CSE 311: Foundations of Computing

Topic 6: Set Theory

Everyone I’'m not asking
on the You know twice
Hoor what to do

Listen to Mom
hands in the b:::ér Takv':grO“
e Sweater

As God is
my witness

Preachers

Sets

Sets are collections of objects called elements.

Write a € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A={1}

B=1{1, 3, 2}

c={L1, 1}

D={{17}, 17}

E={1, 2, 7, cat, dog, I, a}

Some Common Sets

N is the set of Natural Numbers; N ={0, 1, 2, ...}

Z is the set of Integers; Z ={...,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %5, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, 1i,\/2
[n] is the set {1, 2, ..., n} when n is a natural number
D ={} is the empty set; the only set with no elements

Sets can be elements of other sets

For example
A ={{1},{2},{1,2},S}
B=1{1,2}

Then B € A.

Definition: Equality

A and B are equal if they have the same elements

A=B := Vx(xe A xeB)

Examples:
- {1}={1,1,1}
* O isthe empty set

Definition: Equality

A and B are equal if they have the same elements

A=B := Vx(xe A xeB)

A={1, 2,3}
B={3, 4,5}
C=1{3, 4}
D=1{4,3,3} Which sets are equal?
E={3, 4,3}
F={4, {3}}

Definition: Subset

A is a subset of B if every element of A is also in B

AcB :=Vx(xe A—>xeB)

A={1,2}
B={1, 2, 3}

A c B is true
B Ais false

Definition: Subset

A is a subset of B if every element of A is also in B

AcB :=Vx(xe A—>xeB)

A=1{1, 2, 3}
B=1{3,4,5}
C=1{3, 4}
QUESTIONS
AcB?
CcB?

D A?

Definitions

A and B are equal if they have the same elements

A=B := Vx(xe A xeB)
 Ais asubset of B if every element of A is also in B

AcB :=Vx(xe A—>xeB)

* Notes: (A=B) = (A< B) A(Bc A

A2BmeansBE A ACBmeansAS B

Sets & Logic

Proofs About Sets

1. ACB
2. BC A

?. A

|
v,

Given
Given

??

Proofs About Sets

1. ACB
2. BC A
3. Vx(x € A - x € B)
4. Vx(x€EB->x€A)

?. A

|
o)

Given
Given
Def of Subset: 1
Def of Subset: 2

22

Proofs About Sets

.ACB
BCA
Vx(x € A - x € B)
VX(Xx€EB—->x€A)

hONR

?. VX (X € A & x€B)
?. A=B

Given
Given
Def of Subset: 1
Def of Subset: 2

7?
Def of Same Set

Proofs About Sets

ACB
BCA
Vx (x € A - x € B)
VX(xEB->x€A)
Let y be arbitrary.

pWOMRE

52.yeEAeoyeEB
. Vx(x€E Ao x€EB)
.A=B

o Ol

Given
Given
Def of Subset: 1
Def of Subset: 2

7
Intro V
Def of Same Set: 5

Proofs About Sets

o Ol

pWOMRE

ACB

BCA
Vx(x € A - x € B)
VX(Xx€EB—->x€A)
Let y be arbitrary.
51. yeA—->y€EB
52. yeEB-oy€eEA

5?2.yeA-yeERB

. Vx(x€E Ao x€EB)
.A=B

Given
Given
Def of Subset: 1
Def of Subset: 2

ElimV: 3
ElimV: 4

7
Intro V

Def of Same Set: 5

Proofs About Sets

1. ACB Given

2. BCA Given

3. Vx(x€A->x€EB) Def of Subset: 1

4. Vx(x€B->x€A) Def of Subset: 2
Let y be arbitrary.

bl. yeA—->ye€EB ElimV:3
b2. yeB-y€eA EimV: 4
53. (yeEA->yEB)A
(yeEB—->ye€eA) IntroA:5.1,5.2
54.ye Ao yeEB Biconditional: 5.3
. Vx(x€E Ao x€EB) Intro V
A=B Def of Same Set: 5

® O

Building Sets from Predicates

Every set S defines a predicate P(x) :=“x € S”

We can also define a set from a predicate P:

S = {x:P(x)}

S = the set of all x for which P(x) is true

S = {xeU:P(x)} = {x:(x€U)A P(x)}

Inference Rules on Sets

S := {x:P(x)}

When a set is defined this way,
we can reason about it using its definition:

1. X €S Given
2. P(x) Def of S

This will be our only
inference rule for sets!

8. P(y)
0. yeS DefofS

Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}

Suppose we want to prove A c B.

We have a definition of subset:

AcB = Vx(x e A— x e B)

We need to show that is definition holds

Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}

Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}

8 Vx(x€A->x€eB) ??
9. AcCB Def of Subset: 8

Proofs About Sets

A = {x:P(x)}

Let x be arbitrary

1.1. xeA—->X€EB
1. Vx(x€A—->x€B)
2. ACB

B := {x:Q(x)}

7
Intro V: 1
Def of Subset: 2

Proofs About Sets

A = {x:P(x)}

Let x be arbitrary
1.1.1. xeA

1.1.?2. x€B
1.1. xeA—->X€EB
1. Vx(x€A—->x€B)
2. ACB

B := {x:Q(x)}

Assumption

7
Direct Proof

Intro V: 1
Def of Subset: 2

Proofs About Sets

A = {x:P(x)}

Let x be arbitrary
1.1.1. xeA
1.1.2. P(x)

1.1.2. Q(x)
1.1.?2. x€B
1..1. xeA->x€B
1. Vx(x€A->x€B)
2. ACB

B := {x:Q(x)}

Assumption
Def of A

7
Def of B
Direct Proof

Intro V: 1
Def of Subset: 2

Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}

Prove that A — B.

