
CSE 311: Foundations of Computing

Topic 7: Languages

Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S
– example: {0,1}* is the set of binary strings

0, 1, 00, 01, 10, 11, 000, 001, … and “”

• S* is defined recursively by
– Basis: ε	Î	S∗ (ε is the empty string, i.e., “”)
– Recursive: if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*

Languages: Sets of Strings

• Subsets of strings are called languages
• Examples:
– S*	=	All strings over alphabet S
– palindromes over S
– binary strings with an equal # of 0’s and 1’s
– syntactically correct Java/C/C++ programs
– valid English sentences
– correct solutions to coding problems:

𝑆 = 𝑥#𝑦	 𝑦	is	Java	code	that	does	what	𝑥	says}

We can define a set from a predicate P:

S = the set of all x for which P(x) is true

Recall: Building Sets from Predicates

S := {x : P(x)}

Almost All of CS is Languages

• Any predicate can be phrased as “x ∈ S”
– computing “x ∈ S” is as hard as computing any predicate

• All math objects can be encoded as strings
– see Java Object's toString function

• Almost anything can be phrased "x ∈ L" for language L
– only restriction is that predicates have boolean output
– but this is usually not a real restriction

each bit of any output is a T/F value
so you computing the individual bits can be phrased as "x ∈ S"

Theoretical Computer Science

Foreword on Intro to Theory C.S.

• Look at different ways of defining languages
• See which are more expressive than others
– i.e., which can define more languages

• Later: connect ways of defining languages to
different types of (restricted) computers
– computers capable of recognizing those languages

i.e., distinguishing strings in the language from not

• Consequence: computers that recognize more
expressive languages are more powerful

Palindromes

Palindromes are strings that are the same when
read backwards and forwards

Basis:
 ε is a palindrome
 any 𝑎	∈ S is a palindrome

 Recursive step:
 If 𝑝 is a palindrome,
 then 𝑎𝑝𝑎 is a palindrome for every 𝑎 ∈ S
 (note that "𝑎𝑝𝑎" really means 𝜀𝑎 • 𝑝 • 𝜀𝑎)

Regular Expressions

Regular expressions over S
• Basis:

 e is a regular expression (could also include Æ)
 a is a regular expression for any a Î S

• Recursive step:
If A and B are regular expressions, then so are:

A È B
AB
A*

Each Regular Expression is a “pattern”

e matches only the empty string
a matches only the one-character string a
A È B matches all strings that either A matches

or B matches (or both)
AB matches all strings that have a first part that A

matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another (e	È A	È AA	È AAA È	…)

Definition of the language
matched by a regular expression

Language of a Regular Expression

The language defined by a regular expression:
 L ε = {𝜀}
 L 𝑎 = {𝑎}
 L 𝐴 ∪ 𝐵 = 𝐿(𝐴) ∪ 𝐿(𝐵)
 L 𝐴𝐵 = {𝑦 • 𝑧 ∶ 	𝑦 ∈ 𝐿(𝐴), 𝑧 ∈ 𝐿 𝐵 }
 L 𝐴∗ = ⋃"#$

% 𝐿(𝐴")
 𝐴%	defined recursively by
 𝐴& = {𝜀}
 𝐴%'(= 𝐴%𝐴

Examples

001*

0*1*

Examples

001*

0*1*

{00, 001, 0011, 00111, …}

Any number of 0’s followed by any number of 1’s

Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*

Examples

(0 È 1) 0 (0 È 1) 0

(0*1*)*

{0000, 0010, 1000, 1010}

All binary strings

Examples

• All binary strings that contain 0110

• All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001
followed by anything

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*

Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g., 0*(10*10*)*

e.g., 0*(1 ⋃ 1000*)*(ε ⋃ 10)

at least two 0s between 1s

Finite languages vs Regular Expressions

• All finite languages have a regular expression.
 (a language is finite if its elements can be put into a list)

Why?

• Given a list of strings s1, s2, …, sn

Construct the regular expression

 s1 ∪ s2 ∪ … ∪ sn

(Could make this formal by induction on n)

Finite languages vs Regular Expressions

• Every regular expression that does not use *
generates a finite language.

Why?

