
CSE 311: Foundations of Computing

Topic 5: More Number Theory

Administrivia

• HW4 released
– formal proofs, then translate to English
– make sure you understand the formal proof

midterm will have formal proofs without Cozy's help

• Warning about CSE cookies…
– will see Cozy errors if you leave window open for hours

• Added some additional notes on Task 5…
– "(3x)y" and "3(xy)" are different (e.g., produce different code)

"3xy" means "(3x)y" since left associative
"xy" is a subexpression of "3(xy)" but not "3xy"

GCD

To put it another way, if we divide b into a, we get a
unique quotient
and non-negative remainder

Recall: Division Theorem

q = a div b

 For 𝑎, 𝑏 with 𝑏 > 0
 there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏

such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

r = a mod b

Integers
Domain of Discourse

Greatest Common Divisor

 For 𝑎, 𝑏 with 𝑎 > 0
 there exist a unique integer 𝑛 s.t. 𝑛	|	𝑎 and 𝑛	|	𝑏
 and, for all 𝑑, if 𝑑	|	𝑎 and 𝑑	|	𝑏, then 𝑑 ≤ 𝑛

GCD Theorem

We will denote this unique number as n = gcd(a, b)

Non-negative Integers

Domain of Discourse

Greatest Common Divisor

gcd(a, b):
 Largest integer 𝑛 such that 𝑛 ∣ 𝑎 and 𝑛 ∣ 𝑏

• gcd(100, 125) =
• gcd(17, 49) =
• gcd(11, 66) =
• gcd(13, 0) =
• gcd(180, 252) =

Simple GCD fact

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

gcd(𝑎, 0) is the unique number 𝑛 satisfying
(𝑛 ∣ 0) Ù (𝑛 ∣ 𝑎) Ù ∀𝑑 (((𝑑 ∣ 0)	Ù	(𝑑 ∣ 𝑎))	®	(𝑑 ≤ 𝑛))

Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary.

Suppose that 𝑑	|	0 and 𝑑	|	𝑎.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary.

Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact, we get that 𝑎 = 𝑗𝑑
for some 𝑗 by the definition of divides. Then, …

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary.

Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact, we get that 𝑎 = 𝑗𝑑
for some 𝑗 by the definition of divides. Since multiplication by non-
negative numbers only makes the number bigger, 𝑑 ≤ 𝑎 holds.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

Prop of * ∀𝑎	∀𝑏	∀𝑐	(((𝑎 = 𝑏𝑐) ∧ (𝑏 > 0)) → (𝑐 ≤ 𝑎))

Oops! This is only true if 𝑗 > 0!

Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary. Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact,
we get that 𝑎 = 𝑗𝑑 by the definition of divides. We continue by cases…

Suppose that 𝑗 > 0. Then, "Prop of *" tells us that 𝑑 ≤ 𝑎 holds.

Suppose that 𝑗 = 0.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary. Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact,
we get that 𝑎 = 𝑗𝑑 by the definition of divides. We continue by cases…

Suppose that 𝑗 > 0. Then, "Prop of *" tells us that 𝑑 ≤ 𝑎 holds.

Suppose that 𝑗 = 0. That would tell us that 𝑎 = 0𝑑 = 0, contradicting
the fact that 𝑎 > 0, which was given.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary. Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact,
we get that 𝑎 = 𝑗𝑑 by the definition of divides. We continue by cases…

Suppose that 𝑗 > 0. Then, "Prop of *" tells us that 𝑑 ≤ 𝑎 holds.

Suppose that 𝑗 = 0. That would tell us that 𝑎 = 0𝑑 = 0, contradicting
the fact that 𝑎 > 0, which was given. Since false is true, anything is true.
In particular, we can say that 𝑑 ≤ 𝑎 holds.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary. Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact,
we get that 𝑎 = 𝑗𝑑 by the definition of divides. We continue by cases…

Suppose that 𝑗 > 0. Then, "Prop of *" tells us that 𝑑 ≤ 𝑎 holds.

Suppose that 𝑗 = 0. That would tell us that 𝑎 = 0𝑑 = 0, contradicting
the fact that 𝑎 > 0, which was given. Since false is true, anything is true.
In particular, we can say that 𝑑 ≤ 𝑎 holds.

Since we have either 𝑗 = 0 or 𝑗 > 0, we see that 𝑑 ≤ 𝑎 holds in general.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof Idea:
 We will show that every number dividing 𝑎 and 𝑏 also divides 𝑏 and 𝑎	mod	𝑏.
 I.e., 𝑑|𝑎 and 𝑑|𝑏 iff 𝑑|𝑏 and 𝑑|(𝑎	mod	𝑏).

 Hence, their set of common divisors are the same,
 which means that their greatest common divisor is the same.

Useful GCD Fact

Proof (of 𝑑|𝑎 and 𝑑|𝑏 iff 𝑑|𝑏 and 𝑑| 𝑎	mod	𝑏):
 By the Division Theorem, 𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏) for some integer 𝑞 = 𝑎	div	𝑏.

 Suppose 𝑑	|	𝑏 and 𝑑	|	(𝑎	mod	𝑏).
 Then 𝑏 = 𝑚𝑑 and (𝑎	mod	𝑏) = 𝑛𝑑 for some integers 𝑚 and 𝑛.
 Therefore 𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏) 	= 𝑞𝑚𝑑 + 	𝑛𝑑 = 𝑞𝑚 + 𝑛 𝑑.
 So 𝑑	|	𝑎 by the definition of divides.

 Suppose 𝑑	|	𝑎 and 𝑑	|	𝑏.
 Then 𝑎 = 𝑘𝑑 and 𝑏 = 𝑗𝑑 for some integers 𝑘 and 𝑗.
 Therefore (𝑎	mod	𝑏) = 𝑎	– 𝑞𝑏 = 𝑘𝑑	– 𝑞𝑗𝑑 = (𝑘	– 𝑞𝑗)𝑑.
 So, 𝑑	|	(𝑎	mod	𝑏) by the definition of divides.