Proof: Let x be an arbitrary object.
Suppose that x € A. By definition of A, this means P(x).

Thus, we have Q(x). By definition of B, this means x € B.

Since x was arbitrary, we have shown, by definition of
subset, that A — B.

English template for a Subset Proof

Operations on Sets

Set Operations

AUB:={x:(x€A)V(x €B)} Union

ANB:={x:(x€A)A(x €B)} Intersection

A\B:={x:(x€A)N(x &B)} SetDifference

A=1{1, 2, 3} QUESTIONS
B=1{3,5, 6} Using A, B, C and set operations, make...
C={3, 4} [6] =

{3} =

{1,2} =

More Set Operations

A®B:={x:(x€A) D (x €B)) Symmetric

Difference
A=A ={x:xeUAx¢gA)}
(with respect to universe U) Complement
A={1,2,3;}
B=1{1, 2, 4,6} 5
Universe: '%6_9 B=13,4, 6]}
U=1{1,2,3,4,5,6) ={4,5,6}

Notethat AUA=U

De Morgan’s Laws

AUB=ANB

ANB=AUB

De Morgan’s Laws

Prove that (A U B)¢= A® n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Equivalently, prove (AU B)¢ € A N B¢ and
A NB¢ c(AuUB)¢

Recall: Proofs About Sets

A = {x:P(x)} B := {x:Q(x)}

Prove that A — B.

Proof: Let x be an arbitrary object.
Suppose that x € A. By definition of A, this means P(x).

Thus, we have Q(x). By definition of B, this means x € B.

Since x was arbitrary, we have shown, by definition of
subset, that A — B.

De Morgan’s Laws

Prove that (A U B)¢ € A® n B¢
Formally, prove Vx (x € (AU B)® - x € A° n BY)

Proof: Let x be an arbitrary object.
Suppose that x € (A U B)C. By the definition of ...

By the definition of ..., this means x € A* N B¢.

Since x was arbitrary, we have shown, by the definition of
subset, that A — B.

De Morgan’s Laws

Prove that (A U B)¢ € A® n B¢
Formally, prove Vx (x € (AU B)® - x € A° n BY)

Proof: Let x be an arbitrary object.

Suppose that x € (A U B)C. By the definition of
complement, we have =(x € A U B).

By the definition of ..., this means x € A* N B¢.

Since x was arbitrary, we have shown, by the definition of
subset, that A — B.

De Morgan’s Laws

Prove that (A U B)¢ € A® n B¢
Formally, prove Vx (x € (AU B)® - x € A° n BY)

Proof: Let x be an arbitrary object.

Suppose that x € (A U B). By the definition of
complement, we have —=(x € A U B). The latter says, by the
definition of union, that -(x € AV x € B).

By the definition of ..., this means x € A¢ n BC.

Since x was arbitrary, we have shown, by the definition of
subset, that A — B.

De Morgan’s Laws

Prove that (A U B)¢ € A® n B¢
Formally, prove Vx (x € (AU B)® - x € A° n BY)

Proof: Let x be an arbitrary object.

Suppose that x € (A U B). By the definition of
complement, we have —=(x € A U B). The latter says, by the
definition of union, that -(x € AV x € B).

Thus, x € A® and x € B¢. By the definition of intersection,
this means x € A® N BC.

Since x was arbitrary, we have shown, by the definition of
subset, that A — B.

De Morgan’s Laws

Prove that (A U B)¢ € A® n B¢
Formally, prove Vx (x € (AU B)® - x € A° n BY)

Proof: Let x be an arbitrary object.

Suppose that x € (A U B). By the definition of
complement, we have —=(x € A U B). The latter says, by the
definition of union, that -(x € AV x € B).

So —1(x € A) and —(x € B). Thus, x € A and x € B¢ by
the definition of complement. By the definition of

intersection, this means x € A¢ n B¢,

Since x was arbitrary, we have shown, by the definition of
subset, that A — B.

De Morgan’s Laws

Prove that (A U B)¢ € A® n B¢
Formally, prove Vx (x € (AU B)¢ - x € A“ n BY)

Proof: Let x be an arbitrary object.

Suppose that x € (A U B). By the definition of
complement, we have =(x € A U B). The latter says, by the
definition of union, that =(x € AV x € B), or equivalently,
—(x € A) A =(x € B) by De Morgan’s law. Thus, x € A® and
x € B¢ by the definition of complement. By the definition of
intersection, this means x € A¢ n B¢,

Since x was arbitrary, we have shown, by the definition of
subset, that A — B.

De Morgan’s Laws

Prove that A N B¢ € (AU B)¢
Formally, prove Vx (x € A N B - x € (AU B)%)

Proof: Let x be an arbitrary object.

