CSE 311: Foundations of Computing

Topic 5: More Number Theory
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Administrivia

e HW4 released

— formal proofs, then translate to English

— make sure you understand the formal proof
midterm will have formal proofs without Cozy's help

 Warning about CSE cookies...
— will see Cozy errors if you leave window open for hours

* Added some additional notes on Task 5...

— "(3x)y" and "3(xy)" are different (e.g., produce different code)
"3xy" means "(3x)y" since left associative

"xy" is a subexpression of "3(xy)" but not "3xy"



GCD



Domain of Discourse

Recall: Division Theorem ____Integers

Division Theorem

Fora,b withb > 0
there exist unique integers g, rwith0 <r <b»b
such thata = gb + r.

\_

To put it another way, if we divide b into a, we get a
unique quotient | g = a div b
and non-negative remainder [r=amod b




Domain of Discourse

Greatest Common Divisor | Non-negative Integers

'GCD Theorem

Fora,b witha > 0

there exist a unique integernst.n|aandn|b
and, foralld,ifd |aandd | b,thend <n

. J

We will denote this unique number as | n = gcd(a, b)




Greatest Common Divisor

gcd(a, b):
Largest integer n suchthatn |aandn | b

 gcd(100, 125)
e gcd(17, 49)
 gcd(11, 66)

e gcd(13, 0)
 gcd(180, 252)



Domain of Discourse

Sl m ple GCD faCt | Non-negative Integers J

Let a be a positive integer.
We have gcd(a, 0) = a.



Domain of Discourse

Sl m ple GCD faCt | Non-negative Integers J

Let a be a positive integer.
We have gcd(a, 0) = a.

Since 0 = Oa, we can see that a | 0 by the definition of divides.
Since a = 1a, we can see that a | a by the definition of divides.

Let d be arbitrary.

Since d was arbitrary, we have shown that a is gcd(a, 0).

gcd(a, 0) is the unique number n satisfying
MmMlO)Anla)AVd(((d10)A(d]a)) > (d<n))



Domain of Discourse

Sl m ple GCD faCt | Non-negative Integers J

Let a be a positive integer.
We have gcd(a, 0) = a.

Since 0 = Oa, we can see that a | 0 by the definition of divides.

Since a = 1a, we can see that a | a by the definition of divides.
Let d be arbitrary.
Suppose thatd | 0 and d | a.

Since d was arbitrary, we have shown that a is gcd(a, 0).



Domain of Discourse

Sl m ple GCD faCt | Non-negative Integers J

Let a be a positive integer.
We have gcd(a, 0) = a.

Since 0 = Oa, we can see that a | 0 by the definition of divides.
Since a = 1a, we can see that a | a by the definition of divides.
Let d be arbitrary.

Suppose that d | 0 and d | a. From the second fact, we get that a = jd
for some j by the definition of divides. Then, ...

Since d was arbitrary, we have shown that a is gcd(a, 0).



Domain of Discourse

Sl m ple GCD faCt | Non-negative Integers J

Let a be a positive integer.
We have gcd(a, 0) = a.

Since 0 = Oa, we can see that a | 0 by the definition of divides.
Since a = 1a, we can see that a | a by the definition of divides.
Let d be arbitrary.

Suppose that d | 0 and d | a. From the second fact, we get that a = jd
for some j by the definition of divides. Since multiplication by non-
negative numbers only makes the number bigger, d < a holds.

Since d was arbitrary, we have shown that a is gcd(a, 0).

Oops! This is only true if j > 0!

Prop of * Ya Vb Vc (((a=bc)A(b>0)) - (c <a))




Domain of Discourse

Sl m ple GCD faCt | Non-negative Integers J

Let a be a positive integer.
We have gcd(a, 0) = a.

Since 0 = Oa, we can see that a | 0 by the definition of divides.
Since a = 1a, we can see that a | a by the definition of divides.

Let d be arbitrary. Suppose that d | 0 and d | a. From the second fact,
we get that a = jd by the definition of divides. We continue by cases...

Suppose that j > 0. Then, "Prop of *" tells us that d < a holds.
Suppose that j = 0.

Since d was arbitrary, we have shown that a is gcd(a, 0).



Domain of Discourse

Sl m ple GCD faCt | Non-negative Integers J

Let a be a positive integer.
We have gcd(a, 0) = a.

Since 0 = Oa, we can see that a | 0 by the definition of divides.
Since a = 1a, we can see that a | a by the definition of divides.

Let d be arbitrary. Suppose that d | 0 and d | a. From the second fact,
we get that a = jd by the definition of divides. We continue by cases...

Suppose that j > 0. Then, "Prop of *" tells us that d < a holds.

Suppose that j = 0. That would tell us that a = 0d = 0, contradicting
the fact that a > 0, which was given.

Since d was arbitrary, we have shown that a is gcd(a, 0).



