
CSE 311: Foundations of Computing

Topic 5:  More Number Theory



Administrivia

• HW4 released
– formal proofs, then translate to English
– make sure you understand the formal proof

midterm will have formal proofs without Cozy's help

• Warning about CSE cookies…
– will see Cozy errors if you leave window open for hours

• Added some additional notes on Task 5…
– "(3x)y" and "3(xy)" are different (e.g., produce different code)

"3xy" means "(3x)y" since left associative
"xy" is a subexpression of "3(xy)" but not "3xy"



GCD



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Recall: Division Theorem

q = a div b

 For 𝑎, 𝑏 with 𝑏 > 0
      there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏     

such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

r = a mod b

Integers
Domain of Discourse



Greatest Common Divisor

 For 𝑎, 𝑏 with 𝑎 > 0
      there exist a unique integer 𝑛 s.t. 𝑛	|	𝑎 and 𝑛	|	𝑏
 and, for all 𝑑, if 𝑑	|	𝑎 and 𝑑	|	𝑏, then 𝑑 ≤ 𝑛

GCD Theorem

We will denote this unique number as n = gcd(a, b)

Non-negative Integers

Domain of Discourse



Greatest Common Divisor

gcd(a, b): 
 Largest integer 𝑛 such that 𝑛 ∣ 𝑎 and 𝑛 ∣ 𝑏

•   gcd(100, 125) = 
•   gcd(17, 49)  = 
•   gcd(11, 66)  =
•   gcd(13, 0)  = 
•   gcd(180, 252) =



Simple GCD fact

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse



Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

gcd(𝑎, 0) is the unique number 𝑛 satisfying
(𝑛 ∣ 0) Ù (𝑛 ∣ 𝑎) Ù ∀𝑑 (((𝑑 ∣ 0)	Ù	(𝑑 ∣ 𝑎))	®	(𝑑 ≤ 𝑛))



Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary.

Suppose that 𝑑	|	0 and 𝑑	|	𝑎. 

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse



Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary.

Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact, we get that 𝑎 = 𝑗𝑑 
for some 𝑗 by the definition of divides. Then, …

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse



Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary.

Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact, we get that 𝑎 = 𝑗𝑑 
for some 𝑗 by the definition of divides. Since multiplication by non-
negative numbers only makes the number bigger, 𝑑 ≤ 𝑎 holds.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse

Prop of *  ∀𝑎	∀𝑏	∀𝑐	(((𝑎 = 𝑏𝑐) ∧ (𝑏 > 0)) → (𝑐 ≤ 𝑎))

Oops! This is only true if 𝑗 > 0!



Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary. Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact, 
we get that 𝑎 = 𝑗𝑑 by the definition of divides. We continue by cases…

Suppose that 𝑗 > 0. Then, "Prop of *" tells us that 𝑑 ≤ 𝑎 holds.

Suppose that 𝑗 = 0. 

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse



Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary. Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact, 
we get that 𝑎 = 𝑗𝑑 by the definition of divides. We continue by cases…

Suppose that 𝑗 > 0. Then, "Prop of *" tells us that 𝑑 ≤ 𝑎 holds.

Suppose that 𝑗 = 0. That would tell us that 𝑎 = 0𝑑 = 0, contradicting 
the fact that 𝑎 > 0, which was given.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse



Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary. Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact, 
we get that 𝑎 = 𝑗𝑑 by the definition of divides. We continue by cases…

Suppose that 𝑗 > 0. Then, "Prop of *" tells us that 𝑑 ≤ 𝑎 holds.

Suppose that 𝑗 = 0. That would tell us that 𝑎 = 0𝑑 = 0, contradicting 
the fact that 𝑎 > 0, which was given. Since false is true, anything is true. 
In particular, we can say that 𝑑 ≤ 𝑎 holds.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse



Simple GCD fact

Since 0 = 0𝑎, we can see that 𝑎	|	0 by the definition of divides.

Since 𝑎 = 1𝑎, we can see that 𝑎	|	𝑎 by the definition of divides.

Let 𝑑 be arbitrary. Suppose that 𝑑	|	0 and 𝑑	|	𝑎. From the second fact, 
we get that 𝑎 = 𝑗𝑑 by the definition of divides. We continue by cases…

Suppose that 𝑗 > 0. Then, "Prop of *" tells us that 𝑑 ≤ 𝑎 holds.

Suppose that 𝑗 = 0. That would tell us that 𝑎 = 0𝑑 = 0, contradicting 
the fact that 𝑎 > 0, which was given. Since false is true, anything is true. 
In particular, we can say that 𝑑 ≤ 𝑎 holds.