Suppose x € A® N B¢. Then, by the definition of
intersection, we have x € A® and x € B¢. That is, we have
—(x € A) A =(x € B), which is equivalentto =(x € AV

x € B) by De Morgan’s law. The last is equivalent to = (x €
A U B), by the definition of union, so we have shown x €

(A U B)%, by the definition of complement.

Since x was arbitrary, we have shown, by the definition of
subset, that A — B.

Proofs About Set Equality

A lot of repetitive work to show — and «.

Suppose x € (AU B)C.

Then, by the definition of complement, we have —(x € A U B).
The latter says, by the definition of union, that =(x € AV x € B),
or equivalently, = (x € A) A =(x € B) by De Morgan’s law.

Thus, we have x € A and x € B¢ by the definition of compliment,
and we can see that x € A® N B¢ by the definition of intersection.

Suppose x € A¢ N B¢.

Then, by the definition of intersection, we have x € A® and x € B¢.
We then have —(x € A) A = (x € B) by the definition of complement.
which is equivalent to =(x € AV x € B) by De Morgan’s law.

The last is equivalent to —(x € A U B), by the definition of union,

so we have shown x € (4 U B)¢, by the definition of complement.

Proofs About Set Equality

A lot of repetitive work to show — and «.

Suppose x € (AU B)C.

Then, by the definition of complement, we have —(x € AU B).
The latter says, by the definition of union, that =(x € AV x € B),
or equivalently, —=(x € A) A —(x € B) by De Morgan’s law.

Thus, we have and by the definition of ,
and we can see that x € A° N B¢ by the definition of intersection.

Suppose x € A“ N B¢,

Then, by the definition of intersection, we have and

We then have —(x € A) A —(x € B) by the definition of

which is equivalent to —(x € AV x € B) by De Morgan’s law.

The last is equivalent to —(x € A U B), by the definition of union,
so we have shown x € (4 U B)¢, by the definition of complement.

Proofs About Set Equality

A lot of repetitive work to show — and «.

Do we have a way to prove < directly?

Recall that A=B and (A <> B) =T are the same

We can use an equivalence chain to prove that a
biconditional holds.

De Morgan’s Law

Prove that (A U B)¢ = A n B¢
Formally, prove Vx (x € (AU B)¢ & x € A N BY)

Proof: Let x be an arbitrary object.
The stated biconditional holds since:

x€(AUB) =-(x€AUB) Def of Comp
=-(x€AVxEDB) Def of Union
| = (€A A€ B) De Morgan
ke this rather thanas - =P =N G- Def of Comp
S =x€A°NnB¢ Def of Intersection

Since x was arbitrary, we have shown, by definition,
that the sets are equal. B

Distributive Laws

ANBUC)=ANB)UANC)
AUBNC)=(AUB)N(A UC(C)

vl

Distributive Law

Provethat AN (BUC)=(ANB)U(ANC(C)

Proof: Let x be an arbitrary object.
The stated biconditional holds since:

xeEAN(BUC)
=(xeA)AN(x€eBUC) Def of Intersection
=x€e€AAN((xeEB)V (x€e€Cl)) Def of Union
=((x€eA)Ax€eB))V((x €A)A(x €C)) Distributive
=(x€ANB)V(x€eANC(C) Def of Intersection
=x€(ANB)U(ANC) Def of Union

Since x was arbitrary, we have shown, by definition,
that the sets are equal. B

The Meta Theorem

Meta-Theorem: Translate any Propositional Logic
equivalence into “=” relationship between sets by
replacing U with V, N with A, and -¢ with —.

Example: —(AV B) = —-A A =B becomes
(AUB)‘=A*nB¢

Example: AN(BVC)=(AANB)V (AAC) becomes
ANBUC)=(ANB)UANC)

The Meta Theorem Proof Template

Meta-Theorem: Translate any Propositional Logic

“_n

equivalence into “=” relationship between sets by
replacing U with V, N with A, and -¢ with —.

“Proof”: Let x be an arbitrary object.

The stated bi-condition holds since:

x € left side = replace set ops with propositional logic
= apply Propositional Logic equivalence
= replace propositional logic with set ops
= x € right side

Since x was arbitrary, we have shown, by definition, that
the sets are equal. B

Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BCA)

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=?

Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BCA)

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(LD)=?

Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:BCA)

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(Q)={} # &

Cartesian Product

AXB:={x:3a3b((a€ A A eB)A(x=(ab)))}

R X R is the real plane.
— you've seen ordered pairs before... these are just for arbitrary sets.

« 7 X 7 is “the set of all pairs of integers”

IfA={1,2},B={a,b,c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

Cartesian Product

AXB:={x:3a3b((a€ A A eB)A(x=(ab)))}

R X R is the real plane.
— you've seen ordered pairs before... these are just for arbitrary sets.

« 7 X 7 is “the set of all pairs of integers”

IfA={1,2},B={a, b, c}, then A X B ={(1,a), (1,b), (1,0),
(2,a), (2,b), (2,c)}.

What is AX®?

Cartesian Product

AXB:={x:3a3db((a€AANDbeEB)AN(x=(ab)))}

R X R is the real plane.
— you've seen ordered pairs before... these are just for arbitrary sets.