 Since they have the same common divisors, gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎	mod	𝑏).

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b) gcd(a, 0) = a

int gcd(int a, int b) { /* Assumes: a >= b >= 0 */
 if (b == 0) {
 return a;
 } else {
 return gcd(b, a % b);
 }
}

Note: gcd(b, a) = gcd(a, b)

Euclid’s Algorithm

gcd(660,126) =

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏 to reduce
numbers until you get gcd(𝑔, 0) = 𝑔.

gcd(660,126)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
 = gcd(30, 126 mod 30) = gcd(30, 6)
 = gcd(6, 30 mod 6) = gcd(6, 0)
 = 6

gcd(660,126)

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏 to reduce
numbers until you get gcd(𝑔, 0) = 𝑔.

Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that

gcd(a,b) = sa + tb.

∀a	∀b	((a	>	0	∧	b	>	0)	→	∃s	∃t	(gcd(a,b)	=	sa	+	tb))

(a	>	0	∧	b	>	0)	→	∃s	∃t	(gcd(a,b)	=	sa	+	tb)

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
 gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
 gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8	
a b b a mod b = r b r a = q * b + r

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
 gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8
=	gcd(8,	27	mod	8)						=	gcd(8,	3)									27	=	3	*	8			+	3
=	gcd(3,	8	mod	3)								=	gcd(3,	2)										8		=	2	*	3			+	2
=	gcd(2,	3	mod	2)									=	gcd(2,	1)										3		=	1	*	2			+	1
=	gcd(1,	2	mod	1)	 =	gcd(1,	0)

a b b a mod b = r b r a = q * b + r

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
 gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a = q * b + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r = a -- q * b
8	=	35	– 1	*	27

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
 gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a = q * b + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r = a -- q * b
8	=	35	– 1	*	27
3	=	27	– 3	*	8
2	=		8		– 2	*	3
1	=		3		– 1	*	2

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
 gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
 gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

Plug in the def of 2

Re-arrange into
3’s and 8’s

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
 gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

				=	(–1)	*	8	+	3	*	(27	–	3	*	8)
				=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
				=			3	*	27		+	(–10)	*	8

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
 gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

				=	(–1)	*	8	+	3	*	(27	–	3	*	8)
				=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
				=			3	*	27		+	(–10)	*	8

				=			3	*	27		+	(–10)	*	(35	–	1	*	27)
				=			3	*	27			+	(–10)	*	35	+	10	*	27
				=			13	*	27	+	(–10)	*	35

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s

Let 0 ≤ 𝑎, 𝑏 < 𝑚. Then, 𝑏 is the multiplicative
inverse of 𝑎 (modulo 𝑚) iff 𝑎𝑏 ≡! 1.

Multiplicative inverse mod	𝑚

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

mod 7

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10

Multiplicative inverse mod	𝑚

Suppose gcd 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 is the multiplicative inverse of 𝑎 (modulo 𝑚):
 1 ≡: 𝑠𝑎 since 𝑚	|	1 − 𝑠𝑎 (since 1 − 𝑠𝑎 = 𝑡𝑚)

So… we can compute multiplicative inverses with the
extended Euclidean algorithm

These inverses let us solve modular equations…

Recall: Properties of Modular Arithmetic

These properties are sufficient to allow
us to do algebra with congruences

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.

In particular, the first two properties let us
• move a term from one side to the other
• simplify on either side

Recall: Multiplicative inverse mod	𝑚

Suppose gcd 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 is the multiplicative inverse of 𝑎 (modulo 𝑚):
 1 ≡: 𝑠𝑎 since 𝑚	|	1 − 𝑠𝑎 (since 1 − 𝑠𝑎 = 𝑡𝑚)

We can compute multiplicative inverses with the
Extended Euclidean algorithm

These inverses let us solve modular equations…

Example: Solve a Modular Equation

Solve: 7𝑥 ≡"# 3

Suppose we can show that 15 is the
multiplicative inverse of 7 modulo 26,
i.e., that 15 = 7 ≡!" 1

Then, we can multiply on both sides
by 15 to see that

15 M 7𝑥 ≡"# 15 M 31𝑥 ≡"#𝑥 ≡"# ≡"# 45 ≡"# 19

So, if we are given that 7𝑥 ≡!" 3,
then we have shown that 𝑥 ≡!" 19.

Example: Solve a Modular Equation

Solve: 7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26

Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

Solve: 7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26

Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

Solve: 7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26

Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

1	 = 	 	 5	 	 – 	 	2 ∗ (7	– 1 ∗ 5)
 =	(– 2) ∗ 7		 + 	3 ∗ 5
 = –2 ∗ 7		 + 	3 ∗ (26	– 3 ∗ 7)
 =	 −11 ∗ 7	 + 	3 ∗ 26

Solve: 7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26

Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

1	 = 	 	 5	 	 – 	 	2 ∗ (7	– 1 ∗ 5)
 =	(– 2) ∗ 7		 + 	3 ∗ 5
 = –2 ∗ 7		 + 	3 ∗ (26	– 3 ∗ 7)
 =	 −11 ∗ 7	 + 	3 ∗ 26

Now (−11)	mod	26	 = 15.
“the” multiplicative inverse

Solve: 7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26

(−11 is also “a” multiplicative inverse)

Adding to both sides easily reversible:

𝑥 ≡: 𝑦

𝑥 + 𝑐 ≡: 𝑦 + 𝑐

The same is not true of multiplication…
unless we have a multiplicative inverse 𝑐𝑑 ≡: 1

𝑥 ≡: 𝑦

𝑐𝑥 ≡: 𝑐𝑦

Multiplicative Inverses and Algebra

+𝑐−𝑐

×𝑐×𝑑

Example: Solve a Modular Equation

Solve: 7𝑥 ≡"# 3

We saw before that… if we are given that 7𝑥 ≡!" 3,
then we have shown that 𝑥 ≡!" 19.

