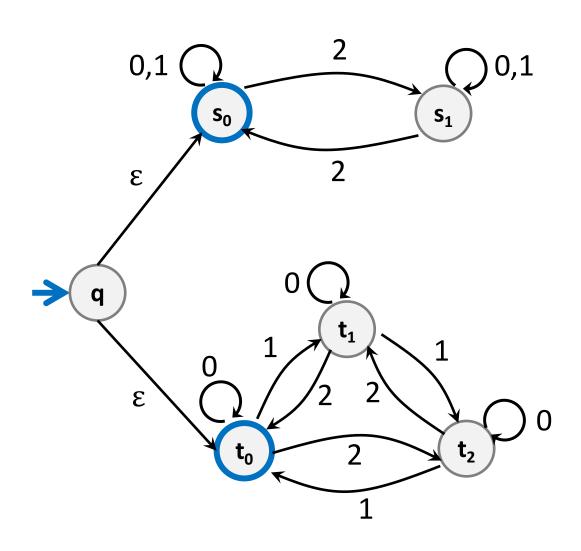


What language does this NFA accept?



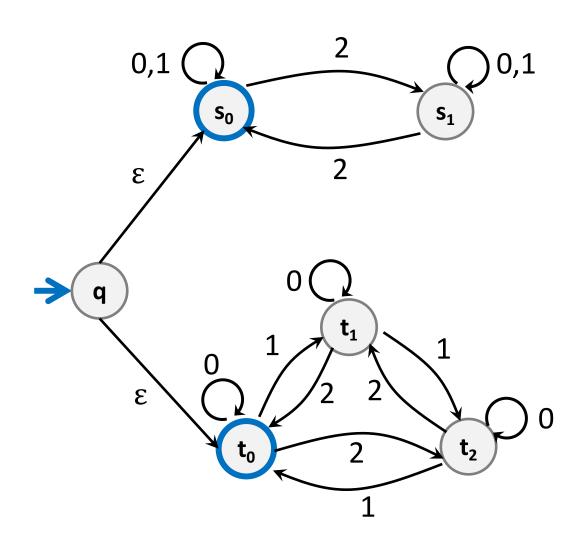
What language does this NFA accept?

NFA ε-moves



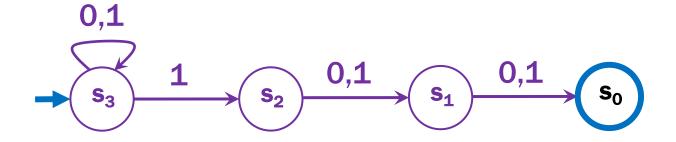
NFA ε-moves

Strings over {0,1,2} w/even # of 2's OR sum to 0 mod 3

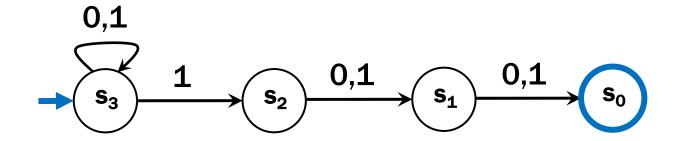


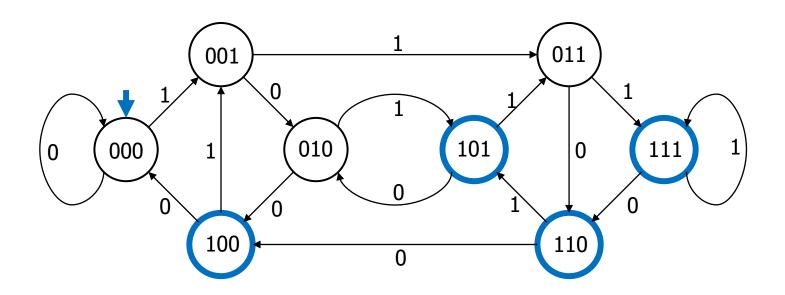
NFA for set of binary strings with a 1 in the 3rd position from the end

NFA for set of binary strings with a 1 in the 3rd position from the end



Compare with the smallest DFA





Summary of NFAs

- Generalization of DFAs
 - drop two restrictions of DFAs
 - every DFA is an NFA
- Seem to be more powerful
 - designing is easier than with DFAs

Seem related to regular expressions

The story so far...

DFAs ⊆ NFAs

NFAs and regular expressions

Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

- Basis:
 - $-\epsilon$ is a regular expression
 - \boldsymbol{a} is a regular expression for any $\boldsymbol{a} \in \Sigma$
- Recursive step:
 - If A and B are regular expressions, then so are:
 - $A \cup B$
 - **AB**
 - **A***

Base Case

• Case ε:

• Case **a**:

Base Case

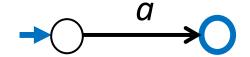
• Case ε:

• Case **a**:

Base Case

• Case ε:

• Case **a**:

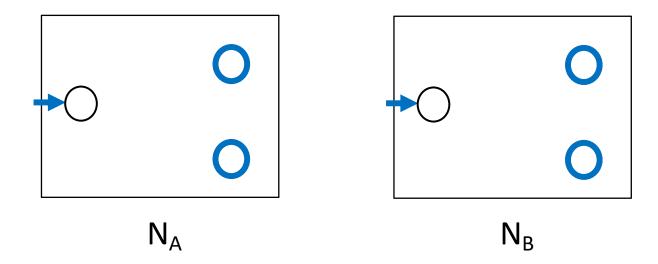


Regular Expressions over Σ

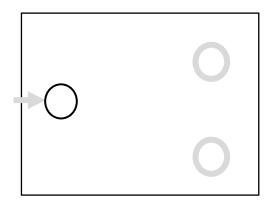
- Basis:
 - $-\epsilon$ is a regular expression
 - \boldsymbol{a} is a regular expression for any $\boldsymbol{a} \in \Sigma$
- Recursive step:
 - If A and B are regular expressions, then so are:
 - $A \cup B$
 - **AB**
 - **A***

Inductive Hypothesis

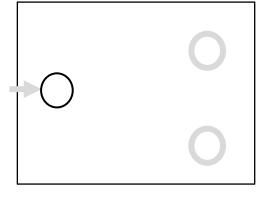
• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B



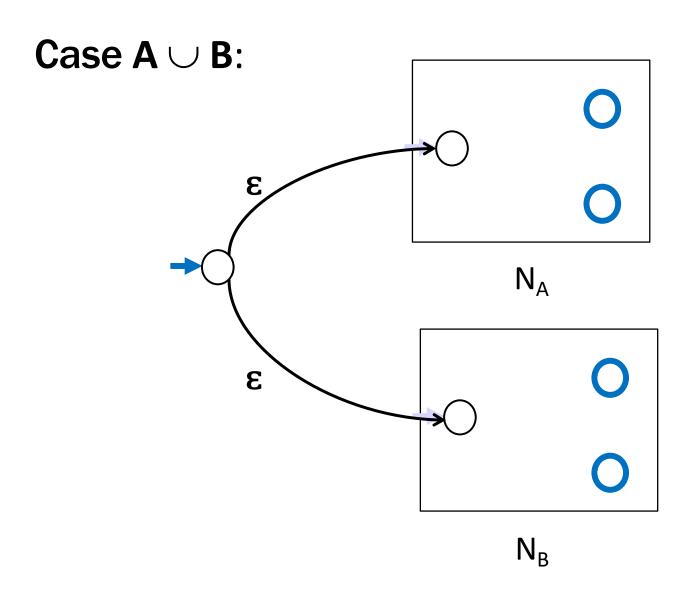
Case $A \cup B$:



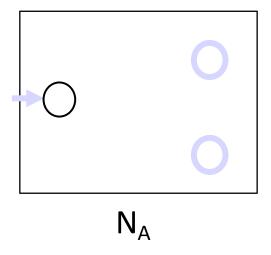
 N_A

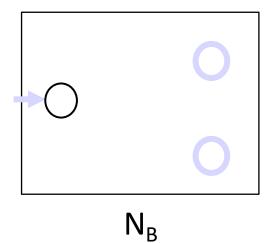


 N_{B}

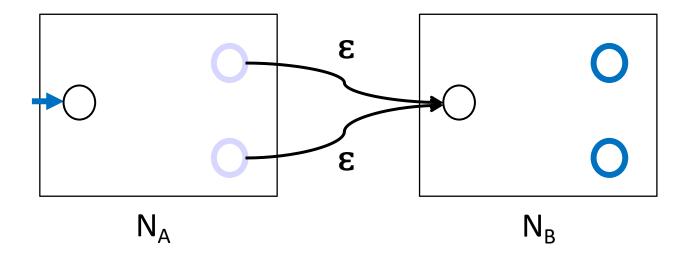


Case AB:

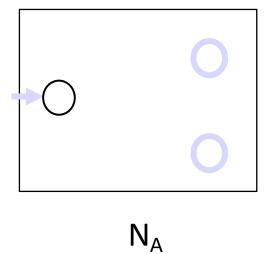




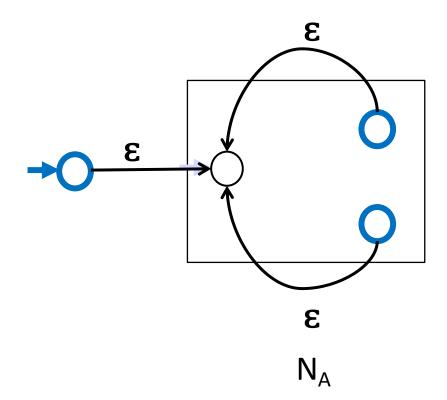
Case AB:



Case A*



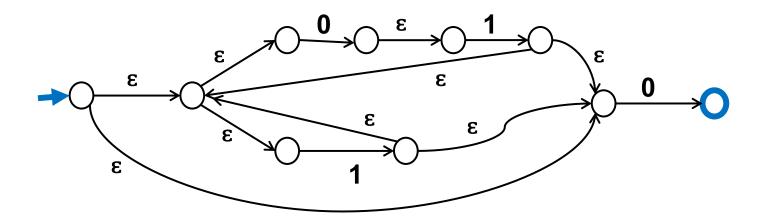
Case A*



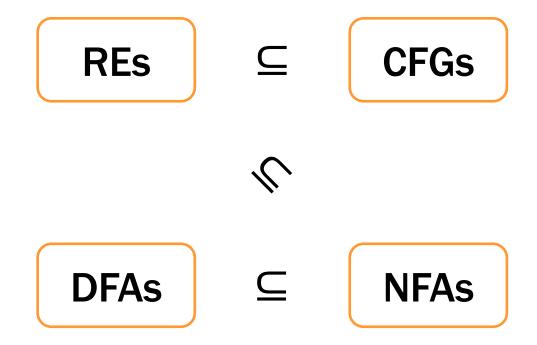
Build an NFA for (01 \cup 1)*0

Solution

(01 ∪1)*0



The story so far...



NFAs and DFAs

Every DFA is an NFA

DFAs have requirements that NFAs don't have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA is an NFA

DFAs have requirements that NFAs don't have

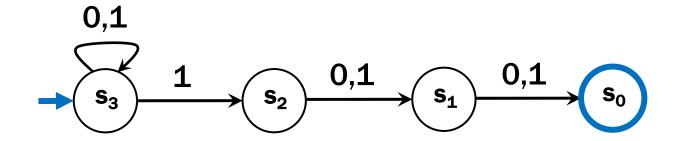
Can NFAs recognize more languages? No!

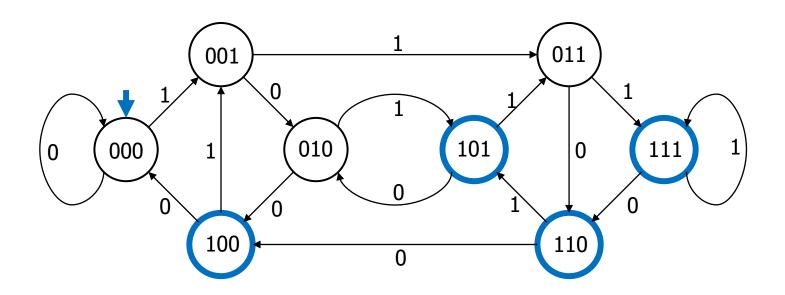
Theorem: For every NFA there is a DFA that recognizes exactly the same language

Three ways of thinking about NFAs

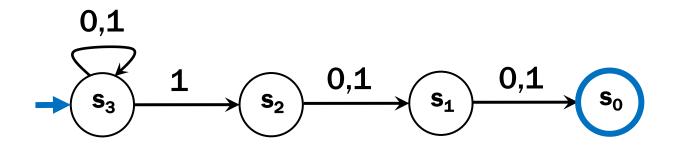
- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Outside observer: Is there a path labeled by x from the start state to some accepting state?
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel

Recall: Compare with the smallest DFA

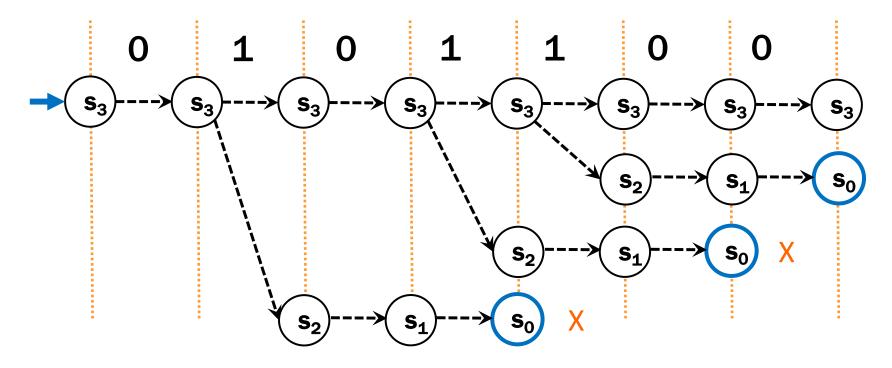




Parallel Exploration view of an NFA



Input string 0101100

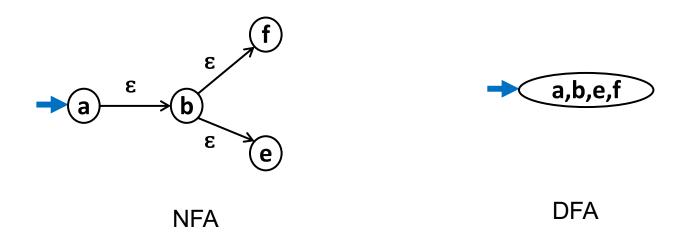


- Construction Idea:
 - The DFA keeps track of ALL states reachable in the NFA along a path labeled by the input so far (Note: not all paths; all last states on those paths.)