« 7 X 7 is “the set of all pairs of integers”

IfA={1,2},B={a, b, c}, then A X B ={(1,a), (1,b), (1,0),
(2,a), (2,b), (2,c)}.

AXQ® ={x:Jaiab(a€A ANbedAx=(ab))}
={x:3a3db(a€ A NFAx=(a,b))}
={x:F} =0

More Set Builder Notation

AXB:={x:3a3b((a€ A A eB)A(x=(ab)))}

* This can be written more concisely as follows...

AXB :={(a,b) :a € A,b€EB}

— within set builder variables are implicitly 3-quantified

this is the one exception to the rule that
unbound variables are implicitly V-quantified

More Set Builder Notation

S={x : P(x)} "filter"

* Then x € S tells us that P(x) holds

T={f(x): x "map"

* Theny € T tellsus that y = f(x) forsome x € U

More Set Builder Notation

* Both notations can be used together, e.g.

Vi={f(x): P(x)}

* Theny €V tells us that y = f(x) for some x
such that P(x) holds

these two notations can be thought of as "filter" and "map"
they are widely used operations in programming as well

Domain-Restriction to Sets

Often want to prove facts about all elements of a set

Vx (x € A — P(x))

Note the domain restriction!

We will use a shorthand restriction to a set

VxeA (P(x)) means Vx(x € A— P(x))

Restricting set-restricted variables improves clarity

Sets of Numbers

e Define some familiar sets of numbers

E={neZ|3k (n=2k)}
O={neZ|3Ik (n=2k + 1)}

— previously, we defined these as predicates

Recall: Even and Odd

Prove “The square of every even integer is even.”

Formally, prove YVx (Even(x) — Even(x?))

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, a = 2b for some
integer b. Squaring both sides, we get a?2= 4b? = 2(2b?).
So a?is, by definition, is even.

Since a was arbitrary, we have shown that the square of
every even number is even. B

Even and Odd As Sets

Prove “The square of every even integer is even.”

Formally, prove Vx € [E (x? € [E)

Proof: Let a be an arbitrary even integer.

Suppese-ais-even: Then, by definition, a = 2b for some
integer b. Squaring both sides, we get a?2= 4b? = 2(2b?).

So a?is, by definition, is even.

Since a was arbitrary, we have shown that the square of
every even number is even. B

The structure of the proof follows
the structure of the claim.

Recall: Even and Odd

Prove “The sum of any two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y)) — Even(x+y))

Proof: Let x andy be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for
some integer a and y = 2b+1 for some integer b. Their
sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so
x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd
Integers is even.

Recall: Even and Odd

Prove “The sum of any two odd numbers is even.”
Formally, prove Vx€ 0, Vy e O (x+vy € [E)

Proof: Let x andy be arbitrary odd integers.

Suppose-thatbothare-odd: Then, we have x = 2a+1 for

some integer a and y = 2b+1 for some integer b. Their
sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so
x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd
Integers is even.

Another Odd One

“The square of the sum of any even and odd is congruent to 1 mod 4”
Formally, prove Vx€E, Vy e O ((x +vy)?=,1)

Proof:
Let x be an arbitrary even and y an arbitrary odd.

Then, we have x = 2j for some integer j, and y = 2k + 1 for
some integer k. We can now see that

(x+y)? = (2j + 2k+1)?
= (2(j+k) + 1)
= 4(j+k)% + 4(j+k) + 1

This shows that 4 | (x+y)? — 1 by definition of divides, which
means that (x+y)? =, 1 by definition of congruent.

Since x and y were arbitrary, we have proven the claim. B

Russell’s Paradox

S={x:x&x}

Suppose that S € S...

Russell’s Paradox

S={x:x&x}

Suppose that S € S. Then, by the definition of S5, S € S, but
that’s a contradiction.

Suppose that S € S. Then, by the definition of S, S € S, but
that’s a contradiction too.

This is reminiscent of the truth value of the statement “This
statement is false.”

Recall: Formal Proofs

* In principle, formal proofs are the standard for
what it means to be “proven” in mathematics

— almost all math (and theory CS) done in Predicate Logic

* But they can be tedious and impractical

— e.g., applications of commutativity and associativity

— Russell & Whitehead’s formal proof that 1+1 =2 is
several hundred pages long
we allow ourselves to cite “Arithmetic”, “Algebra”, etc.

Recall: Recursive definitions of functions

Ol=1 (n+D!'=m+1)-n! foralln = 0.

F(0O)=0; Fn+1)=Fn)—1foralln > 0.

GO0)=1; G(n+1)=2-G(n)foralln> 0.

HO0)=1; Hn+1) =2® foralln > 0.

Recursive Definitions of Sets

Recursive Definitions of Sets (Data)

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even numbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

In comparison to earlier definitions:

e Ni={x€eZ|x=0}
e Ei={x€Z|3Ak (x = 2k)}

these definitions are constructive.

Recursive Definition of Sets

Recursive definition of set S
 Basis Step: 0 €S
 Recursive Step: If x€ S, thenx+2 €S

The only elements in S are those that follow from
the basis step and a finite number of recursive steps

Recursive Definitions of Sets

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: (0,00€eS,(4,1)eS
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.

Recursive Definitions of Sets

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: (0,00€eS,(4,1)eS
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.