But these steps are all reversible…

7𝑥 ≡AB 3	 ⇒ 	 x ≡AB 19

Example: Solve a Modular Equation

7𝑥 ≡AB 3	 ⇒ 	 15 > 7x ≡AB 15 > 3
multiply both sides by 15

x ≡AB 19	 ⇒ 	 7x ≡AB 7 > 19
multiply both sides by 7

⇒ 	 x ≡AB 19
since 15 = 7 ≡!" 1 and 15 = 3 ≡!" 19

⇒ 	 7x ≡AB 3
since 7 = 19 ≡!" 3

Example: Solve a Modular Equation

Solve: 7𝑥 ≡"# 3

We saw before that… if we are given that 7𝑥 ≡!" 3,
then we have shown that 𝑥 ≡!" 19.

But all of these steps are reversible…

So 7𝑥 ≡!" 3 iff 𝑥 ≡!" 19

x ≡AB 19	 ⇒ 	 7x ≡AB 7 > 19

Hence, the solutions are all numbers of the form
19 + 26𝑘 for some integer

7𝑥 ≡AB 3	 ⇒ 	 x ≡AB 19

Solving Modular Equations in "Standard Form"

1	 = 	… 	= 	 −11 ∗ 7	 + 	3 ∗ 26

Since (−11)	mod	26	 = 15, the inverse of 7 is 15.

Solve: 7𝑥 ≡"# 3

Step 1. Find multiplicative inverse of 7 modulo 26

(must be of the form 𝑎 +𝑚𝑘 with 0 ≤ 𝑎 < 𝑚)

Multiplying by 15, we get 𝑥 ≡"# 15 M 7𝑥 ≡"# 15 M 3 ≡"# 19.

Step 2. Multiply both sides and simplify

Step 3. State the full set of solutions
So, the solutions are 19 + 26𝑘	for any integer 𝑘

(of the form 𝐴𝑥 ≡# 𝐵 for some 𝐴 and 𝐵)

Example Not in “Standard Form”

What about equation not in standard form?

Solve: 7(𝑥 − 3) ≡"# 8 + 2𝑥

Example: Not in “Standard Form”

Rewrite it in standard form:

Solve: 7 𝑥 − 3 ≡"# 8 + 2𝑥

7 𝑥 − 3 ≡"# 8 + 2x7𝑥 − 21 ≡"#

move 2x to the other side

5𝑥 − 21 ≡"# 8

move −21 to the other side

5𝑥 ≡"# 29 ≡"# 3

These steps are all reversible, so the solutions are the same.

Induction

Mathematical Induction

Method for proving claims about non-negative integers

– A new logical inference rule!
• It only applies over the non-negative numbers
• The idea is to use the special structure of these

numbers to prove things more easily

Prove ∀𝑘	((𝑎 ≡! 𝑏) → (𝑎" ≡! 𝑏"))

Let 𝑘 be an arbitrary non-negative integer.
Suppose that 𝑎 ≡: 𝑏.

We know (𝑎 ≡$ 𝑏) ∧ (𝑎 ≡$ 𝑏) → (𝑎!≡$ 𝑏!) by multiplying
congruences. So, applying this repeatedly, we have:

(𝑎 ≡$ 𝑏) ∧ (𝑎 ≡$ 𝑏) → (𝑎! ≡$ 𝑏!)
(𝑎!≡$ 𝑏!) ∧ (𝑎 ≡$ 𝑏) → (𝑎$ ≡$ 𝑏$)

…
(𝑎%&' ≡$ 𝑏%&') ∧ (𝑎 ≡$ 𝑏) → (𝑎% ≡$ 𝑏%)

The “…”s is a problem! We don’t have a proof rule that
allows us to say “do this over and over”.

But there is such a rule for non-negative numbers!

Domain: Non-Negative Numbers

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1)
∴ ∀𝑛	 𝑃(𝑛)

Induction

Induction Is A Rule of Inference
Domain: Non-Negative Numbers

How do the givens prove P(3)?

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1)

∴ ∀𝑛	 𝑃(𝑛)
Induction

Induction Is A Rule of Inference

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0) → P(1).
 Since P(0) is true and P(0) → P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1) → P(2).
 Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1) P(1)→P(2) P(2)→P(3) P(3)→P(4) P(4)→P(5)

Domain: Non-Negative Numbers 𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1)

∴ ∀𝑛	 𝑃(𝑛)
Induction

Using The Induction Rule In A Formal Proof

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1)
∴ ∀𝑛	 𝑃(𝑛)

Induction

Using The Induction Rule In A Formal Proof

1. P(0)

2. "k (P(k) ® P(k+1)) ??
3. "n P(n) Induction: 1, 2

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1)
∴ ∀𝑛	 𝑃(𝑛)

Induction

Using The Induction Rule In A Formal Proof

1. P(0)
Let k be an arbitrary integer ≥ 0

2.1 P(k) ® P(k+1) ??
2. "k (P(k) ® P(k+1)) Intro "
3. "n P(n) Induction: 1, 2

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1)
∴ ∀𝑛	 𝑃(𝑛)

Induction

Using The Induction Rule In A Formal Proof

1. P(0)
Let k be an arbitrary integer ≥ 0

 2.1.1. P(k) Assumption
 2.1.2. ...
 2.1.3. P(k+1)

2.1 P(k) ® P(k+1) Direct Proof
2. "k (P(k) ® P(k+1)) Intro "
3. "n P(n) Induction: 1, 2

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1)
∴ ∀𝑛	 𝑃(𝑛)

Induction

Translating to an English Proof

1. Prove P(0)
 Let k be an arbitrary integer ≥ 0
 2.1.1. Suppose that P(k) is true
 2.1.2. ...
 2.1.3. Prove P(k+1) is true

2.1 P(k) ® P(k+1) Direct Proof
2. "k (P(k) ® P(k+1)) Intro "
3. "n P(n) Induction: 1, 2

Base Case
Inductive
Hypothesis

Inductive
Step

Conclusion

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1)
∴ ∀𝑛	 𝑃(𝑛)

Induction

Translating to an English Proof

[…Define P(n)…]

We will show that 𝑃(𝑛) is true for every 𝑛 ≥ 0 by induction.
Base Case: […proof of 𝑃(0) here…]

Induction Hypothesis:
 Suppose that 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 0.