Since we have either 𝑗 = 0 or 𝑗 > 0, we see that 𝑑 ≤ 𝑎 holds in general.

Since 𝑑 was arbitrary, we have shown that 𝑎 is gcd(𝑎, 0).

Let a be a positive integer.
We have gcd(a, 0) = a.

Non-negative Integers

Domain of Discourse



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof Idea:
 We will show that every number dividing 𝑎 and 𝑏 also divides 𝑏 and 𝑎	mod	𝑏.
 I.e., 𝑑|𝑎 and 𝑑|𝑏 iff 𝑑|𝑏 and 𝑑|(𝑎	mod	𝑏).

 Hence, their set of common divisors are the same,
 which means that their greatest common divisor is the same.



Useful GCD Fact

Proof (of 𝑑|𝑎 and 𝑑|𝑏 iff 𝑑|𝑏 and 𝑑| 𝑎	mod	𝑏 ):
 By the Division Theorem, 𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏)  for some integer 𝑞 = 𝑎	div	𝑏.  

 Suppose 𝑑	|	𝑏 and 𝑑	|	(𝑎	mod	𝑏).
 Then 𝑏 = 𝑚𝑑 and (𝑎	mod	𝑏) = 𝑛𝑑 for some integers 𝑚 and 𝑛.    
 Therefore  𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏) 	= 𝑞𝑚𝑑 + 	𝑛𝑑 = 𝑞𝑚 + 𝑛 𝑑.
 So 𝑑	|	𝑎 by the definition of divides.

 Suppose 𝑑	|	𝑎 and 𝑑	|	𝑏.
 Then 𝑎 = 𝑘𝑑 and 𝑏 = 𝑗𝑑 for some integers 𝑘 and 𝑗.
        Therefore (𝑎	mod	𝑏) = 𝑎	– 𝑞𝑏 = 𝑘𝑑	– 𝑞𝑗𝑑 = (𝑘	– 𝑞𝑗)𝑑. 
 So, 𝑑	|	(𝑎	mod	𝑏) by the definition of divides.

 Since they have the same common divisors, gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎	mod	𝑏).

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b)    gcd(a, 0) = a

int gcd(int a, int b) {  /* Assumes: a >= b >= 0 */
 if (b == 0) {
  return a;
 } else {
  return gcd(b, a % b);
 }
}

Note: gcd(b, a) = gcd(a, b)



Euclid’s Algorithm

gcd(660,126) =

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏  to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.

gcd(660,126) 



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
        = gcd(30, 126 mod 30)     = gcd(30, 6)
        = gcd(6, 30 mod 6)      = gcd(6, 0)
        = 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏  to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.



Bézout’s theorem

If a and b are positive integers, then there exist 
integers s and t such that 

gcd(a,b) = sa + tb.

∀a	∀b	((a	>	0	∧	b	>	0)	→	∃s	∃t	(gcd(a,b)	=	sa	+	tb))

(a	>	0	∧	b	>	0)	→	∃s	∃t	(gcd(a,b)	=	sa	+	tb)



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                         gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                         gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8	
a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                        gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8
=	gcd(8,	27	mod	8)						=	gcd(8,	3)									27	=	3	*	8			+	3
=	gcd(3,	8	mod	3)								=	gcd(3,	2)										8		=	2	*	3			+	2
=	gcd(2,	3	mod	2)									=	gcd(2,	1)										3		=	1	*	2			+	1
=	gcd(1,	2	mod	1)	 =	gcd(1,	0)

a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r  =  a  --  q * b
8	=	35	– 1	*	27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r  =  a  --  q * b
8	=	35	– 1	*	27
3	=	27	– 3	*	8
2	=		8		– 2	*	3
1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

Plug in the def of 2

Re-arrange into
3’s and 8’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

				=	(–1)	*	8	+	3	*	(27	–	3	*	8)
				=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
				=			3	*	27		+	(–10)	*	8

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

				=	(–1)	*	8	+	3	*	(27	–	3	*	8)
				=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
				=			3	*	27		+	(–10)	*	8

				=			3	*	27		+	(–10)	*	(35	–	1	*	27)
				=			3	*	27			+	(–10)	*	35	+	10	*	27
				=			13	*	27	+	(–10)	*	35

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s



Let 0 ≤ 𝑎, 𝑏 < 𝑚. Then, 𝑏 is the multiplicative 
inverse of 𝑎 (modulo 𝑚)  iff  𝑎𝑏 ≡! 1.   