Fibonacci numbers

Recall: Recursive definitions of functions

* Before, we considered only simple data
— Inputs and outputs were just integers

 Proved facts about those functions with induction
—n!'sn”
—f, <2"andf, 2 2v21

« How do we prove facts about functions that work

with more complex (recursively defined) data?
— we need a more sophisticated form of induction

Structural Induction

How to prove Vx € §, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)

Structural Induction | Basis:

Recursive: If x €S, then)gi-2 €S

How to prove Vx € §, P(x) is true:

Base Case: ﬂow that P(u) is true for all specific
elements u of S mentioned in the \Basis step

Inductive Hypothesis: Assume that P is/true for some
arbitrary values of each of the existing named
elements mentioned | Recursi

Inductive Step\Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of
structural induction:
Recursive definition of N

Basis: 0N
Recursive step: If ke Nthenk+1€N

Structural induction follows from ordinary

induction:
Define Q(n) to be “for all x € S that can be

constructed in at most
n recursive steps, P(x) is true.”

Using Structural Induction

* Let S be given by...

—Basis: 6e5; 15€ S
— Recursive: if x,y €S thenx +y € S.

Claim: Every element of S is divisible by 3.

Formally, Vx € S (3 | x)

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

Basis: 6 S5; 15€S
Recursive: if x,y € S,thenx+y €S

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Basis: 6 S5; 15€S
Recursive: if x,y € S,thenx+y €S

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step:

Goal: P(x+y), i.e., 3 | x+y Basis: 6 S5; 15€ S

Recursive: if x,y € S,thenx+y €S

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step:

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.

Basis: 6 S5; 15€S
Recursive: if x,y € S,thenx+y €S

Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step:

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.
5. Therefore, by induction, 3|x for all x € S.

Basis: 6 S5; 15€S
Recursive: if x,y € S,thenx+y €S

Using Structural Induction

* Let T be given by...

—Basis: 6 <T; 15T
— Recursive: ifxeT,thenx+6 €€Tandx + 15 €T

* Now, two base cases and two recursive cases

Claim: Every element of T is also in S.

Formally, Vx €T (x € 5)

Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

Basis: 6 S5; 15€S$ Basis: 6 T; 15T
Recursive: if x,y € §, Recursive: if x e T,thenx +6 €T
thenx +y €S andx+15€T

Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

Basis: 6<S5; 15€ S
Recursive: if x,y € §,
thenx +y eSS

Basis: 6 T; 15T
Recursive: if x e T,thenx+ 6 €T
and x + 15 €T

Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) is true
for some arbitrary xe T

Basis: 6 S5; 15€S$ Basis: 6 T; 15T
Recursive: if x,y € §, Recursive: if x e T,thenx +6 €T
thenx +y €S andx+15€T

Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) is true

for some arbitrary xe T

4. Inductive Step: |Goal: Show P(x+6) and P(x+15)

Basis: 6<S5; 15€ S
Recursive: if x,y € §,
thenx +y eSS

Basis: 6 T; 15T
Recursive: if x e T,thenx+ 6 €T
and x + 15 €T

Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) is true
for some arbitrary xe T

4. Inductive Step:
Since P(x) holds, we have x € S. From the recursive step of S,
since 6 € S, we can see that x + 6 €S, so P(x+6) is true, and
since 15 € S, we can see that x + 15 € S, so P(x+15) is true.

Basis: 6 S5; 15€S$ Basis: 6 T; 15T
Recursive: if x,y € §, Recursive: if x e T,thenx +6 €T
thenx +y €S andx+15€T

Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) is true
for some arbitrary xe T

4. Inductive Step:
Since P(x) holds, we have x € S. From the recursive step of S,
since 6 € S, we can see that x + 6 €S, so P(x+6) is true, and
since 15 € S, we can see that x + 15 € S, so P(x+15) is true.
5. Therefore P(x) for all x € T by induction.

Lists of Integers

* Basis: nil € List

* Recursive step:
if L € List and a € Z,
then a:: L € List

Examples:
— nil
— 1 ::nil 1
— 1::2::nil 12

— 1::2:3::nil 1—>2—3

Functions on Lists

Length:

len(nil) :=0
len(a:: L) :=1len(L) + 1 forany L € Listand a € Z

Concatenation:

concat(nil, R) :=R for any R € List
concat(a:: L,R):=a:: concat(L,LR) foranyl, R € List and
anya€Z

: Basis» nil € List
Structural Induction o .
Recursive step:

if L € Listand a € Z,

How to prove V x € S, P(x) is true: _
thena:: L € List

Base Case: Sho P(u) is trye for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) hol of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis

Conclude thatV x € S, P(x)

Claim: concat(S, nil) =S for all S € List

Claim: concat(S, nil) =S for all L € List

Let P(S) be “concat(S, nil) =S".
We will prove P(S) for all S € List by structural induction.

Concatenation:

concat(nil,R) :=R
concat(a:: L, R) := a:: concat(L, R)

Claim: concat(S, nil) =S for all L € List

Let P(S) be “concat(S, nil) =S".
We will prove P(S) for all S € List by structural induction.

Base Case (nil): By the definition of concat, we can see that
concat(nil, nil) = nil, which is P(nil).

Claim: concat(S, nil) =S for all L € List

Let P(S) be “concat(S, nil) =S".