Induction Step:
 […proof of 𝑃(𝑘 + 1) here…]
 The proof of 𝑃(𝑘 + 1) must invoke the IH somewhere.

So, the claim is true by induction.

Induction English Proof Template

Inductive Proofs In 5 Easy Steps

Proof:
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every
 𝑛 ≥ 0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:
 Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 0”
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.
 Use the goal to figure out what you need.
 Make sure you are using I.H. and point out where you are

using it. (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: Result follows by induction”

Basic induction template

What is 1	 + 	2	 + 	4	 +	…	+ 	2𝑛 ?

• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 1
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 3
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 7
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 15
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 31

It sure looks like this sum is 2IJK − 1
How can we prove it?
 We could prove it for 𝑛 = 1, 𝑛 = 2, 𝑛 = 3,… but

that would literally take forever.
 Good that we have induction!

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1

1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”. We will show P(n) is true
for all non-negative numbers by induction.

2. Base Case (n=0): 20 = 1 = 2 – 1 = 20+1 – 1
3. Induction Hypothesis: Suppose that P(k) is true for some

 arbitrary integer k ≥ 0.
4. Induction Step:
 Goal: Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
 1 + 2 + … + 2k = 2k+1 – 1 by IH
 Adding 2k+1 to both sides, we get:
 1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is
 exactly P(k+1).
 5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1

1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”. We will show P(n) is true
for all non-negative numbers by induction.

2. Base Case (n=0): 20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis: Suppose that P(k) is true for some

 arbitrary integer k ≥ 0.
4. Induction Step:
 Goal: Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
 1 + 2 + … + 2k = 2k+1 – 1 by IH
 Adding 2k+1 to both sides, we get:
 1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is
 exactly P(k+1).
 5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1

1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”. We will show P(n) is true
for all non-negative numbers by induction.

2. Base Case (n=0): 20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
 Goal: Show P(k+1I.e.,), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
 1 + 2 + … + 2k = 2k+1 – 1 by IH
 Adding 2k+1 to both sides, we get:
 1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is
 exactly P(k+1).
 5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1

1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”. We will show P(n) is true
for all non-negative numbers by induction.

2. Base Case (n=0): 20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:
 Goal: Show P(k+1), i.e. show 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
 1 + 2 + … + 2k = 2k+1 – 1 by IH
 Adding 2k+1 to both sides, we get:
 1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is
 exactly P(k+1).
 5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1

1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”. We will show P(n) is true
for all non-negative numbers by induction.

2. Base Case (n=0): 20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:
 20 + 21 + … + 2k = 2k+1 – 1 by IH
 Adding 2k+1 to both sides, we get:
 20 + 21 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1, which is
 exactly P(k+1).
 5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1

Recall: Substitution vs Adding Equations

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄 “Transitivity”
If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂 + 𝒄 = 𝒃 + 𝒅 “Add Equations”

If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂𝒄 = 𝒃𝒅	 “Multiply Equations”

• Substitution is an alternative for solving problems
– we will try this out on HW4
– will be heavily used in future homework

Recall: Equivalence Chains

𝑝 ∧ 𝑝 → 𝑟 ≡ 𝑝 ∧ (¬𝑝 ∨ 𝑟)
 ≡ 𝑝 ∧ ¬𝑝 ∨ (𝑝 ∧ 𝑟)
 ≡	F ∨ (𝑝 ∧ 𝑟)
 ≡ 𝑝 ∧ 𝑟 ∨	F
 ≡ 𝑝 ∧ 𝑟

Law of Implication
Distributive
Negation
Commutative
Identity

• Each line explains equivalence with previous line
– e.g., (p Ù r) ∨ F º p Ù r by Identity

• Entire chain proves p Ù (p ® r) º p Ù r
– follows by transitivity of "≡"

We can do the same with equality:

 20 + 21 + … + 2k + 2k+1
 = (20+21+ … + 2k) + 2k+1
 = (2k+1 – 1) + 2k+1 since 20+21+ … + 2k = 2k+1 – 1
 = 2(2k+1) – 1
 = 2k+2 – 1

Explanations appear on in right column
– "since" means we substituted LHS for RHS
– ordinary algebra (on integers) does not need explanation
– "def of" will be used to apply the definition of a function

e.g., replacing f(x) by y when we have f defined as f(x) := y

Calculation Block

We can do the same with equality:

 20 + 21 + … + 2k + 2k+1
 = (20+21+ … + 2k) + 2k+1
 = (2k+1 – 1) + 2k+1 since 20+21+ … + 2k = 2k+1 – 1
 = 2(2k+1) – 1
 = 2k+2 – 1

Entire block shows 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
– this is the transitivity property of "="

Can also do calculation with "<" and "≤"
– don't mix directions: ">" and "<" in one block is ><

Calculation Block

1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”. We will show P(n) is true
for all non-negative numbers by induction.

2. Base Case (n=0): 20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:
 We can calculate
 20 + 21 + … + 2k + 2k+1 = (20+21+ … + 2k) + 2k+1
 = (2k+1 – 1) + 2k+1 by the IH
 = 2(2k+1) – 1
 = 2k+2 – 1,
 which is exactly P(k+1).

 5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1

The entire inductive step is one calculation!
We will rely heavily on calculation going forward…

1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”. We will show P(n) is true
for all non-negative numbers by induction.