Multiplicative inverse mod	𝑚

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

mod 7

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10



Multiplicative inverse mod	𝑚

Suppose gcd 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 is the multiplicative inverse of 𝑎 (modulo 𝑚):
 1 ≡: 𝑠𝑎  since  𝑚	|	1 − 𝑠𝑎  (since 1 − 𝑠𝑎 = 𝑡𝑚)

So… we can compute multiplicative inverses with the 
extended Euclidean algorithm

These inverses let us solve modular equations…



Recall: Properties of Modular Arithmetic

These properties are sufficient to allow 
us to do algebra with congruences

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.

In particular, the first two properties let us
•  move a term from one side to the other
•  simplify on either side



Recall: Multiplicative inverse mod	𝑚

Suppose gcd 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 is the multiplicative inverse of 𝑎 (modulo 𝑚):
 1 ≡: 𝑠𝑎  since  𝑚	|	1 − 𝑠𝑎  (since 1 − 𝑠𝑎 = 𝑡𝑚)

We can compute multiplicative inverses with the 
Extended Euclidean algorithm

These inverses let us solve modular equations…



Example: Solve a Modular Equation

Solve:  7𝑥 ≡"# 3

Suppose we can show that 15 is the 
multiplicative inverse of 7 modulo 26,
i.e., that 15 = 7 ≡!" 1

Then, we can multiply on both sides 
by 15 to see that

15 M 7𝑥 ≡"# 15 M 31𝑥 ≡"#𝑥 ≡"# ≡"# 45 ≡"# 19

So, if we are given that 7𝑥 ≡!" 3,
then we have shown that 𝑥 ≡!" 19.



Example: Solve a Modular Equation

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

1	 = 	 	 5	 	 – 	 	2 ∗ (7	– 1 ∗ 5)
 =	(– 2) ∗ 7		 + 	3 ∗ 5
 = –2 ∗ 7		 + 	3 ∗ (26	– 3 ∗ 7)
 =	 −11 ∗ 7	 + 	3 ∗ 26

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

1	 = 	 	 5	 	 – 	 	2 ∗ (7	– 1 ∗ 5)
 =	(– 2) ∗ 7		 + 	3 ∗ 5
 = –2 ∗ 7		 + 	3 ∗ (26	– 3 ∗ 7)
 =	 −11 ∗ 7	 + 	3 ∗ 26

Now (−11)	mod	26	 = 15.   
“the” multiplicative inverse

Solve:  7𝑥 ≡"# 3 Find multiplicative inverse of 7 modulo 26

(−11 is also “a” multiplicative inverse)



Adding to both sides easily reversible:

𝑥 ≡: 𝑦

𝑥 + 𝑐 ≡: 𝑦 + 𝑐

The same is not true of multiplication…
unless we have a multiplicative inverse 𝑐𝑑 ≡: 1

𝑥 ≡: 𝑦

𝑐𝑥 ≡: 𝑐𝑦

Multiplicative Inverses and Algebra

+𝑐−𝑐

×𝑐×𝑑



Example: Solve a Modular Equation

Solve:  7𝑥 ≡"# 3

We saw before that… if we are given that 7𝑥 ≡!" 3,
then we have shown that 𝑥 ≡!" 19.

But these steps are all reversible…

7𝑥 ≡AB 3	 ⇒ 	 x ≡AB 19



Example: Solve a Modular Equation

7𝑥 ≡AB 3	 ⇒ 	 15 > 7x ≡AB 15 > 3
multiply both sides by 15

x ≡AB 19	 ⇒ 	 7x ≡AB 7 > 19
multiply both sides by 7

⇒ 	 x ≡AB 19
since 15 = 7 ≡!" 1 and 15 = 3 ≡!" 19

⇒ 	 7x ≡AB 3
since 7 = 19 ≡!" 3



Example: Solve a Modular Equation

Solve:  7𝑥 ≡"# 3

We saw before that… if we are given that 7𝑥 ≡!" 3,
then we have shown that 𝑥 ≡!" 19.

But all of these steps are reversible…

So 7𝑥 ≡!" 3 iff 𝑥 ≡!" 19

x ≡AB 19	 ⇒ 	 7x ≡AB 7 > 19

Hence, the solutions are all numbers of the form 
19 + 26𝑘 for some integer 

7𝑥 ≡AB 3	 ⇒ 	 x ≡AB 19



Solving Modular Equations in "Standard Form"

1	 = 	… 	= 	 −11 ∗ 7	 + 	3 ∗ 26

Since (−11)	mod	26	 = 15, the inverse of 7 is 15.