We will prove P(S) for all S € List by structural induction.

Base Case (nil): By the definition of concat, we can see that

concat(nil, nil) = nil, which is P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary

L € List, i.e., concat(L, nil) = L.
Inductive Step:

Concatenation:

concat(nil, R) :=R
concat(a:: L, R) := a:: concat(L, R)

Goal: For any a € Z, show P(a:: L), i.e., concat(a:: L, nil) =a:: L

Claim: concat(S, nil) = S for all L € List

Let P(S) be “concat(S, nil) =S".
We will prove P(S) for all S € List by structural induction.

Base Case (nil): By the definition of concat, we can see that
concat(nil, nil) = nil, which is P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., concat(L, nil) = L.

Inductive Step:
Let a € Z be arbitrary. We can calculate as follows
concat(a:: L, nil) = a:: concat(L, nil) def of concat
=a: L IH

which is P(a :: L).

By induction, we have shown the claim holds for all L € List.

Claim: len(concat(S, R)) =len(S) + len(R) forall S, R € List

Claim: len(concat(S, R)) =len(S) + len(R) forall S, R € List

Let P(S) be “len(concat(S, R)) =len(S) + len(R) for all R € List " .
We prove P(S) for all S € List by structural induction.

Claim: len(concat(S, R)) =len(S) + len(R) forall S, R € List

Let P(S) be “len(concat(S, R)) =len(S) + len(R) for all R € List " .
We prove P(S) for all S € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

Length: Concatenation:
len(nil) :=0 concat(nil, R) :=R
len(a: L) :=len(L) +1 concat(a:: L, R) := a:: concat(L, R)

Claim: len(concat(S, R)) =len(S) + len(R) forall S, R € List

Let P(S) be “len(concat(S, R)) =len(S) + len(R) for all R € List " .
We prove P(S) for all S € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

len(concat(nil, R)) =len(R) def of concat
=0 + len(R)
= len(nil) + len(R) def of len

Since R was arbitrary, P(nil) holds.

Claim: len(concat(S, R)) =len(S) + len(R) forall S, R € List

Let P(S) be “len(concat(S, R)) =len(S) + len(R) for all R € List " .
We prove P(S) for all S € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.

Claim: len(concat(S, R)) =len(S) + len(R) forall S, R € List

Let P(S) be “len(concat(S, R)) =len(S) + len(R) for all R € List " .
We prove P(S) for all S € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.

Inductive Step:

Goal: For any a € Z, and R € List, show P(a :: L), i.e.,
len(concat(a:: L, R)) =len(a:: L) + len(R)

Claim: len(concat(S, R)) =len(S) + len(R) forall S, R € List

Let P(S) be “len(concat(S, R)) =len(S) + len(R) for all R € List " .
We prove P(S) for all S € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.

Inductive Step: Let a € Z and R € List be arbitrary. Then,

Length: Concatenation:

len(nil) :=0 concat(nil, R) :=R
len(a:: L) :=len(L) + 1 concat(a:: L, R) := a:: concat(L, R)

Claim: len(concat(S, R)) =len(S) + len(R) forall S, R € List

Let P(S) be “len(concat(S, R)) =len(S) + len(R) for all R € List " .
We prove P(S) for all S € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.
Inductive Step: Let a € Z and R € List be arbitrary. Then, we have
len(concat(a:: L, R)) =len(a :: concat(L, R)) def of concat
= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
= len(a:: L) + len(R) def of len
Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all S € List.

Claim: concat(concat(R, S), T) = concat(R, concat(S, T)) for all R,S,T € List

Claim: concat(concat(R, S), T) = concat(R, concat(S, T)) for all R,S,T € List

Let P(R) be “concat(concat(R, S), T) = concat(R, concat(S, T)) for all S, T € List”".
We prove P(R) for all R € List by structural induction.

Base Case (nil):

Claim: concat(concat(R, S), T) = concat(R, concat(S, T)) for all R,S,T € List

Let P(R) be “concat(concat(R, S), T) = concat(R, concat(S, T)) for all S, T € List”".
We prove P(R) for all R € List by structural induction.

Base Case (nil): Let R, S be arbitrary lists.

Concatenation:

concat(nil,R) :=R
concat(a:: L, R) := a:: concat(L, R)

Claim: concat(concat(R, S), T) = concat(R, concat(S, T)) for all R,S,T € List

Let P(R) be “concat(concat(R, S), T) = concat(R, concat(S, T)) for all S, T € List”".
We prove P(R) for all R € List by structural induction.

Base Case (nil): Let R, S be arbitrary lists. Then, we can see that

concat(concat(nil, R), S)
= concat(R, S) def of concat
= concat(concat(nil, R), S) def of concat

which is P(nil).

Claim: concat(concat(R, S), T) = concat(R, concat(S, T)) for all R,S,T € List

Let P(R) be “concat(concat(R, S), T) = concat(R, concat(S, T)) for all S, T € List”.
We prove P(R) for all R € List by structural induction.

Base Case (nil):

Inductive Hypothesis: Assume that P(L) is true for an arbitrary L € List,
i.e., concat(L, concat(S, T)) = concat(concat(L, S), T) for all S, T € List.