2. Base Case (n=0): 20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:
 We can calculate
 20 + 21 + … + 2k + 2k+1 = (20+21+ … + 2k) + 2k+1
 = (2k+1 – 1) + 2k+1 by the IH
 = 2(2k+1) – 1
 = 2k+2 – 1,
 which is exactly P(k+1).
 5. Thus P(n) is true for all n ≥ 0, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2

Summation Notation
 ∑DEF< 𝑖 = 0 + 1	 + 	2	 + 	3	 +	…	+ 	𝑛

Prove that ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2

1. Let P(n) be “∑%&'(𝑖 = 𝑛(𝑛 + 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

Prove ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2

1. Let P(n) be “∑%&'(𝑖 = 𝑛(𝑛 + 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑%&'' 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.

Prove ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2

1. Let P(n) be “∑%&'(𝑖 = 𝑛(𝑛 + 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑%&'' 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.
3. Induction Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 0. I.e., suppose ∑%&') 𝑖 = 𝑘(𝑘 + 1)/2

Prove ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2

“some” or “an”
not any!

1. Let P(n) be “∑%&'(𝑖 = 𝑛(𝑛 + 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑%&'' 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.
3. Induction Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 0. I.e., suppose ∑%&') 𝑖 = 𝑘(𝑘 + 1)/2
4. Induction Step:

Prove ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2

Goal: Show P(k+1), i.e., ∑#$%&'(𝑖 = (𝑘 + 1)(𝑘 + 2)/2

1. Let P(n) be “∑%&'(𝑖 = 𝑛(𝑛 + 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑%&'' 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.
3. Induction Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 0. I.e., suppose ∑%&') 𝑖 = 𝑘(𝑘 + 1)/2
4. Induction Step: We can see that
 ∑%&')*+ 𝑖 = (∑%&') 𝑖) + (𝑘 + 1)
 = k(k + 1)/2 + (𝑘 + 1) by IH
 = (k + 1)(k/2 + 1)
 = (k + 1)(k + 2)/2
 which is exactly P(k+1).

Prove ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2

1. Let P(n) be “∑%&'(𝑖 = 𝑛(𝑛 + 1)/2”. We will show P(n) is
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑%&'' 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.
3. Induction Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 0. I.e., suppose ∑%&') 𝑖 = 𝑘(𝑘 + 1)/2
4. Induction Step: We can see that
 ∑%&')*+ 𝑖 = (∑%&') 𝑖) + (𝑘 + 1)
 = k(k + 1)/2 + (𝑘 + 1) by IH
 = (k + 1)(k/2 + 1)
 = (k + 1)(k + 2)/2
 which is exactly P(k+1).
 5. Thus P(n) is true for all n ≥ 0, by induction.

Prove ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2

Induction: Changing the starting point

• What if we want to prove that 𝑃(𝑛) is true
for all integers 𝑛 ≥ 𝑏 for some integer 𝑏?

• Define predicate 𝑄 𝑘 = 𝑃(𝑘 + 𝑏) for all 𝑘.
– Then ∀𝑛	𝑄 𝑛 ≡ ∀𝑛 ≥ 𝑏	 𝑃(𝑛)

• Ordinary induction for 𝑄:
– Prove	𝑄 0 ≡ 𝑃 𝑏
– Prove

∀𝑘 𝑄 𝑘 ⟶ 𝑄 𝑘 + 1 ≡ ∀𝑘 ≥ 𝑏 𝑃 𝑘 ⟶ 𝑃 𝑘 + 1

Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all
 integers 𝑛 ≥ 𝒃 by induction.”
2. “Base Case:” Prove 𝑃(𝒃)
3. “Inductive Hypothesis:
 Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝒃”
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
 Use the goal to figure out what you need.
 Make sure you are using I.H. and point out where you are

using it. (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝒃”

Template for induction from a different base case

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2

1. Let P(n) be “3n ≥ n2+3”. We will show P(n) is true for all
integers n ≥ 2 by induction.

2. Base Case (n=2): 32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 2.
4. Induction Step:
 Goal: Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
 3k+1 = 3(3k)
 ≥ 3(k2+3) by the IH
 = k2+2k2+9
 ≥ k2+2k+1 = (k+1)2 since k ≥ 1.
 Therefore P(k+1) is true.
 5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2

1. Let P(n) be “3n ≥ n2+3”. We will show P(n) is true for all
integers n ≥ 2 by induction.

2. Base Case (n=2): 32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis: Suppose that P(k) is true for some

 arbitrary integer k ≥ 2.
4. Inductive Step:
 Goal: Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
 3k+1 = 3(3k)
 ≥ 3(k2+3) by the IH
 = k2+2k2+9
 ≥ k2+2k+1 = (k+1)2 since k ≥ 1.
 Therefore P(k+1) is true.
 5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2

1. Let P(n) be “3n ≥ n2+3”. We will show P(n) is true for all
integers n ≥ 2 by induction.

2. Base Case (n=2): 32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis: Suppose that P(k) is true for some

 arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
 =k2+2k+4
 3k+1 = 3(3k)
 ≥ 3(k2+3) by the IH
 = k2+2k2+9
 ≥ k2+2k+1 = (k+1)2 since k ≥ 1.
 Therefore P(k+1) is true.
 5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2

1. Let P(n) be “3n ≥ n2+3”. We will show P(n) is true for all
integers n ≥ 2 by induction.

2. Base Case (n=2): 32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:

 3k+1 = 3(3k)
 ≥ 3(k2+3) by the IH
 = k2+2k2+9
 ≥ k2+2k+1 = (k+1)2 since k ≥ 1.

Goal: Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2

1. Let P(n) be “3n ≥ n2+3”. We will show P(n) is true for all
integers n ≥ 2 by induction.

2. Base Case (n=2): 32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step: We can see that
 3k+1 = 3(3k)
 ≥ 3(k2+3) by the IH
 = k2+2k2+9
 ≥ k2+2k+9 since k2 ≥ k
 ≥ k2+2k+4 since 9 ≥ 4
 = (k+1)2+3
 Therefore P(k+1) is true.
 5. Thus P(n) is true for all integers n ≥ 2, by induction.