 There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

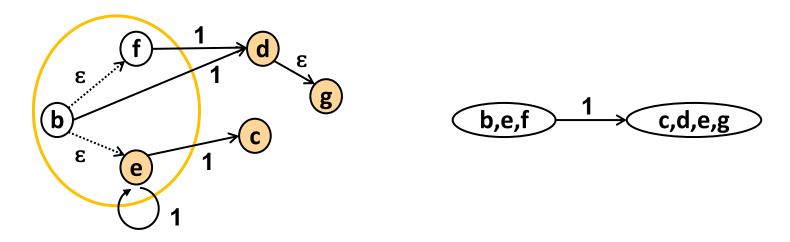
New start state for DFA

– The set of all states reachable from the start state of the NFA using only edges labeled ϵ



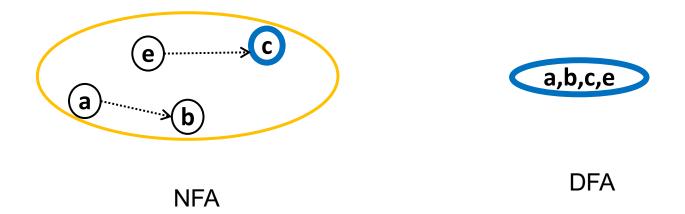
For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

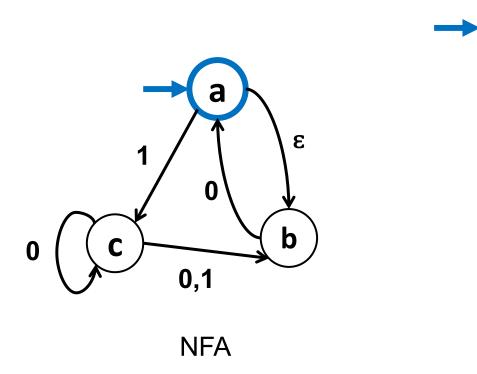
- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - · starting from some state in S, then
 - · following one edge labeled by s, and then following some number of edges labeled by ε
- T will be Ø if no edges from S labeled s exist

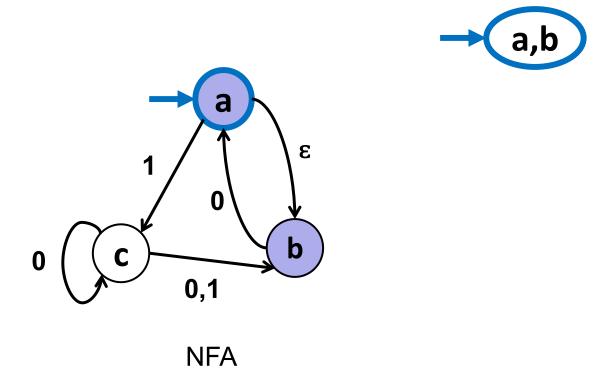


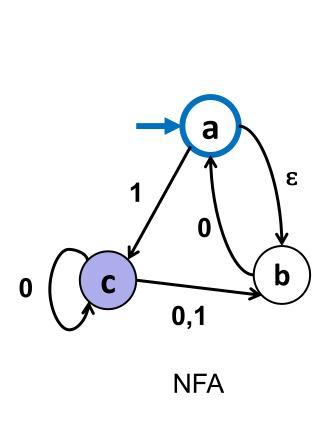
Final states for the DFA

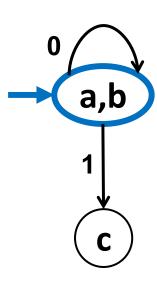
 All states whose set contain some final state of the NFA

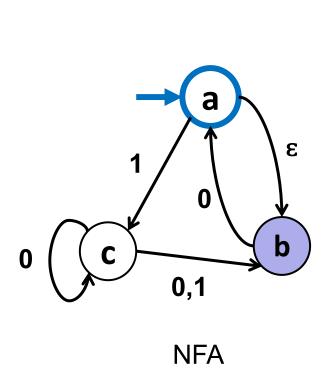


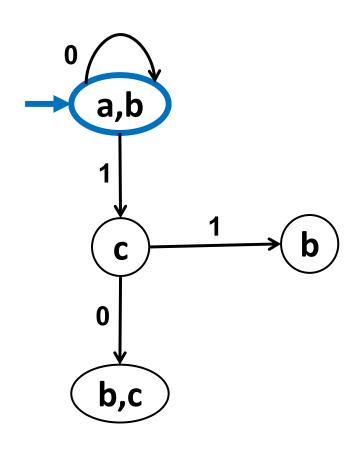


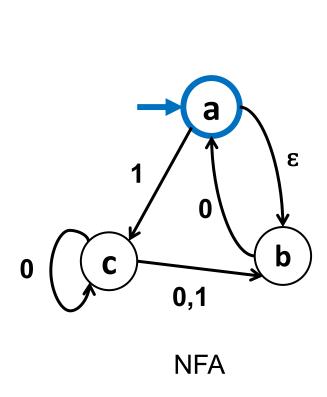


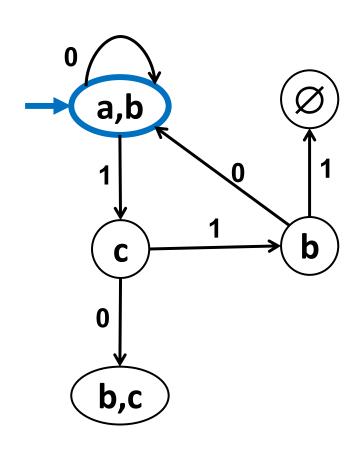




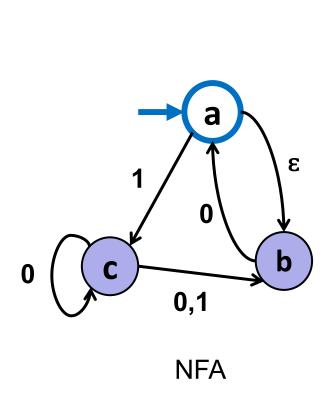


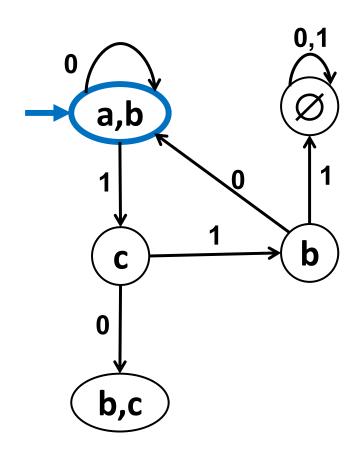






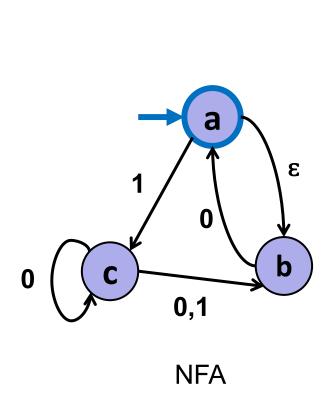
Example: NFA to DFA

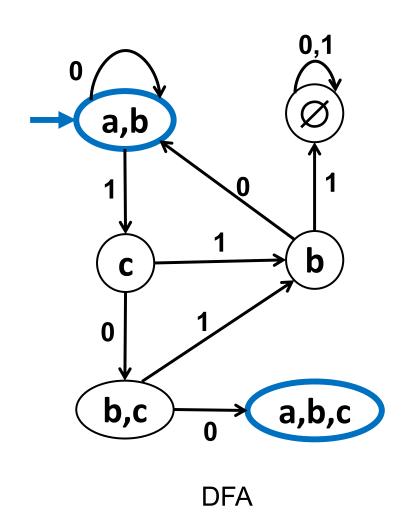




DFA

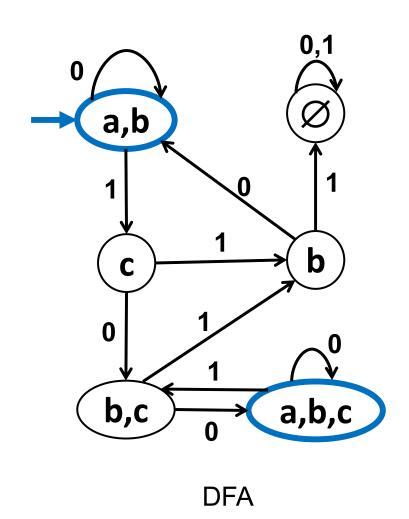
Example: NFA to DFA





Example: NFA to DFA





Regular expressions, NFAs, & DFAs

We have shown how to build a DFA for every RE

- Build NFA
- Convert NFA to DFA using subset construction
- (Later: minimize resulting DFA)