Claim: concat(concat(R, S), T) = concat(R, concat(S, T)) for all R,S,T € List

Let P(R) be “concat(concat(R, S), T) = concat(R, concat(S, T)) for all S, T € List”".
We prove P(R) for all R € List by structural induction.

Base Case (nil):

Inductive Hypothesis: Assume that P(L) is true for an arbitrary L € List,
i.e., concat(L, concat(S, T)) = concat(concat(L, S), T) for all S, T € List.

Inductive Step:

Goal: Show that P(a :: L) is true forany a € Z, i.e.,
concat(concat(a:: L, S), T) = concat(a :: L, concat(S, T)) forany S, T

Claim: concat(concat(R, S), T) = concat(R, concat(S, T)) for all R,S,T € List

Let P(R) be “concat(concat(R, S), T) = concat(R, concat(S, T)) for all S, T € List”".
We prove P(R) for all R € List by structural induction.

Base Case (nil):

Inductive Hypothesis: Assume that P(L) is true for an arbitrary L € List,
i.e., concat(L, concat(S, T)) = concat(concat(L, S), T) for all S, T € List.

Inductive Step: Leta€Z and S, T € List be arbitrary.

Goal: Show that P(a:: L) is true forany a € Z, i.e.,
concat(concat(a:: L, S), T) = concat(a :: L, concat(S, T)) forany S, T

Concatenation:

concat(nil, R) :=R
concat(a:: L, R) := a:: concat(L, R)

Claim: concat(concat(R, S), T) = concat(R, concat(S, T)) for all R,S,T € List

Let P(R) be “concat(concat(R, S), T) = concat(R, concat(S, T)) for all S, T € List”.
We prove P(R) for all R € List by structural induction.

Base Case (nil): Let S, T be arbitrary lists. Then, we can see that
concat(nil, concat(S, T)) = concat(S, T) = concat(concat(nil, S), T), by
the definition of concat. This is P(nil).

Inductive Hypothesis: Assume that P(L) is true for an arbitrary L € List,
i.e., concat(L, concat(S, T)) = concat(concat(L, S), T) for all S, T € List.

Inductive Step: Let a € Z and S, T € List be arbitrary. Then, we have
concat(a:: L, concat(§, T))

= a :: concat(L, concat(§, T)) def of concat
= a :: concat(concat(L, S), T) by IH

= concat(a :: concat(L, S), T) def of concat
= concat(concat(a:: L, S), T) def of concat

Since L was arbitrary, we have shown P(a :: L).

Claim: concat(concat(R, S), T) = concat(R, concat(S, T)) for all R,S,T € List

Let P(R) be “concat(concat(R, S), T) = concat(R, concat(S, T)) for all S, T € List”".
We prove P(R) for all R € List by structural induction.

Base Case (nil): Let S, T be arbitrary lists. Then, we can see that
concat(nil, concat(S, T)) = concat(S, T) = concat(concat(nil, S), T), by
the definition of concat. This is P(nil).

Inductive Hypothesis: Assume that P(L) is true for an arbitrary L € List,
i.e., concat(L, concat(S, T)) = concat(concat(L, S), T) for all S, T € List.

Inductive Step: Leta€Z and S, T € List be arbitrary. Then, we have
concat(a:: L, concat(§, T))

= a :: concat(L, concat(§, T)) def of concat
= a :: concat(concat(L, S), T) by IH

= concat(a :: concat(L, S), T) def of concat
= concat(concat(a:: L, S), T) def of concat

Since L was arbitrary, we have shown P(a :: L).
By induction, we have shown the claim holds for all R € List.

Rooted Binary Trees

* Basis: * |s arooted binary tree

Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree

°
L

Defining Functions on Rooted Binary Trees

size(®):=1

) =1 + size(T,) + size(T,)

:= 1 + max{height(T,), height(T,)}

Basis: e is arooted binary tree

Last time: Structural Induction |=>,

]: and ¢

Sl S

1 | |

How to prove V x € S, P(x) is true /N, oot ey v

............

Base Case: /S{ow that P(u) is truef/for all specific
elements u of S mentioned in the(Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step@ove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)

Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.

size(*) =1 height(®) =0
size (T1 T 2) =1 + size(T,) + size(T,) height (T1 Tz) ::= 1 + max{height(T,), height(T,)}

Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.

Claim: For every rooted binary tree T, size(T) < 2height(T)+1_1

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightMJ+1 — 1 for k=1,2
4. Inductive Step: Goal: Prove P(T/\).

Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightTJ+1 — 1 for k=1,2

4. Inductive Step: Goal: Prove P(T/\).
size(/\)
o'qT1‘\‘ :'.Tz“‘
size(*) =1
size (T/\T) =1 + size(T,) + size(T,)
height(¢) =0
height T/\T) ::= 1+ maxfheight(T,), height(T,)}| < 2height(?/\)+1 _ 1

Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightTJ+1 — 1 for k=1,2
4. Inductive Step: Goal: Prove P(\r/\)

By def, size(T/\T) =1+size(T,)+size(T,)

""""""""""""

by IH for T, and T,
— 2height(T1)+1+2height(T2)+1_1

< 2(2max(height(Tl),height(Tz))+1)_1

=2 (2 height(;/\T

............................

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.