• Prove by structural induction on the syntax of regular
expressions!

Star-free implies finite

Let A be a regular expression that does not use *. Then
L(A) is finite.

Proof: We proceed by structural induction on A.

Case ε:

Case a:

Case A ∪ B:

L(ε) = {ε}, which is finite

L(a) = {a}, which is finite

L(A ∪ B) = L(A) ∪ L(B)
 By the IH, each is finite, so their union is finite.

Star-free implies finite

Let A be a regular expression that does not use *. Then
L(A) is finite.

Proof: We proceed by structural induction on A.
Case AB:
 L(AB) = {𝑦 • 𝑧 ∶ 	𝑦 ∈ 𝐿(𝐴), 𝑧 ∈ 𝐿 𝐵 }
 By the IH, L(A) and L(B) are finite.

 Every element of L(AB) is covered by a pair (y, z) where
 𝑦 ∈ 𝐿(𝐴) and 𝑧 ∈ 𝐿(𝐵), so L(AB) is finite.

(No case for A*!)

Finite languages vs Regular Expressions

Key takeaways:

– Regular expressions can represent all finite languages

– To prove a language is "regular", just give the regular
expression that describes it.

– Regular expressions are more powerful than finite
languages (e.g., 0* is an infinite language)

– To prove something about all regular expressions, use
structural induction on the syntax.

Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

• Used in grep, a program that does pattern matching
searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential
feature of PHP

• We can use regular expressions in programs to process
strings!

Regular Expressions in Java

• Pattern p = Pattern.compile("a*b");
• Matcher m = p.matcher("aaaaab");
• boolean b = m.matches();

[01] a 0 or a 1 ^ start of string $ end of string
[0-9] any single digit \. period \, comma \- minus
. any single character
ab a followed by b (AB)
(a|b) a or b (A È B)
a? zero or one of a (A È	e)
a* zero or more of a A*
a+ one or more of a AA*

• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$
 General form of decimal number e.g. 9.12 or -9,8 (Europe)

Limitations of Regular Expressions

• Not all languages can be specified by regular
expressions

• Even some easy things like
– Palindromes
– Strings with equal number of 0’s and 1’s

• But also more complicated structures in
programming languages
– Matched parentheses
– Properly formed arithmetic expressions
– etc.

Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

How does this grammar generate 0110?

Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

How does this grammar generate 0110?

S ® 0S0 ® 01S10 ® 01ε10 = 0110

Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

How to describe all strings generated?

The set of all binary palindromes

Context-Free Grammars

• A Context-Free Grammar (CFG) is given by a finite set
of substitution rules involving
– A finite set V of variables that can be replaced
– Alphabet S of terminal symbols that can’t be replaced
– One variable, usually S, is called the start symbol

• The substitution rules involving a variable A, written as
 A ® w1 | w2 | ⋯ | wk

where each wi is a string of variables and terminals
– that is wi ∈ (V	È	S)*

How CFGs generate strings

• Begin with start symbol S

• If there is some variable A in the current string you
can replace it by one of the w’s in the rules for A
– A ® w1 | w2 | ⋯ | wk

–Write this as xAy ⇒ xwy
– Repeat until no variables left

• The set of strings the CFG describes are all strings,
containing no variables, that can be generated in this
manner (after a finite number of steps)

Example Context-Free Grammars

Example: S ® 0S0 | 1S1 | 0 | 1 | e

The set of all binary palindromes

• This is a claim of set equality
– first set defined by a CFG, second by a predicate

𝑥 ∈ 0,1 ∗ ∶ 𝑆 →∗ 𝑥 = 𝑥 ∈ 0,1 ∗ ∶ 𝑥* = 𝑥

• Usually to argue subset directions separately

Example Context-Free Grammars

Example: S ® A | B
 A ® 0A | e
 B ® 1B | e

How does this grammar generate 000?

Example Context-Free Grammars

Example: S ® A | B
 A ® 0A | e
 B ® 1B | e

How does this grammar generate 000?