Thus, we could now implement a RegExp library

- most RegExp libraries actually simulate the NFA
- (even better: one can combine the two approaches: apply DFA minimization lazily while simulating the NFA)

The story so far...

RES \subseteq CFGs \bigcirc DFAs = NFAs

The story so far...

RES
$$\subseteq$$
 CFGs

DFAS = NFAS

Is this \subseteq really "=" or " \subsetneq "?

Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression that accepts the same language

Corollary: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know these facts

The story so far...

Languages represented by DFA, NFAs, or regular expressions are called **Regular Languages**

Example Corollary of These Results

Corollary: If **A** is the language of a regular expression, then $\overline{\mathbf{A}}$ is the language of a regular expression*.

(This is the complement with respect to the universe of all strings over the alphabet, i.e., $\overline{\mathbf{A}} = \mathbf{\Sigma}^* \setminus \mathbf{A}$.)

Recall: Algorithms for Regular Languages

We have algorithms for

- RE to NFA
- NFA to DFA
- DFA/NFA to RE (not shown)
- DFA minimization (next...)

Practice first two of these in HW. (May also be on the final.)

State Minimization

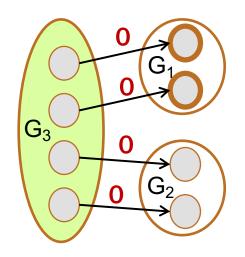
- Many FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
 - Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

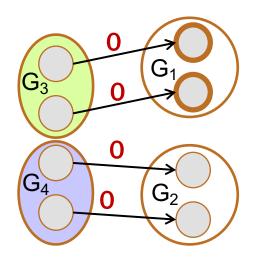
- Put states into groups
- Try to find groups that can be collapsed into one state
 - states can keep track of information that isn't necessary to determine whether to accept or reject
- Group states together until we can prove that collapsing them can change the accept/reject result

1. Put states into groups based on their outputs (whether they accept or reject)

Must separate G_1 from G_2 because G_1 is accepting and G_2 is rejecting

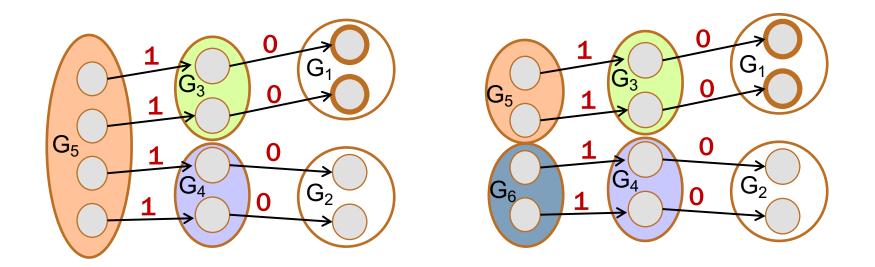
1. Put states into groups based on their outputs (whether they accept or reject)





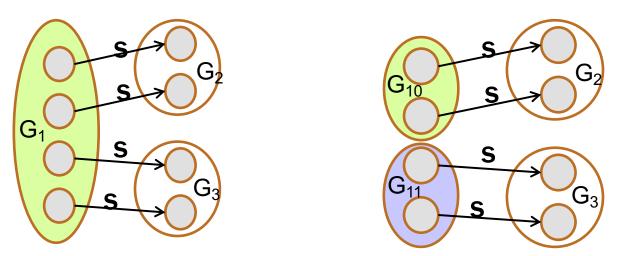
Must separate G_3 from G_4 because on ... O G_3 is accepting and G_4 is rejecting

1. Put states into groups based on their outputs (whether they accept or reject)



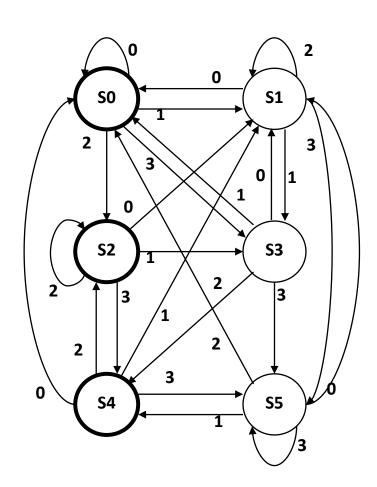
Must separate G_5 from G_6 because on ...10 G_5 is accepting and G_6 is rejecting

- 1. Put states into groups based on their outputs (whether they accept or reject)
- 2. Repeat the following until no change happens
 - a. If there is a letter s so that not all states in a group G agree on which group s leads to, split G into smaller groups based on which group the states go to on s



3. Finally, convert groups to states

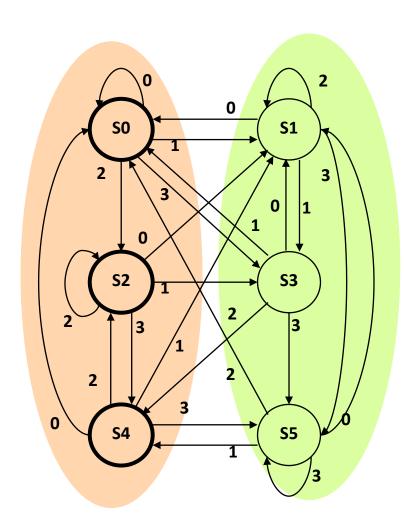
- Put states into groups
- Try to find groups that can be collapsed into one state
 - states can keep track of information that isn't necessary to determine whether to accept or reject
- Group states together until we can prove that collapsing them can change the accept/reject result
 - find a specific string x such that:
 starting from state A, following edges according to x ends in accept
 starting from state B, following edges according to x ends in reject
 - algorithm could be modified to calculate these strings



present	l	nex	output		
state	0	1	2	3	·
<u>S0</u>	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

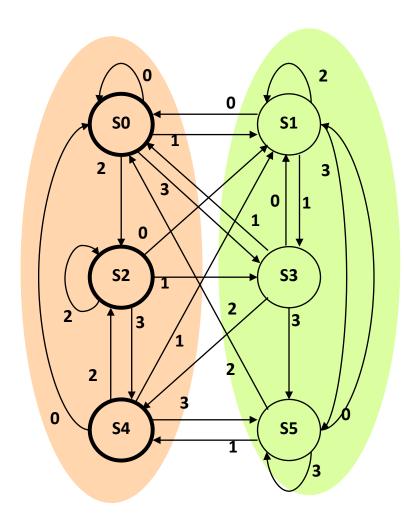
Put states into groups based on their outputs (or whether they accept or reject)



present		nex	output		
state	0	1	2	3	·
SO	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