Strings

 An alphabet X is any finite set of characters

* The set X* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000, 004, ... and *"

 2* js defined recursively by
— Basis: ¢ € 2™ (¢ is the empty string, i.e., “”)
— Recursive: ifw € 2*,a € 2, then wa € 2*

Functions on Recursively Defined Sets (on **)

Length:
len(e) :=0
len(wa) :=len(w)+1forweX* aeX

Concatenation:
xeg :=xforxeX®
xewa :=(xew)aforxeX* aeX

Reversal:
e R =€
(wWa)R =caewhRforweX™ aeX

Number of c¢’s in a string:
#(e) =0
(wc) =#(w)+1forweX*
#(wa) =#(w)forweX* a€X, a#c

separate cases for
CVS a#C(C

Basis: ¢ € X *

Last time: Structural Induction ——=2., qive steps:

ifweX*anda e 2,

How to prove V x € S, P(x) is/true: | thenwa ¢ *

T

Base Case: S at P(u) is true for all specific
elements uof S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing nam
elements mentioned in the Recursive step

Inductive Step: Prove that S for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis

Conclude thatV x € S, P(x)

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z* " .
We prove P(y) for all y € X* by structural induction.

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y = £): Let x € Z* be arbitrary. Then,

len(xeg) =len(x) def of e
=len(x) + 0
=len(x) +len(¢) def oflen

Since x was arbitrary, P(¢) holds.

Xeg =X len(e) :=0
Xewa :=(xe*w)a len(wa) :=len(w)+1

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y = €): Let x € Z* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(€) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X7, i.e., len(xew) = len(x) + len(w) for all x

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y = €): Let x € Z* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(€) holds.
Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X* i.e., len(xew) = len(x) + len(w) for all x
Inductive Step:| Goal: Show that P(wa) is true for every a € X

Let a € X and x € Z* be arbitrary. Then,

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y = €): Let x € Z* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(€) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X* i.e., len(xew) = len(x) + len(w) for all x
Inductive Step:| Goal: Show that P(wa) is true for every a €
Let a € X and x € Z* be arbitrary. Then,
len(xewa) = len((xew)a) def of e Xxeg =X
= len(xew)+1 def of len |xewa :=(xe*w)a

= len(x)+len(w)+1 by IH len(e) =0
= len(x)+len(wa) def of len len(wa) :=len(w)+ 1

Since x was arbitrary, we have shown P(wa).

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x €| Does this look
We prove P(y) for all y € X* by structural indu familiar?

Base Case (y = €): Let x € Z* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(€) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X7, i.e., len(xew) = len(x) + len(w) for all x

Inductive Step:
Let a € X and x € Z* be arbitrary. Then,
len(xewa) =len((xew)a) def of e

= len(xew)+1 def of len
= len(x)+len(w)+1 by IH
= len(x)+len(wa) def of len
Since x was arbitrary, we have shown P(wa).
By induction, we have shown the claim holds for all y € .

Recall: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let a € Z be arbitrary. Then, len(concat(nil, R)) =
len(R) = len(nil) + len(R). Since a was arbitrary, P(nil) holds.
Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.
Inductive Step:

Let a € Z and R € List be arbitrary. Then, we can calculate
len(concat(a:: L, R)) =len(a :: concat(L, R)) def of concat
= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
= len(a:: L) + len(R) def of len
Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all L € List.

Lists versus Strings

* Qur strings are basically lists
except that we draw them backward

[1, 2, 3] 1::2:3::nil 1—2—3

n

“abc gabc a<¢-be-C

— would be represented the same way in memory
— but we think of head as the right-most not left-most

Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € £* by structural induction.

Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".

We will prove P(x) for all x € * by structural induction.

Length:
len(g) ::=0
len(wa) ::=len(w) + LforweX*, aeX

Reversal:
eRu=¢
(Wa)k i=caewRforweX* aeX

Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € * by structural induction.
Base Case (x = €): Then, len(e®) = len(g) by def of string reverse.

Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € * by structural induction.
Base Case (x = €): Then, len(e®) = len(g) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X7, i.e., len(wR) = len(w).
Inductive Step: | Goal: Show that len((wa)?) = len(wa) for every a

Let a € X be arbitrary. Then, we can calculate

Length: Reversal:
len(g) ::=0 gRu=¢
*
len(wa) :=len(w) +1forweX* ae X (wa)k i=eaewhforweX™,aeX

Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € £* by structural induction.
Base Case (x = €): Then, len(e¥) = len(€) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X7, i.e., len(wR) = len(w).
Inductive Step: Let a € 2 be arbitrary. Then, we can calculate

len((wa)®) =len(ea o wR) def of reverse
=len(ga) + len(w?) by previous result
= len(ea) + len(w) by IH
=1+ len(w) def of len (twice)
= len(wa) def of len

Thus, P(wa) is true for every a € .

Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € * by structural induction.
Base Case (x = €): Then, len(e®) = len(g) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X7, i.e., len(wR) = len(w).
Inductive Step: Let a € X be arbitrary. Then, we can calculate

len((wa)®) =len(ea o wR) def of reverse
=len(ga) + len(w?) by previous result
= len(ea) + len(w) by IH
=1+ len(w) def of len (twice)
= len(wa) def of len

Thus, P(wa) is true for every a € 2.
So, we have shown len(x®) = len(x) for all x € X" by induction.