Solve:  7𝑥 ≡"# 3     

Step 1. Find multiplicative inverse of 7 modulo 26

(must be of the form 𝑎 +𝑚𝑘 with 0 ≤ 𝑎 < 𝑚)

Multiplying by 15, we get 𝑥 ≡"# 15 M 7𝑥 ≡"# 15 M 3 ≡"# 19.

Step 2. Multiply both sides and simplify

Step 3. State the full set of solutions
So, the solutions are 19 + 26𝑘	for any integer 𝑘

(of the form 𝐴𝑥 ≡# 𝐵 for some 𝐴 and 𝐵)



Example Not in “Standard Form”

What about equation not in standard form?

Solve:  7(𝑥 − 3) ≡"# 8 + 2𝑥



Example: Not in “Standard Form”

Rewrite it in standard form:

Solve:  7 𝑥 − 3 ≡"# 8 + 2𝑥

7 𝑥 − 3 ≡"# 8 + 2x7𝑥 − 21 ≡"#

move 2x to the other side

5𝑥 − 21 ≡"# 8

move −21 to the other side

5𝑥 ≡"# 29 ≡"# 3

These steps are all reversible, so the solutions are the same.



Induction



Mathematical Induction

Method for proving claims about non-negative integers

– A new logical inference rule!
• It only applies over the non-negative numbers
• The idea is to use the special structure of these 

numbers to prove things more easily



Prove ∀𝑘	((𝑎 ≡! 𝑏) → (𝑎" ≡! 𝑏"))

Let 𝑘 be an arbitrary non-negative integer.
Suppose that 𝑎 ≡: 𝑏.

We know (𝑎 ≡$ 𝑏) ∧ (𝑎 ≡$ 𝑏) → (𝑎!≡$ 𝑏!) by multiplying 
congruences.  So, applying this repeatedly, we have:

(𝑎 ≡$ 𝑏) ∧ (𝑎 ≡$ 𝑏) → (𝑎! ≡$ 𝑏!)
(𝑎!≡$ 𝑏!) ∧ (𝑎 ≡$ 𝑏) → (𝑎$ ≡$ 𝑏$	)

…
(𝑎%&' ≡$ 𝑏%&'	) ∧ (𝑎 ≡$ 𝑏) → (𝑎% ≡$ 𝑏%)

The “…”s is a problem!  We don’t have a proof rule that 
allows us to say “do this over and over”.



But there is such a rule for non-negative numbers!

Domain: Non-Negative Numbers

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Induction Is A Rule of Inference
Domain: Non-Negative Numbers

How do the givens prove P(3)?

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)
Induction



Induction Is A Rule of Inference

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0) → P(1).  
 Since P(0) is true and P(0) → P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1) → P(2).
 Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

Domain: Non-Negative Numbers 𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)
Induction



Using The Induction Rule In A Formal Proof

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Using The Induction Rule In A Formal Proof

1. P(0)

       
       
       

2. "k (P(k) ® P(k+1))                 ??
3. "n P(n)                                    Induction: 1, 2

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Using The Induction Rule In A Formal Proof

1. P(0)
Let k be an arbitrary integer ≥ 0

        
        
         

2.1 P(k) ®  P(k+1)                         ??
2. "k (P(k) ® P(k+1))                 Intro "
3. "n P(n)                                    Induction: 1, 2

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Using The Induction Rule In A Formal Proof

1. P(0)
Let k be an arbitrary integer ≥ 0

        2.1.1. P(k)      Assumption
        2.1.2. ...
         2.1.3. P(k+1)

2.1 P(k) ®  P(k+1)                         Direct Proof
2. "k (P(k) ® P(k+1))                 Intro "
3. "n P(n)                                    Induction: 1, 2

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Translating to an English Proof

1. Prove P(0)
 Let k be an arbitrary integer ≥ 0
           2.1.1. Suppose that P(k) is true
           2.1.2.  ...
           2.1.3.  Prove P(k+1) is true

2.1 P(k) ®  P(k+1)                         Direct Proof
2. "k (P(k) ® P(k+1))                Intro "
3. "n P(n)                                   Induction: 1, 2

Base Case
Inductive 
Hypothesis

Inductive 
Step

Conclusion

𝑃 0 	 ∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )
∴ ∀𝑛	 𝑃(𝑛)

Induction



Translating to an English Proof

[…Define P(n)…]

We will show that 𝑃(𝑛) is true for every 𝑛 ≥ 0 by induction.
Base Case: […proof of 𝑃(0) here…]

Induction Hypothesis: 
 Suppose that 𝑃(𝑘) is true for an arbitrary 𝑘 ≥ 0.