S ® A ® 0A ® 00A ® 000A ® 000ε = 000

Example Context-Free Grammars

Example: S ® A | B
 A ® 0A | e
 B ® 1B | e

How to describe all strings generated?

strings of all 0s or all 1s

(all 0s) ∪ (all 1s)

Example Context-Free Grammars

Example: S ® 0S | S1 | e

Example Context-Free Grammars

Example: S ® 0S | S1 | e

0*1*

Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

S ® 0S1 | e

Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0"1&": 𝑛 ≥ 0

S ® 0S1 | e

Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0"1&": 𝑛 ≥ 0

S ® 0S1 | e

S ® 0S11 | e

Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0"1"'(0: 𝑛 ≥ 0

S ® 0S1 | e

Example Context-Free Grammars

Grammar for 0"1": 𝑛 ≥ 0
(i.e., matching 0*1* but with same number of 0’s and 1’s)

Grammar for 0"1"'(0: 𝑛 ≥ 0

S ® 0S1 | e

S ® A 10
A ® 0A1 | e

Example Context-Free Grammars

Example: S ® (S) | SS | e

The set of all strings of matched parentheses

• This is a claim of set equality
– first set defined by a CFG, second by a predicate
– not at all obvious!

Example Context-Free Grammars

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

S ® SS | 0S1 | 1S0 | e

Example Context-Free Grammars

Example: S ® SS | 0S1 | 1S0 | e

Set of all 𝑥 ∈ {0,1}∗ with #& 𝑥 = #((𝑥)

• This is a claim of set equality
– first set defined by a CFG, second by a predicate

• Need to argue subset directions separately
– clear that strings from CFG equal 0s and 1s
– but can the CFG produce any such string?

Example Context-Free Grammars

Define 𝑓) 𝑘 to be the number of “0”s – “1”s
in first 𝑘 characters of 𝑥.

 E.g., for x = 011100

first 0 characters "" 0 – 0 = 0
first 1 character "0" 1 – 0 = 1
first 2 characters "01" 1 – 1 = 0
first 3 characters "011" 1 – 2 = -1

0 1 2 3 4 5 6𝑓%

Example Context-Free Grammars

Define 𝑓) 𝑘 to be the number of “0”s – “1”s
in first 𝑘 characters of 𝑥.

 E.g., for x = 011100

first 0 characters "" 0 – 0 = 0
first 1 character "0" 1 – 0 = 1
first 2 characters "01" 1 – 1 = 0
first 3 characters "011" 1 – 2 = -1
first 4 characters "0111" 1 – 3 = -2
first 5 characters "01110" 2 – 3 = -1
all 6 characters "011100" 3 – 3 = 0

0 1 2 3 4 5 6𝑓%

Define 𝑓+ 𝑘 to be the number of “0”s – “1”s in first
𝑘 characters of 𝑥.

 E.g., for x = 011100

Define 𝑓+ 𝑘 to be the number of “0”s – “1”s
in first 𝑘 characters of 𝑥.

 If 𝑘-th character is 0, then 𝑓+ 𝑘 = 𝑓+ 𝑘 − 1 + 1
 If 𝑘-th character is 1, then 𝑓+ 𝑘 = 𝑓+ 𝑘 − 1 − 1

0 1 2 3 4 5 6

Example Context-Free Grammars

𝑓%

Define 𝑓+ 𝑘 to be the number of “0”s – “1”s in first
𝑘 characters of 𝑥.

 E.g., for x = 011100

Define 𝑓+ 𝑘 to be the number of “0”s – “1”s
in first 𝑘 characters of 𝑥.

 𝑓+ 𝑘 = 0 when first k characters have #0s = #1s

0 1 2 3 4 5 6

Example Context-Free Grammars

𝑓%

Define 𝑓+ 𝑘 to be the number of “0”s – “1”s in first
𝑘 characters of 𝑥.

 E.g., for x = 011100

𝑓+ 𝑘 = 0 when first k characters have #0s = #1s
– starts out at 0 𝑓 0 = 0
– ends at 0 𝑓 𝑛 = 0

0 1 2 3 4 5 6

Example Context-Free Grammars

𝑓%

Binary strings with equal numbers of 0s and 1s
(not just 0n1n, also 0101, 0110, etc.)