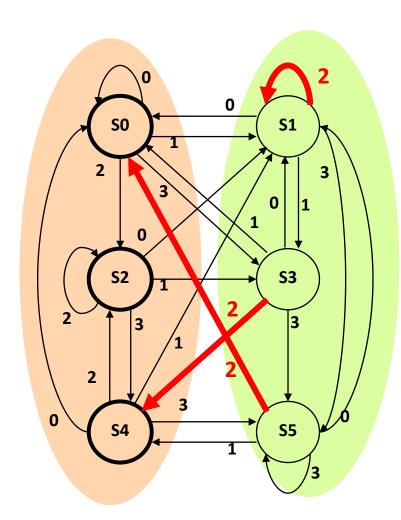
Put states into groups based on their outputs (or whether they accept or reject)



present		nex	output		
state	0	1	2	3	
SO	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

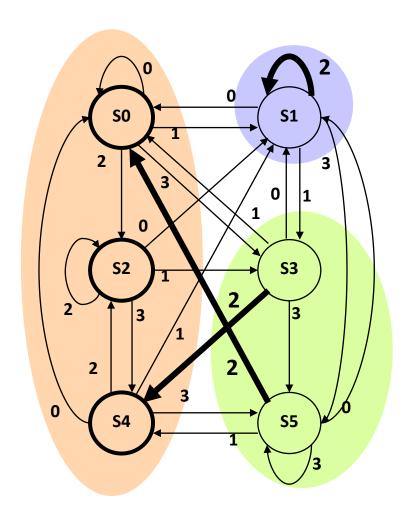
Put states into groups based on their outputs (or whether they accept or reject)



present		next	output		
state	0	1	2	3	
SO	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

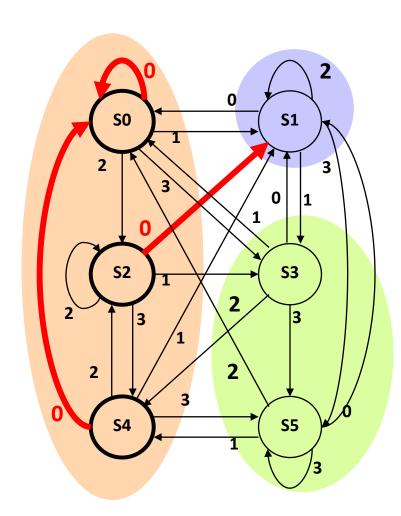
Put states into groups based on their outputs (or whether they accept or reject)



present		nex	output		
state	0	1	2	3	
SO	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

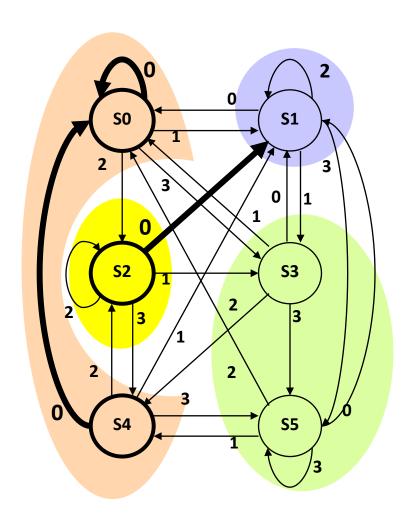
Put states into groups based on their outputs (or whether they accept or reject)



present		next	output		
state	0	1	2	3	
SO	S0	S 1	S2	S 3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

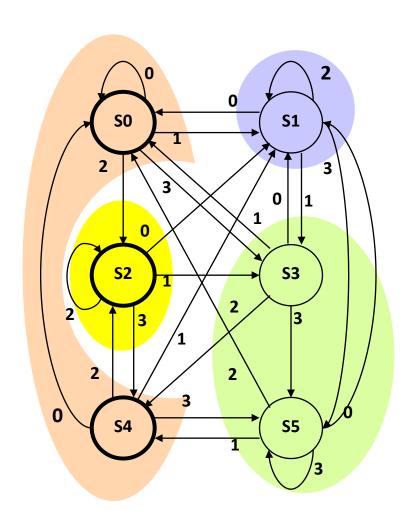
Put states into groups based on their outputs (or whether they accept or reject)



present		next	output		
state	0	1	2	3	
SO	S0	S 1	S2	S 3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they accept or reject)



present	1	nex	output		
state	0	1	2	3	•
S0	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	SO	S5	0

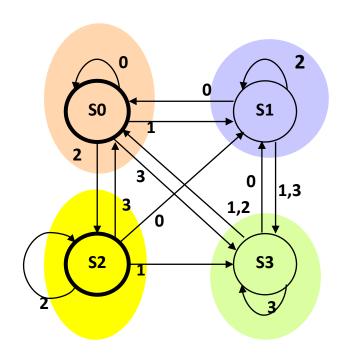
state transition table

Finally convert groups to states:

Can combine states S0-S4 and S3-S5.

In table replace all S4 with S0 and all S5 with S3

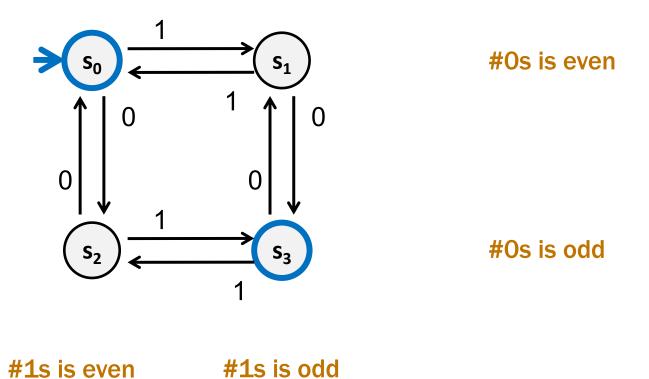
Minimized Machine



present state		nex	output		
	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S3	0
S2	S1	S3	S2	SO	1
S3	S1	SO	SO	S3	0

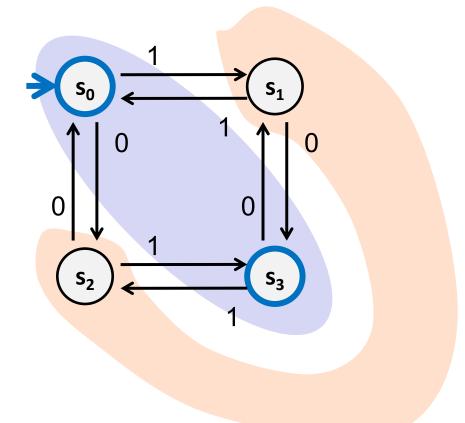
state transition table

A Simpler Minimization Example



The set of all binary strings with # of 1's \equiv # of 0's (mod 2).