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2

1. Let P(n) be “3n ≥ n2+3”. We will show P(n) is true for all
integers n ≥ 2 by induction.

2. Base Case (n=2): 32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step: We can see that
 3k+1 = 3(3k) ≥ 3(k2+3) by the IH
 = k2+2k2+9
 ≥ k2+2k+9 since k2 ≥ k
 ≥ k2+2k+4 since 9 ≥ 4
 = (k+1)2+3
 Therefore P(k+1) is true.
 5. Thus P(n) is true for all integers n ≥ 2, by induction.

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2

Induction: Adding Base Cases

• What if we want to prove that 𝑃(𝑛) is true
for all integers 𝑛 ≥ 𝑏 for some integer 𝑏
but the inductive step only works for 𝑛 ≥ 𝑐?

• Add proofs of 𝑃(𝑏), 𝑃(𝑏 + 1), …, 𝑃(𝑐 − 1)
– will call these extra "base cases"

• Formally, we are using the fact that
𝑃 𝑏 	∧	 MMM	 ∧ 	𝑃 𝑐 − 1 	∧	∀𝑛	((𝑐 ≤ 𝑛) → 𝑃(𝑛))
 ≡ ∀𝑛	((𝑏 ≤ 𝑛) → 𝑃(𝑛))

Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all
 integers 𝑛 ≥ 𝒃 by induction.”
2. “Base Case:” Prove 𝑃(𝒃), …, 𝑃(𝒄)
3. “Inductive Hypothesis:
 Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝒄”
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
 Use the goal to figure out what you need.
 Make sure you are using I.H. and point out where you are

using it. (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝒃”

Template for induction with multiple base cases

Recursive Definitions
of Functions

Familiar Recursive Definitions

Suppose that ℎ:ℕ	 → ℝ.

Then we have familiar summation notation:
∑,-.. ℎ 𝑖 ≔ ℎ(0)
∑,-./01ℎ 𝑖 ≔ ∑,-./ ℎ 𝑖 + ℎ(𝑛 + 1) for 𝑛 ≥ 0

There is also product notation:
∏,-.
. ℎ 𝑖 ≔ ℎ(0)

∏,-.
/01ℎ 𝑖 ≔ ∏,-.

/ ℎ 𝑖 G ℎ(𝑛 + 1)	 for 𝑛 ≥ 0

Recursive definitions of functions

• 0! ≔ 1;	 (𝑛 + 1)! ≔ (𝑛 + 1) > 𝑛! for all 𝑛 ≥ 	0.

• 𝐹(0) ≔ 0; 	 𝐹(𝑛 + 1) ≔ 𝐹(𝑛) + 1 for all 𝑛 ≥ 	0.

• 𝐺(0) ≔ 1; 	 𝐺(𝑛 + 1) ≔ 2 > 𝐺(𝑛) for all 𝑛 ≥ 	0.

• 𝐻(0) ≔ 1; 	 𝐻(𝑛 + 1) ≔ 2Q I for all 𝑛 ≥ 	0.

1. Let P(n) be “n! ≤ nn”. We will show that P(n) is true for all
integers n ≥ 1 by induction.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1

1. Let P(n) be “n! ≤ nn”. We will show that P(n) is true for all
integers n ≥ 1 by induction.

2. Base Case (n=1): 1!=1·0!=1·1=1=11 so P(1) is true.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1

1. Let P(n) be “n! ≤ nn”. We will show that P(n) is true for all
integers n ≥ 1 by induction.

2. Base Case (n=1): 1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1

1. Let P(n) be “n! ≤ nn”. We will show that P(n) is true for all
integers n ≥ 1 by induction.

2. Base Case (n=1): 1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:

Goal: Show P(k+1), i.e. show (k+1)! ≤ (k+1)k+1

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1

1. Let P(n) be “n! ≤ nn”. We will show that P(n) is true for all
integers n ≥ 1 by induction.

2. Base Case (n=1): 1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:
 We can calculate:
 (k+1)! = (k+1)·k! by definition of !
 ≤ (k+1)· kk by the IH
 ≤ (k+1)· (k+1)k since k ≥ 0
 = (k+1)k+1

 Therefore P(k+1) is true.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1

1. Let P(n) be “n! ≤ nn”. We will show that P(n) is true for all
integers n ≥ 1 by induction.

2. Base Case (n=1): 1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis: Suppose that P(k) is true for some

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:
 We can calculate:
 (k+1)! = (k+1)·k! by definition of !
 ≤ (k+1)· kk by the IH
 ≤ (k+1)· (k+1)k since k ≥ 0
 = (k+1)k+1

 Therefore P(k+1) is true.
 5. Thus P(n) is true for all n ≥ 1, by induction.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1

Induction Is A Rule of Inference

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1) P(1)→P(2) P(2)→P(3) P(3)→P(4) P(4)→P(5)

Domain: Non-Negative Numbers 𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1)

∴ ∀𝑛	 𝑃(𝑛)
Induction

Induction Is A Rule of Inference

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0) → P(1).
 Since P(0) is true and P(0) → P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1) → P(2).
 Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1) P(1)→P(2) P(2)→P(3) P(3)→P(4) P(4)→P(5)

Domain: Non-Negative Numbers 𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1)

∴ ∀𝑛	 𝑃(𝑛)
Induction

Strong Induction

𝑃 0 	 ∀𝑘 ∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗 → 𝑃 𝑘 + 1

∴ ∀𝑛	𝑃(𝑛)Strong
Induction

Strong Induction

Strong induction for 𝑃 follows from ordinary induction for 𝑄
where

𝑄 𝑘 	∷=	∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗

Note that 𝑄 0 = 𝑃(0) and 𝑄(𝑘 + 1) ≡ 𝑄(𝑘) 	∧ 𝑃 𝑘 + 1
and ∀𝑛	𝑄 𝑛 ≡ ∀𝑛	𝑃(𝑛)