Domain of Discourse

Sl m ple GCD faCt | Non-negative Integers J

Let a be a positive integer.
We have gcd(a, 0) = a.

Since 0 = Oa, we can see that a | 0 by the definition of divides.
Since a = 1a, we can see that a | a by the definition of divides.

Let d be arbitrary. Suppose that d | 0 and d | a. From the second fact,
we get that a = jd by the definition of divides. We continue by cases...

Suppose that j > 0. Then, "Prop of *" tells us that d < a holds.

Suppose that j = 0. That would tell us that a = 0d = 0, contradicting
the fact that a > 0, which was given. Since false is true, anything is true.
In particular, we can say that d < a holds.

Since d was arbitrary, we have shown that a is gcd(a, 0).



Domain of Discourse

Sl m ple GCD faCt | Non-negative Integers J

Let a be a positive integer.
We have gcd(a, 0) = a.

Since 0 = Oa, we can see that a | 0 by the definition of divides.
Since a = 1a, we can see that a | a by the definition of divides.

Let d be arbitrary. Suppose that d | 0 and d | a. From the second fact,
we get that a = jd by the definition of divides. We continue by cases...

Suppose that j > 0. Then, "Prop of *" tells us that d < a holds.

Suppose that j = 0. That would tell us that a = 0d = 0, contradicting
the fact that a > 0, which was given. Since false is true, anything is true.
In particular, we can say that d < a holds.

Since we have either j = 0 orj > 0, we see that d < a holds in general.

Since d was arbitrary, we have shown that a is gcd(a, 0).



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof Idea:
We will show that every number dividing a and b also divides b and a mod b.

l.e., d|a and d|b iff d|b and d|(a mod b).

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof (of d|a and d|b iff d|b and d|(a mod b)):
By the Division Theorem, a = gb + (a mod b) for some integer g = a div b.

Suppose d | b and d | (a mod b).

Then b = md and (a mod b) = nd for some integers m and n.
Therefore a = gb + (a mod b) = gmd + nd = (gm + n)d.
So d | a by the definition of divides.

Supposed |aandd | b.
Then a = kd and b = jd for some integers k and j.

Therefore (a mod b) = a-qb = kd -qjd = (k -qj)d.
So, d | (a mod b) by the definition of divides.

Since they have the same common divisors, gcd(a, b) = gcd(b,a mod b). B



Euclid’s Algorithm

gcd(a, b) = ged(b, a mod b) gcd(a, 0) = a

int gcd(int a, int b) { /* Assumes: a >= b >= 0 */
if (b == 0) {
return a,;
} else {
return gcd(b, a % b);
}
}

Note: gcd(b, a) = gcd(a, b)




Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) =



Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6



Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that
gcd(a,b) = sa + tb.

(a>0Ab>0)—-3s3t(gcd(ab) =sa + tb)

VavVb((a>0Ab>0)—3s3t(gcd(ab) =sa+ th))



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r a=q*b +r
gcd(35,27) =gcd(27,35mod 27) = gcd(27,8) |35=1*27+8




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r a=q*b +r
gcd(35,27) =gcd(27,35mod 27) = gcd(27,8) |35=1*27+8
=gcd(8,27mod 8) =gcd(8,3) 27=3*8 +3

= gcd(3, 8 mod 3) =gcd(3, 2) 8 =2*3 +2
=gcd(2,3mod2) =gcd(2,1) 3=1*2 {1
=gcd(1, 2 mod 1) =gcd(1, 0)




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-q*b
35=1*27+38 8=35-1%27
27=3*8 +3

8 =2*3 +2

3 =1*2 +1




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-qg*b
35=1%27+8 8=35-1%27
27=3*8 +3 3=27-3%8
8 =2*3 +2 2=8-27%3

3 =1*2 +D D=3 -1*2



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):

8=35-1%*27
3=27-3*8
2=8-2%*3

D=3 -1*2




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2*3)

= 3-8+2*3 Re-arrange into
3=27-3%*8 :(_1)*8+3*3 3’sand 8's
2=8 -2%3

1=3 -1%*2




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2*3)
= 3-8+2*3 Re-arrange into

3=27-3%*8 :(_1)*8+3*3 3’sand 8's
Plug in the def of 3

27—8 _2%*3 =(-1)*8+3*(27-3*8)

=(-1)*8+3*27+(-9)*8

= 3%27 +(-10)*8

1=3 -1%*2 Re-arrange into
8’s and 27’s




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2%3)
= 3-8+2*3 Re-arrange into

3=27-3%*8 :(_1)*8+3*3 3’sand 8's
Plug in the def of 3

(-1)*8+4+3*27+(-9)*8
3*27 + (-10) * 8 Re-arrange into
1=3-1%*2 ( ) 8's and 27’s
3*27 +(-10)*(35-1*27)
3*27 +(-10)*35+10*27
13*27 4+ (-10) * 35

Re-arrange into
27’s and 35’s



Multiplicative inverse mod m

Let 0 < a,b < m. Then, b is the multiplicative

inverse of a (modulo m) iff ab
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Multiplicative inverse mod m

Suppose gcd(a,m) =1

By Bézout's Theorem, there exist integers s and t
such that sa + tm = 1.

s is the multiplicative inverse of a (modulo m):
1=, sa since m|1—sa (sincel —sa=1tm)

So... we can compute multiplicative inverses with the
extended Euclidean algorithm

These inverses let us solve modular equations...