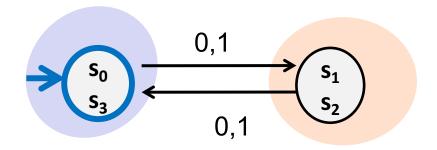
A Simpler Minimization Example



Split states into accept/reject groups

Every symbol causes the DFA to go from one group to the other so neither group needs to be split

Minimized DFA



length is even

length is odd

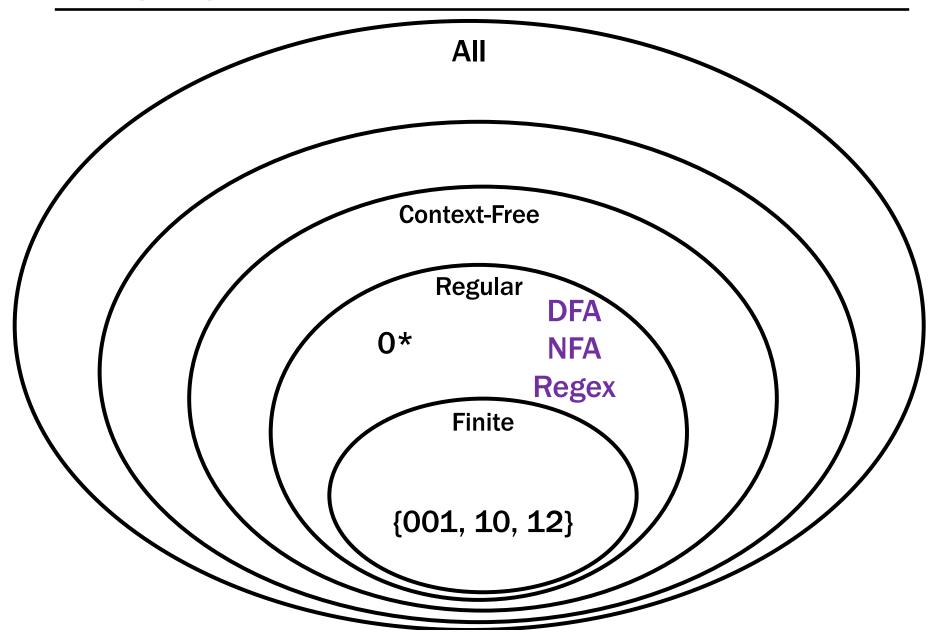
The set of all binary strings with # of 1's \equiv # of 0's (mod 2).

= The set of all binary strings with even length.

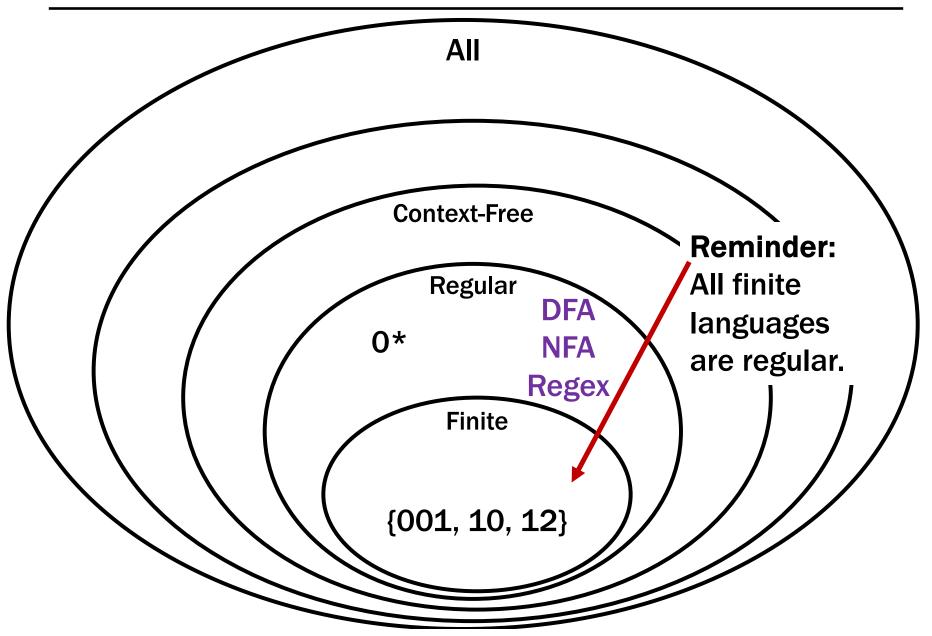
What languages have DFAs? CFGs?

All of them?

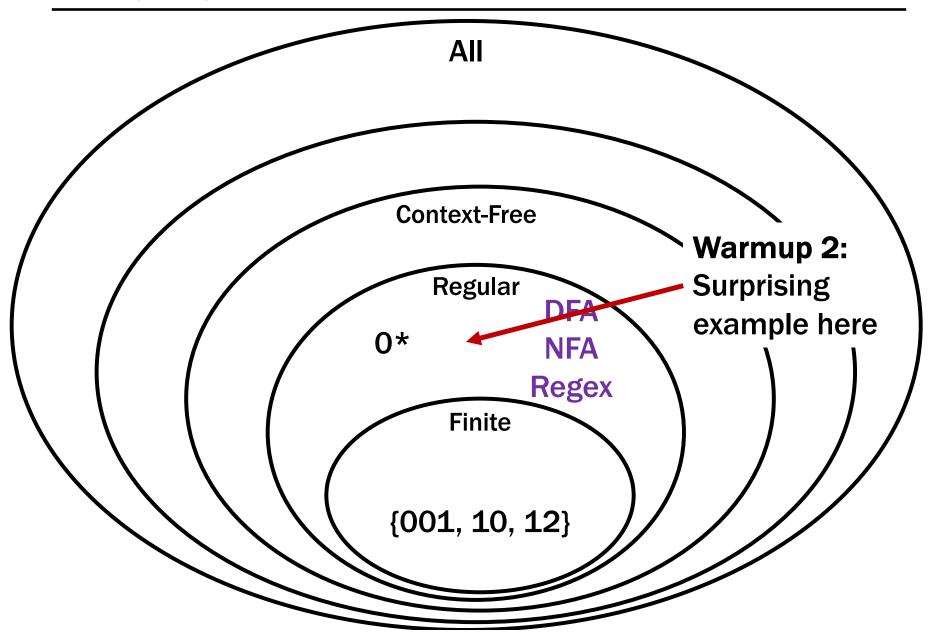
Languages and Representations!



Languages and Representations!



Languages and Machines!



An Interesting Infinite Regular Language

L = $\{x \in \{0, 1\}^*: x \text{ has an equal number of substrings } 01 \text{ and } 10\}.$

L is infinite.

0, 00, 000, ...

L is regular. How could this be?

That seems to require comparing counts...

- easy for a CFG
- but seems hard for DFAs!

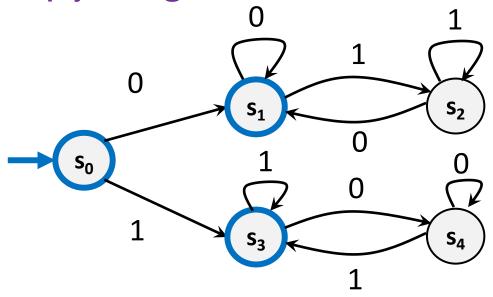
An Interesting Infinite Regular Language

L = $\{x \in \{0, 1\}^*: x \text{ has an equal number of substrings } 01 \text{ and } 10\}.$