𝑃 0 	 ∀𝑘 ∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗 → 𝑃 𝑘 + 1

∴ ∀𝑛	𝑃(𝑛)

Strong Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all
 integers 𝑛 ≥ 𝑏 by strong induction.”
2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:
 Assume that for some arbitrary integer 𝑘 ≥ 𝑏,	
 	 𝑃(𝑗) is true for every integer 𝑗	from 𝑏	to 𝑘”
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
 Use the goal to figure out what you need.
 Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true)

and point out where you are using it.
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”

Fibonacci Numbers

𝑓. ≔ 0
𝑓1 ≔ 1
𝑓/0" ≔ 𝑓/01 + 𝑓/

Will need facts about
fn-2 to reason about fn

Bounding Fibonacci: 𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”. We prove that P(n) is true for all

integers n ≥ 0 by strong induction.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci: 𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”. We prove that P(n) is true for all

integers n ≥ 0 by strong induction.
2. Base Case: f0 = 0 < 1= 20 so P(0) is true.

Bounding Fibonacci: 𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”. We prove that P(n) is true for all

integers n ≥ 0 by strong induction.
2. Base Case: f0 = 0 < 1= 20 so P(0) is true.
3. Inductive Hypothesis: Assume that for some arbitrary

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci: 𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”. We prove that P(n) is true for all

integers n ≥ 0 by strong induction.
2. Base Case: f0 = 0 < 1= 20 so P(0) is true.
3. Inductive Hypothesis: Assume that for some arbitrary

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:

 fk+1 = fk + fk-1 def of f

Oops! This is only true if 𝑘 + 1 ≥ 2 !

Goal: Show P(k+1); that is, fk+1 < 2k+1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci: 𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”. We prove that P(n) is true for all

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20 so P(0) is true and

 f1 = 1 < 2 = 21 so P(1) is true.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci: 𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”. We prove that P(n) is true for all

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20 so P(0) is true and

 f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis: Assume that for some arbitrary

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci: 𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”. We prove that P(n) is true for all

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20 so P(0) is true and

 f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis: Assume that for some arbitrary

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:

Goal: Show P(k+1); that is, fk+1 < 2k+1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci: 𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”. We prove that P(n) is true for all

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20 so P(0) is true and

 f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis: Assume that for some arbitrary

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step: We can calculate that
 fk+1 = fk + fk-1 def of f (since k+1 ≥ 2)
 < 2k + 2k-1 by IH (since k-1 ≥ 0)
 < 2k + 2k
 = 2·2k

 = 2k+1
 so P(k+1) is true. 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏

𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci: 𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”. We prove that P(n) is true for all

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20 so P(0) is true and

 f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis: Assume that for some arbitrary

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step: We can calculate that
 fk+1 = fk + fk-1 def of f (since k+1 ≥ 2)
 < 2k + 2k-1 by IH (since k-1 ≥ 0)
 < 2k + 2k
 = 2k+1
 so P(k+1) is true.
5. Therefore, by strong induction, fn < 2n for all integers n ≥ 0.

Bounding Fibonacci II: 𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”. We prove that P(n) is true for all
integers n ≥ 2 by strong induction.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci II: 𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”. We prove that P(n) is true for all
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci II: 𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”. We prove that P(n) is true for all
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
3. Inductive Hypothesis: Assume that for some arbitrary

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci II: 𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”. We prove that P(n) is true for all
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
3. Inductive Hypothesis: Assume that for some arbitrary

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:

Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci II: 𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”. We prove that P(n) is true for all
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
3. Inductive Hypothesis: Assume that for some arbitrary

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:

 fk+1 = fk + fk-1 def of f (since k+1 ≥ 2)
 ≥ 2k/2-1 + fk-1

 by the IH
 ≥ 2k/2-1 + 2(k-1)/2-1 by the IH

Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Oops! This is only true if 𝑘 − 1 ≥ 2 !

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci II: 𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”. We prove that P(n) is true for all
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
 f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

3. Inductive Hypothesis: Assume that for some arbitrary
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:

Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏

Bounding Fibonacci II: 𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”. We prove that P(n) is true for all
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
 f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

3. Inductive Hypothesis: Assume that for some arbitrary
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step: We can calculate
 fk+1 = fk + fk-1 def of f (since k+1 ≥ 4)
 ≥ 2k/2-1 + fk-1

 by the IH
 ≥ 2k/2-1 + 2(k-1)/2-1 by the IH (since k-1 ≥ 2)
 ≥ 2･2(k-1)/2-1

 = 2(k+1)/2-1
 so P(k+1) is true.

Bounding Fibonacci II: 𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”. We prove that P(n) is true for all
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
 f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 so P(3) holds

3. Inductive Hypothesis: Assume that for some arbitrary
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step: We can calculate
 fk+1 = fk + fk-1 def of f (since k+1 ≥ 4)
 ≥ 2k/2-1 + fk-1

 by the IH
 ≥ 2k/2-1 + 2(k-1)/2-1 by the IH (since k-1 ≥ 2)
 ≥ 2･2(k-1)/2-1 = 2(k+1)/2 -1
 so P(k+1) is true.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 2.

Checkerboard Tiling

• Prove that a 2𝑛	´	2𝑛	checkerboard with one square
removed can be tiled with:

Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square
removed can be tiled with .
We prove P(n) for all n ≥	1	by induction on n.

Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square
removed can be tiled with .
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1

Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square
removed can be tiled with .
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis: Assume P(k) for some

 arbitrary integer k≥1

Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square
removed can be tiled with .
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis: Assume P(k) for some

 arbitrary integer k≥1
4. Inductive Step: Prove P(k+1)

Apply IH to
each quadrant
then fill with
extra tile.

Applications

Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps
 for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0. Then, 𝑎 ≥ 𝑓(*+.

Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps
 for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0. Then, 𝑎 ≥ 𝑓(*+.

Why does this help us bound the running time of Euclid’s
Algorithm?

We already proved that 𝑓(≥ 2 ⁄("	/	+ so 𝑓(*+ ≥ 2 ⁄((*+) "

Therefore: if Euclid’s Algorithm takes 𝑛 steps
 for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0
 then 𝑎 ≥ 2 ⁄((/+) "

 so (𝑛 − 1)/2 ≤ log"	𝑎 or 𝑛 ≤ 1 + 2	log"	𝑎
 i.e., # of steps ≤ 1 + twice the # of bits in 𝑎.

Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes 𝑛 steps
 for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0. Then, 𝑎 ≥ 𝑓(*+.

An informal way to get the idea: Consider an n step gcd
calculation starting with rn+1=a and rn=b:
 rn+1 = qnrn + rn-1

 rn = qn-1rn-1 + rn-2
 …
 r3 = q2r2 + r1
 r2 = q1r1

Now r1 ≥ 1 and each qk must be ≥ 1. If we replace all the
qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.
After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk

Algorithmic Problems

• Multiplication
– Given primes 𝑝K, 𝑝A, …, 𝑝V, calculate their

product 𝑝K𝑝A…𝑝V
• Factoring

– Given an integer 𝑛, determine the prime
factorization of 𝑛

Factoring

Factor the following 232 digit number [RSA768]:

 123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917

Famous Algorithmic Problems

• Factoring
– Given an integer 𝑛, determine the prime

factorization of 𝑛
• Primality Testing

– Given an integer 𝑛, determine if 𝑛 is prime

• Factoring is hard
– (on a classical computer)

• Primality Testing is easy

GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is hard

Yet, we can compute GCD(a,b) without factoring!

Basic Applications of mod

• Two’s Complement
• Hashing
• Pseudo random number generation

• Represent integer 𝑥 as sum of powers of 2:

 99 = 64 + 32 + 2 + 1 = 26 + 25 + 21 + 20

 18 = 16 + 2 = 24 + 21

• Binary representation shows which powers are used:

 99: 0110 0011
 18: 0001 0010

n-bit Unsigned Integer Representation

• Suppose we write numbers with 4 bits:

 14 = 8 + 4 + 2 = 23 + 22 + 21 = 1110
 11 = 8 + 2 + 1 = 23 + 21 + 20 = 1011

• Largest number we can write in 4 bits is:

 15 = 8 + 4 + 2 + 1 = 23 + 22 + 21 + 20 = 1111

• Note that 15 = 16 – 1 = 24 - 1
– we proved this before!

n-bit Unsigned Integer Representation

• Suppose we write numbers with 4 bits (0 .. 15):

 14 = 8 + 4 + 2 = 23 + 22 + 21 = 1110
 11 = 8 + 2 + 1 = 23 + 21 + 20 = 1011

• Adding these numbers gives us 25 with 5 bits:

 25 = 16 + 8 + 1 = 24 + 23 + 20 = 11001

• If we drop the highest bit, we have

 9 = 8 + 1 = 23 + 20 = 1001

n-bit Unsigned Integer Representation

 25 = 16 + 8 + 1 = 24 + 23 + 20 = 11001
 9 = 8 + 1 = 23 + 20 = 1001

• Note that 9 ≡16 25 since 25 – 9 = 16
– dropping 24 bit subtracts 16
– dropping 25 bit subtracts 32 = 2·16
– dropping 26 bit subtracts 64 = 4·16

• Throwing away all but 4 bits is arithmetic mod 16
– easier to implement normal arithmetic!

n-bit Unsigned Integer Representation

Sign-Magnitude Integer Representation

𝑛-bit signed integers
Suppose that −2IWK < 𝑥 < 2IWK
First bit as the sign, 𝑛 − 1 bits for the value

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
 99: 0110 0011
 -18: 1001 0010

Problem: this has both +0 and -0 (annoying)

Arithmetic on a Clock

0
1

2

3
4

5

63 bits, unsigned
7

0
1

2

3
-4

-3

-2

-1

3 bits, signed

Since −1 ≡- 7, arithmetic is unchanged

Only differences are printing and comparison

Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2(&'
 𝑥 is represented by the binary representation of 𝑥
Suppose that −2(&'≤ 𝑥 < 0
 𝑥 is represented by the binary representation of 𝑥 + 2(
 result is in the range 2./(≤ 𝑥 < 2.

 99 = 64 + 32 + 2 + 1
 18 = 16 + 2

For n = 8:
 99: 0110 0011
 -18: 1110 1110 (-18 + 256 = 238)

Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2(&'
 𝑥 is represented by the binary representation of 𝑥
Suppose that −2(&'≤ 𝑥 < 0
 𝑥 is represented by the binary representation of 𝑥 + 2(
 result is in the range 2./(≤ 𝑥 < 2.

Key property: Twos complement representation of any number 𝒚
 is equivalent to 𝒚	𝐦𝐨𝐝	𝟐𝒏 so arithmetic works 𝐦𝐨𝐝	𝟐𝒏

Key property: First bit is still the sign bit!

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

𝑦 + 2(≡"! 𝑦

With 4 bits:

I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
 System.out.println(
 “I will be alive for at least ” +
 SEC_IN_YEAR * 101 + “ seconds.”
);
 }
}

Prints : “I will be alive for at least -186619904 seconds.”

Two’s Complement Representation

• For , −𝑥 is represented by the
binary representation of −𝑥 + 2/
– How do we calculate –x from x?
– E.g., what happens for “return –x;” in Java?

• To compute this, flip the bits of 𝑥 then add 1!
Flip the bits of 𝑥 means replace 𝑥 by 2I − 1 − 𝑥
Then add 1 to get −𝑥 + 2I

−𝑥 + 2(= 2(− 1 − x + 1