Recall: Properties of Modular Arithmetic

Ifa=,, band b =, c, then a =,, c.

Ifa=,,b,thena+c=,, b+c.

If a =,, b, then ac =, bc. <

These properties are sufficient to allow
us to do algebra with congruences

In particular, the first two properties let us
* move a term from one side to the other
* simplify on either side




Recall: Multiplicative inverse mod m

Suppose gcd(a,m) =1

By Bézout's Theorem, there exist integers s and t
such that sa + tm = 1.

s is the multiplicative inverse of a (modulo m):
1=, sa since m|1—sa (sincel —sa=1tm)

We can compute multiplicative inverses with the
Extended Euclidean algorithm

These inverses let us solve modular equations...



Example: Solve a Modular Equation

Solve: 7x =, 3

Suppose we can show that 15 is the
multiplicative inverse of 7 modulo 26,
l.e.,that 15-7 =, 1

Then, we can multiply on both sides
by 15 to see that

X =»7¢ 1x =26 15-7x =26 15-3 =76 45 =76 19

So, if we are given that 7x =, 3,
then we have shown that x =, 19.



Example: Solve a Modular Equation

SOlve: 7X EZ6 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5
7 =1%5 4+ 2
5 =2%2 4+ 1



Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3%7
7 =1x5 + 2 2=7-1%5
5 =2%x2+1 1=5- 2%2



Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3%7
7 =1x5 + 2 2=7-1%5
5 =2%x2+1 1=5- 2%2

= 5 - 2x(7-1%5)
(-2)«*7 4+ 3%*5
(-2)*x7 4+ 3%x(26-3%7)
(—=11)*7 + 3 %26



Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3x%7
7 =1%5 4+ 2 2=7-1%x5
5 =2%x2 4+ 1 1=5- 2%2

1 = 5 - 2% (7-1%05)
(-2)x7 + 3x%5
(-2)*7 + 3%(26-3x%7)
(—11)*7 + 326
/ “the” multiplicative inverse
Now (—11) mod 26 = 15. (—11 is also “a” multiplicative inverse)



Multiplicative Inverses and Algebra

Adding to both sides easily reversible:

X=nYy

xt+c=,y+cC

The same is not true of multiplication...
unless we have a multiplicative inverse cd =,,, 1

X=nYy

X =,, CY



Example: Solve a Modular Equation

Solve: 7x =, 3

We saw before that... if we are given that 7x =, 3,
then we have shown that x =, 19.

But these steps are all reversible...



Example: Solve a Modular Equation

7 =963 = 15:-7x=,,15-3
multiply both sides by 15
= X =, 19
since 15:-7 =, 1and 15-3 =,, 19

multiply both sides by 7
= 7X =563

since 7 - 19 =5, 3



Example: Solve a Modular Equation

Solve: 7x =, 3

We saw before that... if we are given that 7x =, 3,
then we have shown that x =, 19.

But all of these steps are reversible...

So 7x =, 3iffx =, 19

Hence, the solutions are all numbers of the form
19 + 26k for some integer



Solving Modular Equations in "Standard Form"

Solve: 7x =56 3 (of the form Ax =,,, B for some A and B)

Step 1. Find multiplicative inverse of 7 modulo 26
1 =..= (=11)%7 + 3%26
Since (—11) mod 26 = 15, the inverse of 7 is 15.
Step 2. Multiply both sides and simplify
Multiplying by 15, we get x =, 15 7x =545 153 =54 19.

Step 3. State the full set of solutions
So, the solutions are 19 + 26k for any integer k

(must be of the form a + mk with 0 < a < m)



Example Not in “Standard Form”

Solve: 7(x —3) =, 8 + 2x

What about equation not in standard form?



Example: Not in “Standard Form”

Solve: 7(x — 3) =, 8 + 2x

Rewrite it in standard form:
7x — 21 =5 7(x — 3) =56 8+ 2x
move 2x to the other side
5x —21 =5, 8
move —21 to the other side
5X =96 29 =54 3

These steps are all reversible, so the solutions are the same.



Induction



Mathematical Induction

Method for proving claims about non-negative integers

— A new logical inference rule!
* It only applies over the non-negative numbers

 The idea is to use the special structure of these
numbers to prove things more easily



Prove vk ((a =,, b) - (a* =, b¥))

Let k be an arbitrary non-negative integer.
Suppose that a =,,, b.