𝑓+ 𝑘 = 0 when first k characters have #0s = #1s
– starts out at 0 (immediate) 𝑓 0 = 0
– ends at 0 iff 𝑥 is in the language 𝑓 𝑛 = 0

Example Context-Free Grammars

S ® SS | 0S1 | 1S0 | e

Three possibilities for 𝑓+(k) for 𝑘 ∈ {1,… , 𝑛 − 1}

• 𝑓+ 𝑘 > 0 for all such 𝑘

• 𝑓+ 𝑘 < 0 for all such 𝑘

• 𝑓+ 𝑘 = 0 for some such 𝑘

Example Context-Free Grammars

0 1 n-1 n

S ® 0S1

S ® 1S0

S ® SS

0 1 n-1 n

0 1 n-1 n

Parse Trees

Suppose that grammar G generates a string x
• A parse tree of x for G has
– Root labeled S (start symbol of G)
– The children of any node labeled A are labeled by

symbols of w left-to-right for some rule A ® w
– The symbols of x label the leaves ordered left-to-right

S ® 0S0 | 1S1 | 0 | 1 | e

S

0 0S

S1 1

1
Parse tree of 01110

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
 | 5 | 6 | 7 | 8 | 9

Generate (2 + x) * y

E ® E*E	
 ®	(E)*E
 ® (E+E)*E

E

E*

E

+E E

E

)(

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
 | 5 | 6 | 7 | 8 | 9

Generate (2 + x) * y

E ® E*E	
 ®	(E)*E
 ® (E+E)*E
 ® (2+E)*E
 ® (2+x)*E
 ® (2+x)*y

E

E*

yE

+

x2

E E

E

)(

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
 | 5 | 6 | 7 | 8 | 9

Generate (2 + x) * y

E ® E*E	
 ®	(E)*E
 ® (E+E)*E
 ® (2+E)*E
 ® (2+x)*E
 ® (2+x)*y

E

E*

yE

+

x2

E E

E

)(

or…
® (E+E)*y
® (E+x)*y
® (2+x)*y

Simple Arithmetic Expressions

E® E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4
 | 5 | 6 | 7 | 8 | 9

Generate x+y∗z in ways that give two different parse trees

E ⇒ E+E	⇒ x+E	⇒	x+E∗E	⇒ x+y∗E	⇒ x+y∗z	
(multiply	y	with	z	and	then	add	to	x)

E ⇒ E∗E	⇒	E+E∗E	⇒ x+E∗E
				⇒ x+y∗E	⇒ x+y∗z	
(add	x	to	y,	then	multiply	by	z)

E

E

+
x

E*

z
y

E E

E

E +

x

E

*
zy

E E

Induction on Parse Trees

Structural induction is the tool used to prove many
more interesting theorems

• General associativity follows from our one rule
– likewise for generalized De Morgan’s laws

• Okay to substitute 𝑦 for 𝑥 everywhere in a modular
equation when we know that 𝑥 ≡& 𝑦

• The "Meta Theorem" on set operators

These are proven by induction on parse trees
– parse trees are recursively defined

Two ways to Define Binary Palindromes

Recursively-Defined Set
 Basis:
 ε is a palindrome
 any 𝑎	∈ {0, 1} is a palindrome
 Recursive step:
 If 𝑝 is a palindrome,
 then 𝑎𝑝𝑎 is a palindrome for every 𝑎 ∈ {0, 1}

Grammar S ® 0S0 | 1S1 | 0 | 1 | e

Recursively-defined sets of strings
have the same power as grammars

CFGs and recursively-defined sets of strings

• A CFG with the start symbol S as its only variable
recursively defines the set of strings of terminals
that S can generate
– define S as a tree and then traverse it to get a string

• A CFG with more than one variable is a
simultaneous recursive definition of the sets of
strings generated by each of its variables
– sometimes necessary to use more than one

We will explore this in HW7

Theorem: For any set of strings (language) 𝐴
described by a regular expression, there is a
CFG that recognizes 𝐴.

Proof idea:
P(A) is “A is recognized by some CFG”
Structural induction based on the recursive
definition of regular expressions...