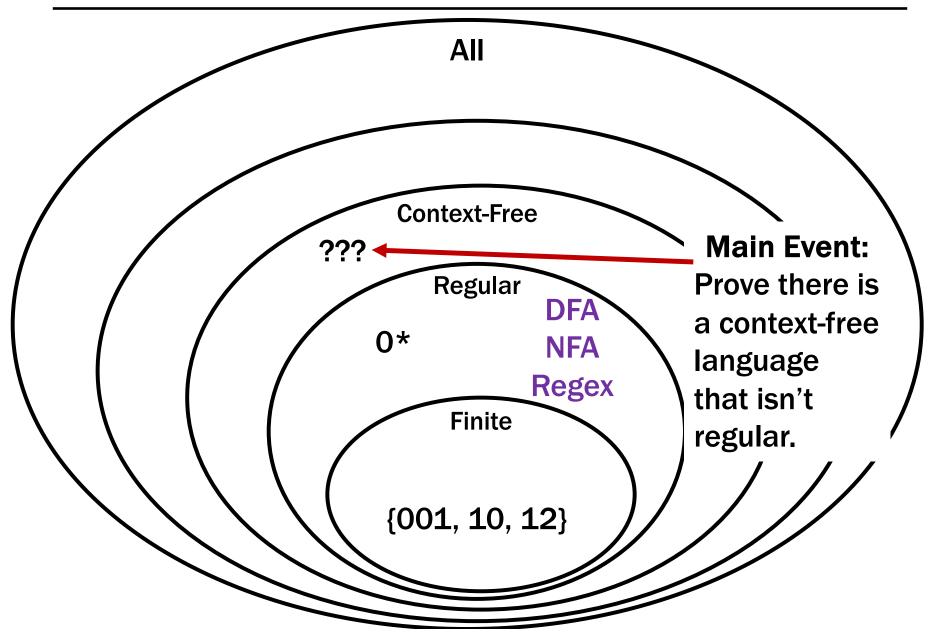
L is infinite.

0, 00, 000, ...

L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character!



Languages and Representations!

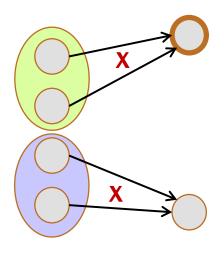


The story so far...

<u>Now</u>: Is this \subseteq really "=" or " \subsetneq "?

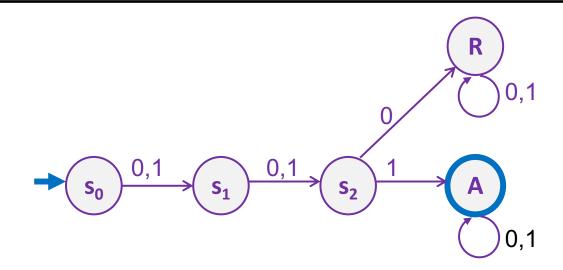
Tangent: How to prove a DFA minimal?

- Found states that must be distinguished:
 - green and purple states cannot be collapsed or else the machine would make a mistake if *rest of string* is x



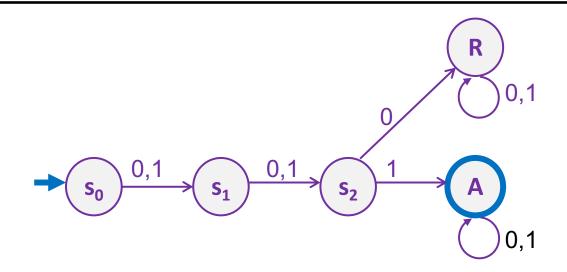
Tangent: How to prove a DFA minimal?

- Show there is no smaller DFA than this one...
 - found a set of <u>states</u> that must be distinguished gives a lower bound on the number of states
- This works but we needed the machine
 - can't use this unless we already have a working DFA wouldn't help us prove that there is no DFA!
- Show that there is no smaller DFA...
 - find a set of <u>strings</u> that must be distinguished "distinguished" = machine must take them to different states also gives a lower bound on the number of states



None of these states can be grouped!

Can turn this into an argument with strings...

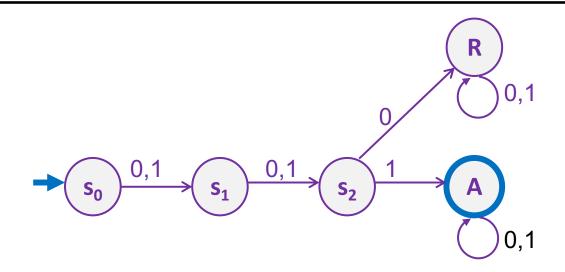


000 and 001 must be distinguished (in different states)

one is rejected and one is accepted

00 and 001, 00 and 001, and ε and 001 must be distinguished (sent to different states)

one is rejected and one is accepted

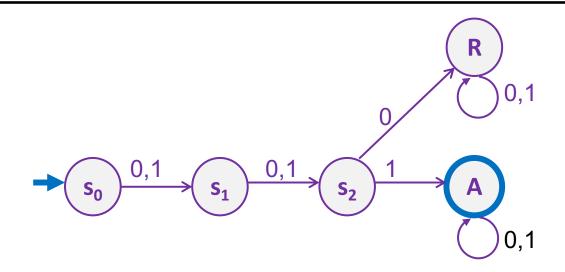


00 and 000 must be distinguished (in different states)

- suppose rest of the string is 1
- 001 is accepted and 0001 is rejected

o and ooo must be distinguished (in different states)

- suppose rest of the string is 01
- 001 is accepted and 00001 is rejected

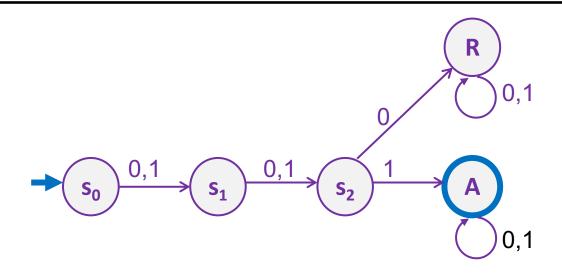


ε and 000 must be distinguished (in different states)

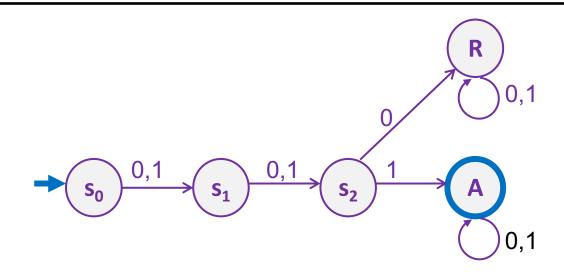
- suppose rest of the string is 001
- 001 is accepted and 000001 is rejected

o and 00 must be distinguished (in different states)

- suppose rest of the string is 01
- 001 is accepted and 0001 is rejected



- ε and 00 must be distinguished (in different states)
 - suppose rest of the string is 001
 - 001 is accepted and 00001 is rejected
- ε and 0 must be distinguished (in different states)
 - suppose rest of the string is 001
 - 001 is accepted and 0001 is rejected



$\{\epsilon, 0, 00, 000, 001\}$ is a distinguishing set

- every pair must be distinguished (in different states)
 some "rest of the string" makes one accepting and one rejecting
- any DFA needs at least 5 states

The language of "Binary Palindromes" is Context-Free

$$S \rightarrow \epsilon$$
 | 0 | 1 | 0S0 | 1S1

Can prove this is not regular (irregular) by finding an *infinite* distinguishing set!

B = {binary palindromes} can't be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B. We will show M accepts or rejects a string it shouldn't. Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}$.

Useful Lemmas about DFAs

Lemma 1: If DFA **M** has **n** states and a set **S** contains more than **n** strings, then **M** takes at least two strings from **S** to the same state.

M can't take n+1 or more strings to different states because it doesn't have n+1 different states.

So, some pair of strings must go to the same state.

B = {binary palindromes} can't be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We will show M accepts or rejects a string it shouldn't.

Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, by Lemma 1, there exist strings $O^a1 \in S$ and $O^b1 \in S$ with $a \neq b$ that end in the same state of M.

SUPER IMPORTANT POINT: You do not get to choose what a and b are. Remember, we've just proven they exist...we must take the ones we're given!

B = {binary palindromes} can't be recognized by any DFA

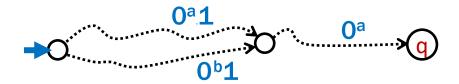
Suppose for contradiction that some DFA, M, accepts B.

We will show M accepts or rejects a string it shouldn't.

Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \ne b$ that end in the same state of M.

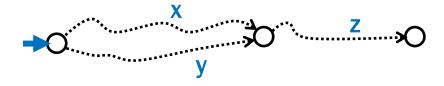
Now, consider appending O^a to both strings.



Useful Lemmas about DFAs

Lemma 2: If DFA **M** takes $x, y \in \Sigma^*$ to the same state, then for every $z \in \Sigma^*$, M accepts $x \cdot z$ iff it accepts $y \cdot z$.

M can't remember if the input was **x** or **y**.



B = {binary palindromes} can't be recognized by any DFA

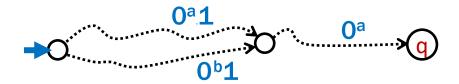
Suppose for contradiction that some DFA, M, accepts B.

We will show M accepts or rejects a string it shouldn't.

Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \ne b$ that end in the same state of M.

Now, consider appending 0° to both strings.



Since 0^a1 and 0^b1 end in the same state, 0^a10^a and 0^b10^a also end in the same state, call it q. But then M makes a mistake: q needs to be an accept state since $0^a10^a \in B$, but M would accept $0^b10^a \notin B$, which is an error.

B = {binary palindromes} can't be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We will show M accepts or rejects a string it shouldn't.

Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n1 : n \ge 0\}.$

Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \ne b$ that end in the same state of M.

Now, consider appending 0° to both strings.

Since 0°1 and 0°1 end in the same state, 0°10° and 0°10° also end in the same state, call it q. But then M makes a mistake: q needs to be an accept state since 0°10° ∈ B, but M would accept 0°10° ∉ B, which is an error.

This proves that M does not recognize B, contradicting our assumption that it does. Thus, no DFA recognizes B.

Showing that a Language L is not regular

- 1. "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an **INFINITE** set **S** of prefixes (which we intend to complete later).
- 3. "Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for $s_a \neq s_b$ that end up at the same state of M."
- 4. Consider appending the (correct) completion t to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Thus, no DFA recognizes L."

Showing that a Language L is not regular

The choice of **S** is the creative part of the proof

You must find an <u>infinite</u> set S with the property that *no two* strings can be taken to the same state

 i.e., for every pair of strings S there is a "rest of the string" that makes one accepting and one rejecting

Suppose for contradiction that some DFA, M, recognizes A.

Let S =

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Note that $0^a1^a \in A$, but $0^b1^a \notin A$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $0^a1^a \in A$, state q must be an accept state but then M would incorrectly accept $0^b1^a \notin A$ so M does not recognize A.

Thus, no DFA recognizes A.

Suppose for contradiction that some DFA, M, accepts P.

Let S =

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some $a \ne b$ that end in the same state in M.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \ne b that end in the same state in M.

Consider appending) to both strings.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some $a \ne b$ that end in the same state in M.

Consider appending) to both strings.

Note that $(a)^a \in P$, but $(b)^a \notin P$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $(a)^a \in P$, state q must be an accept state but then M would incorrectly accept $(b)^a \notin P$ so M does not recognize P.

Thus, no DFA recognizes P.

Showing that a Language L is not regular

- 1. "Suppose for contradiction that some DFA M recognizes L."
- Consider an INFINITE set S of prefixes (which we intend to complete later). It is imperative that for every pair of strings in our set there is an <u>"accept" completion</u> that the two strings DO NOT SHARE.
- 3. "Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for $s_a \neq s_b$ that end up at the same state of M."
- 4. Consider appending the (correct) completion t to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Thus, no DFA recognizes L."

Distinguishing Sets

 Not necessary that our construction can generate every string in the language

Examples:

- palindromes: only generated those of the form Oⁿ10ⁿ
- balanced parentheses: only generated (ⁿ)ⁿ
- Sufficient to find a "core" set of strings whose prefixes must be distinguished
 - this becomes our distinguishing set

Recall: Prove $L = \{0^n1^n : n \ge 0\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes L.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Note that $0^a1^a \in L$, but $0^b1^a \notin L$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $0^a1^a \in A$, state q must be an accept state but then M would incorrectly accept $0^b1^a \notin L$ so M does not recognize L.

Thus, no DFA recognizes L.

Prove $U = \{0^n1^m : m \ge n \ge 0\}$ is not regular

- This is a superset: L ⊆ U
- Even though U is a bigger set, all we need to do is find an infinite set of strings that must be distinguished
 - we don't have to show that all strings in U must be distinguished
- The same strings still need to be distinguished:

```
S = \{0^n : n \ge 0\} = \{\epsilon, 0, 00, 000, ...\}
```

Let x, y \in S be arbitrary. Suppose that x \neq y. By the definition of S, x = 0^a and y = 0^b for some a \neq b.

Consider $z = 1^{\min(a,b)}$

Prove $U = \{0^n1^m : m \ge n \ge 0\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes U.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Let c = min(a, b) and d = max(a, b). Consider appending 1° to both strings. We can see that $0^c1^c \in U$ (since $c \ge c$) but $0^d1^c \notin U$ (since c < d). Note that 0^c1^c and 0^d1^c are 0^a1^c and 0^b1^c .

Both 0^a1^c and 0^b1^c end up in the same state of M, so M either accepts or rejects both strings. Since $0^a1^c \in U \neq 0^b1^c \in U$, M gives the wrong answer for one, so M does not recognize U.

Thus, no DFA recognizes U.

Important Notes

- It is not necessary for our strings xz with $x \in L$ to allow any string in the language
 - we only need to find some infinite set of strings that must be distinguished by the machine
- It is not true that, if L is irregular and L ⊆ U, then
 U is irregular!
 - we always have $L \subseteq \{0,1\}^*$ and $\{0,1\}^*$ is regular!

Proving {0,1}* is not regular fails!

S =
$$\{0^n : n \ge 0\} = \{\epsilon, 0, 00, 000, ...\}$$

Why is this no longer a distinguishing set?

Let $x, y \in S$ be arbitrary. Suppose that $x \neq y$.

By the definition of S, $x = 0^a$ and $y = 0^b$ for some a, $b \ge 0$. Note that we must have $a \ne b$. (Otherwise, we would have x = y.)

Consider $z = 1^a$. We can see that $x \cdot z = 0^a 1^a \in \{0,1\}^*$ (since a = a) and $y \cdot z = 0^b 1^a \notin \{0,1\}^*$ since $(b \neq a)$.

No longer true that $0^b 1^a \notin \{0,1\}^*!$

Important Notes

- It is not necessary for our strings xz with $x \in L$ to allow any string in the language
 - we only need to find a small "core" set of strings that must be distinguished by the machine
- It is not true that, if L is irregular and L ⊆ U, then
 U is irregular!
 - we always have $L \subseteq \Sigma^*$ and Σ^* is regular!
 - our argument needs different answers: $(xz \in L) \neq (yz \in L)$ and for Σ^* , both strings are always in the language

Do not claim in your proof that, because L ⊆ U, U is also irregular