We know ((a =, b) A (a =, b)) — (a?=,, b?) by multiplying
congruences. So, applying this repeatedly, we have:

((@=m b)A(a=p b)) - (a m b?)
((a =m bz) Aa=nm b)) a =m b*)

(@ =m 1) A (a =m b)) - m b")

The “...”s is a problem! We don’t have a proof rule that
allows us to say “do this over and over”.



But there is such a rule for non-negative numbers!

Domain: Non-Negative Numbers

P(0) Vk (P(k) — P(k + 1))

Induction
~Vn P(n)



Induction Is A Rule of Inference

Domain: Non-Negative Numbers P(0)
—Vk (P(k) — P(k + 1))
Induction
~Vn P(n)

How do the givens prove P(3)?



Induction Is A Rule of Inference

Domain: Non-Negative Numbers P(0)
—Vk (P(k) — P(k + 1))
Induction
~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PM#)  P(®5)

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Using The Induction Rule In A Formal Proof

P(0) Vk (P(k) — P(k + 1))

Induction
. Vn P(n)



Using The Induction Rule In A Formal Proof

P(0) Vk (P(k) — P(k + 1))

Induction
. Vn P(n)
1. P(0)
2. vk (P(k) = P(k+1)) ??

3. VnP(n) Induction: 1, 2



Using The Induction Rule In A Formal Proof

P(0) Vk (P(k) — P(k + 1))

Induction
. Vn P(n)

1. P(0)
Let k be an arbitrary integer >0

2.1 P(k) > P(k+1) 27
2. Vk(P(k) > P(k+1)) Intro V
3. VnP(n) Induction: 1, 2



Using The Induction Rule In A Formal Proof

P(0) Vk (P(k) — P(k + 1))

Induction
. Vn P(n)
1. P(0)
Let k be an arbitrary integer >0
2.1.1. P(k) Assumption
2.1.2. ..
2.1.3. P(k+1)
2.1 P(k) > P(k+1) Direct Proof
2. Vk(P(k) > P(k+1)) Intro V

3. VnP(n) Induction: 1, 2



Translating to an English Proof

P(0) Vk (P(k) — P(k + 1))

Induction
. Vn P(n)

1. Prove P(0) Base Case

Let k be an arbitrary integer >0 | Inductive
2.1.1. Suppose that P(k) is true | Hypothesis

2.1.2. ... Inductive
2.1.3. Prove P(k+1) is true Step
2.1 P(k) > P(k+1) Direct Proof
2. Vk (P(k) > P(k+1)) Intro V

3. Vn P(n) Induction: 1, 2



Translating to an English Proof

1. Prove P(0) Base Case
Let k be an arbitrary integer >0 | Inductive
2.1.1. Suppose that P(k) is true | Hypothesis

2.1.2. ... Inductive
2.1.3. Prove P(k+1) is true Step
2.1 P(k) > P(k+1) Direct Proof
. . 2. Vk (P(k) > P(k+1)) Intro V
Induction English Proof Template (3. vnrn) Induction: 1, 2

[...Define P(n)...]
We will show that P(n) is true for every n > 0 by induction.
Base Case: [...proof of P(0) here...]

Induction Hypothesis:
Suppose that P(k) is true for an arbitrary k > 0.

Induction Step:
[...proof of P(k + 1) here...]
The proof of P(k + 1) must invoke the IH somewhere.

So, the claim is true by induction.




Inductive Proofs In 5 Easy Steps

Basic induction template
Proof:

1. “Let P(n) be... . We will show that P(n) is true for every
n = 0 by Induction.”

2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:
Suppose P (k) is true for an arbitrary integer k > 0”
4. “Inductive Step:” Prove that P(k + 1) is true.
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !))
5. “Conclusion: Result follows by induction”



Whatis1 + 2 + 4 + ... + 2™?

.« 1 = 1
¢ 1+ 2 = 3
1 +2+4 = 7
c14+24+4+48 = 15

*1+2+ 4+ 38+ 16 31

It sure looks like this sum is 21 — 1
How can we prove it?

We could prove itforn =1,n=2,n =3, ... but
that would literally take forever.

Good that we have induction!



Provel + 2 + 4 + ... + 2n =2n+l_1




Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all non-negative numbers by induction.



Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all non-negative numbers by induction.

2. Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.



Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all non-negative numbers by induction.
2. Base Case (n=0): 2°=1=2-1=2%1-1s0 P(0)is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that|2° + 21 + ... + 2k = 2k+1 — 1,




Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all non-negative numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
Goal: Show P(k+1), i.e. show 20 + 21 + ... + 2k 4 2k+1 = Jk+2 _ 1




Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all non-negative numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
204214+ | +2k=2k1_-1 pylH
Adding 21 to both sides, we get:
20+ 21+ + 2k 4 2k+l = Dkt 4 D+l _q
Note that 2k+1 + 2k+1 = 2(2k+1) = Qk+2,
So, we have 20 + 21 + . + 2k + 2k+1 = Jk+2 _ 1 which is
exactly P(k+1).