CFGs and Regular Expressions

Regular Expressions over S

• Basis:
– ɛ is a regular expression
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions then so are:

A È B
AB
A*

CFGs are more general than REs

• CFG to match RE e

S ® e

• CFG to match RE a (for any 𝑎 Î S)

S ® a

CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A
 CFG with start symbol S2 matches RE B

• CFG to match RE A È B

S ® S1 | S2 + rules from original CFGs

• CFG to match RE AB

S ® S1 S2 + rules from original CFGs

CFGs are more general than REs

Suppose CFG with start symbol S1 matches RE A

• CFG to match RE A* (= e È A È AA È AAA È ...)

S ® S1 S | e + rules from CFG with S1

Last time: Languages — REs and CFGs

Saw two new ways of defining languages
• Regular Expressions (0 È 1)* 0110 (0 È 1)*
– easy to understand (declarative)

• Context-free Grammars S ® SS | 0S1 | 1S0 | e
– more expressive
– (≈ recursively-defined sets)

We will connect these to machines shortly.
But first, we need some new math terminology….

Cartesian Product

We defined Cartesian Product as

“The set of all (a, b) such that a ∈ A and b ∈ B”

Can define a subset of pairs satisfying P(a,b):

𝐴×𝐵 ≔ { 𝑎, 𝑏 ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵	}

{ 𝑎, 𝑏 ∶ 𝑷 𝒂, 𝒃 , 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵	}

Relations

Let A and B be sets,
A binary relation from A to B is a subset of A ´ B

Let A be a set,
A binary relation on A is a subset of A ´ A

Relations You Already Know

≥ on ℕ
 That is: {(x,y) : x ≥ y and x, y Î ℕ}

< on ℝ
 That is: {(x,y) : x < y and x, y Î ℝ}

= on ∑*
 That is: {(x,y) : x = y and x, y Î ∑*}

⊆ on 𝓟(U) for universe U
 That is: {(A,B) : A ⊆ B and A, B Î 𝓟(U)}

More Relation Examples

R1 = {(x, y) : x ≡5 y }

R2 = {(c1, c2) : c1 is a prerequisite of c2 }

R3 = {(s, c) : student s has taken course c }

R4 = {(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)}

Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b,a) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

R is transitive iff (a,b)Î R and (b,c)Î R implies (a,c) Î R

Which relations have which properties?

≥ on ℕ	:		
< on ℝ	:		
= on ∑*	:	
⊆ on 𝓟(U):
R2 = {(x, y) : x ≡5 y}:
R3 = {(c1, c2) : c1 is a prerequisite of c2 }:

 R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

Which relations have which properties?

≥ on ℕ	:		Reflexive, Antisymmetric, Transitive
< on ℝ	:		Antisymmetric, Transitive
= on ∑*	:	Reflexive, Symmetric, Antisymmetric, Transitive

⊆ on 𝓟(U): Reflexive, Antisymmetric, Transitive
R2 = {(x, y) : x ≡5 y}: Reflexive, Symmetric, Transitive
R3 = {(c1, c2) : c1 is a prerequisite of c2 }: Antisymmetric

 R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

Combining Relations

Let 𝑹 be a relation from 𝑨 to 𝑩.
Let 𝑺 be a relation from 𝑩 to 𝑪.

The composition of 𝑹 and 𝑺, 𝑹 ∘ 𝑺 is the relation
from 𝑨 to 𝑪 defined by:

𝑹 ∘ 𝑺 = {(a, c) : $ b such that (a, b) Î 𝑹 and (b, c) Î 𝑺}

Intuitively, a pair is in the composition if there is a
“connection” from the first to the second.

Examples

(a,b) Î Parent iff b is a parent of a
(a,b) Î Sister iff b is a sister of a

When is (x,y)	Î Parent ∘ Sister?

When is (x,y)	Î Sister ∘ Parent?

R ∘ S = {(a, c) : $ b such that (a,b)Î R and (b,c)Î S}

Aunt

Parent ∩ HasSister

Examples

Using only the relations Parent, Child, Father,
 Son, Brother, Sibling, Husband
and composition, express the following:

Uncle: b is an uncle of a

Cousin: b is a cousin of a
Parent ∘ Brother

Parent ∘ Sibling ∘ Child

or Parent ∘ (Brother ∪ Sister ∪ …) ∘ Child
remember that relations are still sets

Powers of a Relation

𝑹𝟐 	 ∷= 𝑹 ∘ 𝑹
 = { 𝒂, 𝒄 ∶ ∃𝒃	such	that 𝒂, 𝒃 ∈ 𝑹	and 𝒃, 𝒄 ∈ 𝑹	}

𝑹𝟎 	 ∷= { 𝒂, 𝒂 ∶ 𝒂 ∈ 𝑨} “the equality relation on 𝑨”

𝑹𝒏$𝟏 ∷= 𝑹𝒏 ∘ 𝑹 for 𝒏 ≥ 𝟎

e.g., 𝑹𝟏 	= 	𝑹𝟎 ∘ 𝑹	 = 	 𝑹
 𝑹𝟐 	= 	𝑹𝟏 ∘ 𝑹	 = 	 𝑹 ∘ 𝑹

Non-constructive Definitions

Recursively defined sets and functions describe these
objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

How can we define functions non-constructively?
– (useful for writing a function specification)

S = {x : P(x)}

Functions

A function 𝑓 ∶ 𝐴	 → 𝐵 (A as input and B as output) is a
special type of relation.

A function f from A to B is a relation from A to B such that:
for every 𝑎 ∈ 𝐴, there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓

I.e., for every input 𝑎 ∈ 𝐴, there is one output 𝑏 ∈ 𝐵.
We denote this 𝑏 by 𝑓(𝑎).

Functions

A function 𝑓 ∶ 𝐴	 → 𝐵 (A as input and B as output) is a
special type of relation.

A function f from A to B is a relation from A to B such that:
for every 𝑎 ∈ 𝐴, there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓

Ex: {((a, b), d) : d is the largest integer dividing a and b}

• gcd : ℕ	×	ℕ → ℕ
• defined without knowing how to compute it

(When attempting to define a non-constructively, we sometimes say
the function is “well defined” if the "exactly one" part holds)

Directed Graphs

G = (V, E) V – vertices
E – edges (relation on V)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

G = (V, E) V – vertices
E – edges (relation on V)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on V)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on V)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on V)

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺

1

3

2 1

3

2

Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺

1

3

2 1

3

2

Relational Composition using Digraphs

If 𝑹 = 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑹

1

3

2 1

3

2

𝑎, 𝑐 ∈ 𝑅 ∘ 𝑅 = 𝑅' iff ∃𝑏	(𝑎, 𝑏 ∈ 𝑅	⋀	(𝑏, 𝑐) ∈ 𝑅)
 iff ∃𝑏 such that a, b, c is a path

Relational Composition using Digraphs

If 𝑹 = 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑹

1

3

2 1

3

2

𝑎, 𝑐 ∈ 𝑅 ∘ 𝑅 = 𝑅' iff ∃𝑏	(𝑎, 𝑏 ∈ 𝑅	⋀	(𝑏, 𝑐) ∈ 𝑅)
 iff ∃𝑏 such that a, b, c is a path

Relational Composition using Digraphs

If 𝑹 = 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑹

1

3

2 1

3

2

Special case: 𝑹 ∘ 𝑹 is paths of length 2.

• 𝑹 is paths of length 1
• 𝑹𝟎 is paths of length 0 (can’t go anywhere)
• 𝑹𝟑 = 𝑹𝟐 ∘ 𝑹 etc, so is 𝑹𝒏 paths of length n

Paths in Relations and Graphs

Let 𝑹 be a relation on a set 𝑨. There is a path of
length 𝒏 from a to b if and only if (a,b) Î	𝑹𝒏

Def: The length of a path in a graph is the number of
edges in it (counting repetitions if edge used > once).

Connectivity In Graphs

Let 𝑹 be a relation on a set 𝑨. The connectivity
relation 𝑹∗ consists of the pairs (𝑎,	𝑏) such that there is
a path from 𝑎 to 𝑏 in 𝑹.

Def: Two vertices in a graph are connected iff there is a
path between them.

How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b, a)Î R

R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b, a)Î R

R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

at every node

or

or or

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the
relation transitive and reflexive.

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to
make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation 𝑹 is the
connectivity relation 𝑹*

Back to Languages