Recall: Substitution vs Adding Equations

Ifa=band b =c,thena =c “Transitivity”

fa=bandc=d,thena+c=b+d “Add Equations”

If a =b and c = d, then ac = bd “Multiply Equations”

e Substitution is an alternative for solving problems
— we will try this out on HW4
— will be heavily used in future homework



Recall: Equivalence Chains

pA(p->1r)=pA(=pVr) Law of Implication
=(pA-p)V(pAT) Distributive
=FV(pAT) Negation
=(@Ar)VF Commutative
=pAT |dentity

 Each line explains equivalence with previous line
— e.g.,(p Ar)V F=p Arby ldentity

* Entire chain provesp A (p =>r)=p AT
— follows by transitivity of "="



Calculation Block

We can do the same with equality:

20+ 21 + . 4 2k 4 2k
= (204214 ... + 2K) + 2k+1
= (2k1 - 1) + 2k+1 since 20421+ ., + 2k=2k1_1
= 2(2%1) - 1
_oks2 _ 1

Explanations appear on in right column
— "since" means we substituted LHS for RHS
— ordinary algebra (on integers) does not need explanation

— "def of" will be used to apply the definition of a function
e.g., replacing f(x) by y when we have f defined as f(x) :=y



Calculation Block

We can do the same with equality:

20+ 21 + . 4 2k 4 2k
= (204214 ... + 2K) + 2k+1
= (21— 1) + 2k+1 since 20421+ ... + 2k =2k+1 -1
=2(21) -1
— k2 _ 1

Entire block shows 20 + 21 + ... + 2k 4 2kl = 2k+2 — ]
— this is the transitivity property of "="

Can also do calculation with "<" and "<"
— don't mix directions: ">" and "<" in one block is ><



Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all non-negative numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1

= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’

which is exactly P(k+1).

The entire inductive step is one calculation!

We will rely heavily on calculation going forward...



Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all non-negative numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’
which is exactly P(k+1).

5. Thus P(n) is true for all n 2 O, by induction.



Prove 1 +2 +3 4+ ..+ n=nn+1)/2

Prove that ), i = n(n+1)/2

Summation Notation
toli=0+1+2+3+ ...+ n




Prove ).\ i = n(n+1)/2

1. LetP(n)be “YI i =n(n+ 1)/2". We will show P(n) is
true for all non-negative numbers by induction.



Prove ).\ i = n(n+1)/2

1. LetP(n)be “YI i =n(n+ 1)/2". We will show P(n) is
true for all non-negative numbers by induction.

2. Base Case (n=0):Y.?_,i = 0 = 0(0 + 1)/2, so P(0) is true.



Prove ).\ i = n(n+1)/2

1.

Let P(n) be “Yi-,i = n(n + 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

Base Case (n=0): Y.7_,i = 0 = 0(0 + 1)/2, so P(0) is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose Y5, i = k(k + 1)|/2

’

“some” or “an’
not any!



Prove ).\ i = n(n+1)/2

1.

Let P(n) be “Yi-,i = n(n + 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

Base Case (n=0): Y.7_,i = 0 = 0(0 + 1)/2, so P(0) is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose Y5 i = k(k + 1)/2
Induction Step:

Goal: Show P(k+1),i.e, Y5t 1i = (k + 1)(k + 2)/2




Prove ).\ i = n(n+1)/2

1.

Let P(n) be “Yi-,i = n(n + 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.
Base Case (n=0): Y.7_,i = 0 = 0(0 + 1)/2, so P(0) is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose Y5 i = k(k + 1)/2
Induction Step: We can see that
i = Qi) + (k+1)
=k(k+1)/2+ (k+1) by IH
=(k+1D)(k/2+1)
=(k+1)(k+2)/2
which is exactly P(k+1).



Prove ).\ i = n(n+1)/2

1.

Let P(n) be “Yi-,i = n(n + 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.
Base Case (n=0): Y.7_,i = 0 = 0(0 + 1)/2, so P(0) is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose Y5 i = k(k + 1)/2
Induction Step: We can see that
i = Qi) + (k+1)
=k(k+1)/2+ (k+1) by IH
=(k+1D)(k/2+1)
=(k+1)(k+2)/2
which is exactly P(k+1).

5. Thus P(n) is true for all n > 0, by induction.



Induction: Changing the starting point

* What if we want to prove that P(n) is true
for all integers n = b for some integer H?

 Define predicate Q(k) = P(k + b) for all k.
—Then VnQ(n) =vn=b P(n)

* Ordinary induction for Q:
— Prove Q(0) = P(b)

— Prove
vk (Q(k) — Q(k+ 1)) =Vk > b(P(k) — P(k + 1))



Inductive Proofs In 5 Easy Steps

Template for induction from a different base case

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer k > b”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))
5. “Conclusion: P(n) is true for all integers n > b”




Prove 3" > n? + 3 foralln > 2




Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+3=2%+3s0 P(2)is true.



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+3=2%+3s0 P(2)is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3k> k2+3.



Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:

Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step: We can see that

3k+1 — 3(3k)
> 3(k2+3) by the IH
= k2+2k?+9
> k2+2k+9 since k? > k
> k2+2k+4 since 9 >4
= (k+1)%+3

Therefore P(k+1) is true.



Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step: We can see that

3kl = 3(3k) > 3(k2+3) by the IH
= k2+2k?+9
> k2+2k+9 since k? > k
> k2+2k+4 since 9 >4
= (k+1)%+3

Therefore P(k+1) is true.

5. Thus P(n) is true for all integers n > 2, by induction.



Induction: Adding Base Cases

* What if we want to prove that P(n) is true
for all integers n = b for some integer b
but the inductive step only works for n = ¢?

* Add proofs of P(b), P(b+ 1), ..., P(c — 1)
— will call these extra "base cases"

* Formally, we are using the fact that

P(b) A - AN P(c—1) AVn((c <£n) - P(n))
=vn((b <n)- P(n))



Inductive Proofs In 5 Easy Steps

Template for induction with multiple base cases

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Case:” Prove P(b), ..., P(c)
3. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer k > c¢”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))
5. “Conclusion: P(n) is true for all integers n > b”




Recursive Definitions
of Functions



Familiar Recursive Definitions

Suppose that hi: N — R.

Then we have familiar summation notation:
_o h(i) == h(0)
Znﬂ h(i) == Qigh(i)) +h(n+1) forn =0

There is also product notation:
_o h(i) == h(0)

H"“ h(i) == ([TXoh(i)) - h(n+ 1) forn >0



Recursive definitions of functions

Ol:==1, (n+1!:=m+1)-n! foralln = 0.

F(0)=0;, Fn+1)==Fn)+ 1foralln = 0.

G(0)=1, G(n+1):=2-G(n)foralln = 0.

H):=1; Hn+1) := 25" foralln > 0.



Proven! <n"foralln>1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.



Proven! <n"foralln>1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.

2. Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.



Proven! <n"foralln>1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.

2. Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.



Proven! <n"foralln>1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.

Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.

Inductive Step:

Goal: Show P(k+1), i.e. show (k+1)! < (k+1)*?




Proven! <n"foralln>1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.

Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.

Inductive Step:
We can calculate:
(k+1)! = (k+1)-k! by definition of !
< (k+1)- kX by the IH
< (k+1)- (k+1)k since k>0
= (k+1)k+
Therefore P(k+1) is true.



Proven! <n"foralln>1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.

Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.

Inductive Step:
We can calculate:
(k+1)! = (k+1)-k! by definition of !
< (k+1)- kX by the IH
< (k+1)- (k+1)k since k>0
= (k+1)k+
Therefore P(k+1) is true.

5. Thus P(n) is true for all n > 1, by induction.



Induction Is A Rule of Inference

Domain: Non-Negative Numbers P(0)
—Vk (P(k) — P(k + 1))
Induction
~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PMA)  P(5)



Induction Is A Rule of Inference

Domain: Non-Negative Numbers P(0)
—Vk (P(k) — P(k + 1))
Induction
~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PM#)  P(®5)

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Strong Induction

P(0) vk (Vi (0<j<k-P(3)) - Plk+1))

Strong . VYn P(n)
Induction



Strong Induction

P(0) vk (Vi (0<j<k-P()) - Plk+1))

~VnP(n)

Strong induction for P follows from ordinary induction for
where

Q(k) == vj(0<j<k-P())

Note that Q(0) = P(0)and Q(k+1) =Q(k) AP(k+ 1)
and vn Q(n) = vn P(n)



Strong Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using LH. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) 1)

5. “Conclusion: P(n) is true for all integers n = b”



Fibonacci Numbers

fo=10
fr=1
fn+2 = fn+1 +fn

Will need facts about
f. - to reason about f,




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all

integers n > 0 by strong induction.

fo=0 fi1=1
fniz = fnsr + [




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0< 1=2° so P(0) is true.



Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0< 1=2° so P(0) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2 for every integer j from 0 to k.

fo=0 fi1=1
fniz = fnsr + [




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0< 1=2° so P(0) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2 for every integer j from 0 to k.

4. Inductive Step:

fk+1 = fk + fk-l def Of f

Oops! Thisisonly trueif k+1 > 2!

: fo=0 fi1=1
. . k+1
Goal: Show P(k+1); that is, f,1 <2 Frso = Fost + fn




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all

integers n > 0 by strong induction.

2. Base Cases: f,=0<1=2° so P(0) is true and

f,=1<2=2's0P(1) is true.

fo=0 fi1=1
fniz = fnsr + [




Bounding Fibonacci: f,, < 2" foralln =0

1.

2.

Let P(n) be “f, <2"”. We prove that P(n) is true for all

integers n > 0 by strong induction.

Base Cases: f, =0 < 1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.

Inductive Hypothesis: Assume that for some arbitrary

integer k > 1, we have f; < 2! for every integer j from 0 to k.

fo=0 fi1=1
fniz = fnsr + [




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all

2.

integers n > 0 by strong induction.

Base Cases: f, =0 < 1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.

Inductive Hypothesis: Assume that for some arbitrary

integer k > 1, we have f; < 2! for every integer j from 0 to k.

4. Inductive Step:

: fo=0 fi1=1
. . k+1
Goal: Show P(k+1); that is, f,1 <2 Frso = Fost + fn




Bounding Fibonacci: f,, < 2" foralln =0

1.

2.

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Cases: f, =0 < 1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.

Inductive Hypothesis: Assume that for some arbitrary

integer k > 1, we have f; < 2! for every integer j from 0 to k.

Inductive Step: We can calculate that
for =T + fiq def of f (since k+1 > 2)
< 2k 4kl by IH (since k-1 > 0)
< 2k4 2k

= 2.2k
= Jk+1

so P(k+1) is true. fo=0 fi=1
fniz = fo+1+ [




Bounding Fibonacci: f,, < 2" foralln =0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Cases: f,=0<1=2° so P(0) is true and
f,=1<2=2's0P(1) is true.
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 1, we have f; < 2! for every integer j from 0 to k.

4. Inductive Step: We can calculate that
for = + fiq def of f (since k+1 > 2)
< 2k 4kl by IH (since k-1 > 0)
< 2k 4k
= Jk+1
so P(k+1) is true.
5. Therefore, by strong induction, f, < 2" for all integers n > 0.



Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all

integers n > 2 by strong induction.

fo=0 fi1=1
fniz = fnsr + [




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f;+f;=1>1=20=2%2-1g0 P(2) holds

fo=0 fi1=1
fniz = fnsr + [




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1.

2.
3.

Let P(n) be “f, >2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f;+f,=12>1=2%=2%2-1g0 P(2) holds
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

fo=0 fi1=1
fniz = fnsr + [




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f;+f,=1>1=20=2%2-1g0 P(2) holds

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:

Goal: Show P(k+1); that is, f,,; > 2{k1)/2-1 fo=0 f1=1

fniz = fnsr + [




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f;+f,=1>1=20=2%2-1g0 P(2) holds

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:

for =T + fiq def of f (since k+1 > 2)
> 2214 f, by the IH
> 2k/2-1 4 D(k-1)/2-1 by the IH

Oops! Thisis only trueif k —1 > 2!

Goal: Show P(k+1); that is, f,,; > 2{k1)/2-1 fo=0 f1=1

fniz = fnsr + [




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all

integers n > 2 by strong induction.

2. Base Cases: f,=f;+f,=12>1=20=22%2-1g0 P(2) holds
fy=f,+f, =2>212=2321 g0 P(3) holds
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:

Goal: Show P(k+1); that is, f,, > 2(kt1)/2-1

fo=0 fi1=1
fniz = fnsr + [




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.
2. Base Cases: f,=f;+f,=12>1=20=22%2-1g0 P(2) holds
fy=f,+f, =2>212=2321 g0 P(3) holds
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step: We can calculate

for =T + fiq def of f (since k+1 > 4)
> K214 f by the IH
> 2k/2-1 4 (k1)/2-1 by the IH (since k-1 > 2)
> ) 2(k—1)/2—1
— 2(k+1)/2—1

so P(k+1) is true.



Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.
2. Base Cases: f,=f;+f,=12>1=20=22%2-1g0 P(2) holds
fy=f,+f, =2>212=2321 g0 P(3) holds
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step: We can calculate

for =T + fiq def of f (since k+1 > 4)
> K214 f by the IH
> 2k/2-1 4 (k1)/2-1 by the IH (since k-1 > 2)

> 2+ 2(k1)/2-1 = 9(k+1)/2-1
so P(k+1) is true.
5. Therefore by strong induction, f, > 2"/2-1 for all integers n > 2.



Checkerboard Tiling

* Prove that a 2" x 2" checkerboard with one square
removed can be tiled with:
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We prove P(n) for all n = 1 by mductlon onh n.




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

2. Base Case: n=1




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

2. Base Case: n=1

3. Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1




Checkerboard Tiling

1.

Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

Base Case: n=1

Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1

Inductive Step: Prove P(k+1)

Apply IH to
each quadrant
| then fill with
extra tile.




Applications



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Why does this help us bound the running time of Euclid’s
Algorithm?

We already proved that f, > 2"/2~1so f,,, = 2(n+1/2
Therefore: if Euclid’s Algorithm takes n steps
for gcd(a, b) witha = b > 0

then q > 2(n—1)/2

so(n—1)/2<log,aorn<1+2log,a
i.e., # of steps < 1 + twice the # of bits in a.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

An informal way to get the idea: Consider an n step gcd
calculation starting with r,,,=a and r =b:
rn+1 = ann + rn—1
= +
= Gnafn1 ¥ Fooa Forallk>2,r _,=r.,, modr,
3 = Of, t0
M dir

Now r; > 1 and each q, must be > 1. If we replace all the
q¢’s by 1 and replace r, by 1, we can only reduce the r,’s.
After that reduction, r =f, for every k.



Algorithmic Problems

* Multiplication

— Given primes p4, p,, ..., Pi, calculate their
product p;p, ... px
* Factoring

— Given an integer n, determine the prime
factorization of n



Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514

19597459856902143413

| I
——

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317

43087737814467999489

A4

N

3674604366679959042824463379962795263227/91581643
430876426760322838157396665112792333734171433968

10270092798736308917



Famous Algorithmic Problems

* Factoring

— Given an integer n, determine the prime
factorization of n

* Primality Testing
— Given an integer n, determine if n is prime

* Factoring is hard
— (on a classical computer)

* Primality Testing is easy



GCD and Factoring

a=2%+352+7+11=46,200
b=2¢32+537+13=204,750

GCD(a, b) = 2min(3,1) ¢ 3min(1,2) ¢ §MIin(2,3) ¢ 7min(1,1) ¢ 14 Min(1,0) ¢ 4 3min(0,1)

Factoring is hard

Yet, we can compute GCD(a,b) without factoring!



Basic Applications of mod

 Two’s Complement
* Hashing
* Pseudo random number generation



n-bit Unsighed Integer Representation

* Represent integer x as sum of powers of 2:

99 =64+32+2+1 =26425421420
18 =16+ 2 =24+21

* Binary representation shows which powers are used:

99: 0110 0011
18: 0001 0010



n-bit Unsighed Integer Representation

e Suppose we write numbers with 4 bits:

14 =8+4+2 =23+22421 =1110
11 =8+2+1 =23+21 420 = 1011

e Largest number we can write in 4 bits is:
15 =8+4+2+1 =23+22+21+20 =1111

* Notethat15=16-1=2%-1

— we proved this before!



n-bit Unsighed Integer Representation

e Suppose we write numbers with 4 bits (0 .. 15):

14 =8+4+2 =23+22421 =1110
11 =8+2+1 =23+21420 =1011

* Adding these numbers gives us 25 with 5 bits:
25 =16+8+1 =2%+23+2° =11001
* If we drop the highest bit, we have

9 =8+1 =23+ 20 = 1001



n-bit Unsighed Integer Representation

25 =16+8+1 =24+23+2° =11001
9 =8+1 =23+20 = 1001

* Note that9 =, 25since 25-9=16

— dropping 2% bit subtracts 16
— dropping 2~ bit subtracts 32 = 2-16

— dropping 2° bit subtracts 64 = 4-16

* Throwing away all but 4 bits is arithmetic mod 16
— easier to implement normal arithmetic!



Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that —2""1 < x < 2n1
First bit as the sign, n — 1 bits for the value

99=64+32+2+1
18=16+2

Forn = 8:

99: 0110 0011
-18: 1001 0010

Problem: this has both +0 and -0 (annoying)



Arithmetic on a Clock

3 bits, unsigned

3 bits, sighed

Since —1 =3 7, arithmetic is unchanged

Only differences are printing and comparison



Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

9=64+32+2+1
18 =16 +2

Forn=8:
99: 0110 0011
-18: 1110 1110 (-18 + 256 = 238)



Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

With 4 bits:
0 1 2 3 4 5 6 7 8 7 6 5 4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Key property: First bit is still the sign bit!

Key property: Twos complement representation of any number y
IS equivalent to y mod 2™ so arithmetic works mod 2™

y+2t =,y



I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 365*24*60*60;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)s

----JjGRASP exec: java Test
I will be alive for at least -186619904 seconds.

----JGRASP: operation complete.



Two’s Complement Representation

e For 0 <x <2™1, —xisrepresented by the
binary representation of —x + 2"

— How do we calculate —x from x?
— E.g., what happens for “return -x;” in Java?

—x+2"=(2"-1)—x+1
* To compute this, flip the bits of x then add 1!

Flip the bits of x means replace x by 2™ — 1 — x
Then add 1 to get —x + 2™