Induction Step:
 […proof of 𝑃(𝑘 + 1) here…]
 The proof of 𝑃(𝑘 + 1) must invoke the IH somewhere.

So, the claim is true by induction.

Induction English Proof Template



Inductive Proofs In 5 Easy Steps

Proof: 
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every 
        𝑛 ≥ 0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:
 Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: Result follows by induction”

Basic induction template



What is 1	 + 	2	 + 	4	 +	…	+ 	2𝑛 ?

• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 1
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 3
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 7
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 15
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 31

   

It sure looks like this sum is 2IJK − 1
How can we prove it?
 We could prove it for 𝑛 = 1, 𝑛 = 2, 𝑛 = 3,… but 

that would literally take forever.
     Good that we have induction!



Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
         Goal:  Show P(k+1I.e.,), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
   20 + 21 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
   20 + 21 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
 5. Thus P(k) is true for all k ∈ℕ, by induction.  

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1



Recall: Substitution vs Adding Equations

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄   “Transitivity”
If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂 + 𝒄 = 𝒃 + 𝒅 “Add Equations”

If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂𝒄 = 𝒃𝒅	  “Multiply Equations”

• Substitution is an alternative for solving problems
– we will try this out on HW4
– will be heavily used in future homework



Recall: Equivalence Chains

𝑝 ∧ 𝑝 → 𝑟 ≡ 𝑝 ∧ (¬𝑝 ∨ 𝑟)
       ≡ 𝑝 ∧ ¬𝑝 ∨ (𝑝 ∧ 𝑟)
       ≡	F ∨ (𝑝 ∧ 𝑟)
       ≡ 𝑝 ∧ 𝑟 ∨	F
       ≡ 𝑝 ∧ 𝑟

Law of Implication
Distributive
Negation
Commutative
Identity

• Each line explains equivalence with previous line
– e.g., (p Ù r) ∨ F º p Ù r by Identity

• Entire chain proves p Ù (p ® r) º p Ù r
– follows by transitivity of "≡"



We can do the same with equality:

        20 + 21 + … + 2k + 2k+1 
  = (20+21+ … + 2k) + 2k+1 
         = (2k+1 – 1) + 2k+1    since 20+21+ … + 2k = 2k+1 – 1
  = 2(2k+1) – 1
  = 2k+2 – 1

Explanations appear on in right column
– "since" means we substituted LHS for RHS
– ordinary algebra (on integers) does not need explanation
– "def of" will be used to apply the definition of a function

e.g., replacing f(x) by y when we have f defined as f(x) := y

Calculation Block



We can do the same with equality:

        20 + 21 + … + 2k + 2k+1 
  = (20+21+ … + 2k) + 2k+1 
         = (2k+1 – 1) + 2k+1    since 20+21+ … + 2k = 2k+1 – 1
  = 2(2k+1) – 1
  = 2k+2 – 1

Entire block shows 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
– this is the transitivity property of "="

Can also do calculation with "<" and "≤"
– don't mix directions: ">" and "<" in one block is ><

Calculation Block



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
       We can calculate
         20 + 21 + … + 2k + 2k+1  = (20+21+ … + 2k) + 2k+1 
                                                         = (2k+1 – 1) + 2k+1   by the IH
                 = 2(2k+1) – 1
                 = 2k+2 – 1,
       which is exactly P(k+1).

 5. Thus P(k) is true for all k ∈ℕ, by induction.  

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1

The entire inductive step is one calculation!
We will rely heavily on calculation going forward…



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all non-negative numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
       We can calculate
         20 + 21 + … + 2k + 2k+1  = (20+21+ … + 2k) + 2k+1 
                                                         = (2k+1 – 1) + 2k+1   by the IH
                 = 2(2k+1) – 1
                 = 2k+2 – 1,
       which is exactly P(k+1).
  5. Thus P(n) is true for all n ≥ 0, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2<=>– 	1



Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2

Summation Notation
 ∑DEF< 𝑖 = 0 + 1	 + 	2	 + 	3	 +	…	+ 	𝑛

Prove that  ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “∑%&'( 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

Prove  ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “∑%&'( 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑%&'' 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.  

Prove  ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “∑%&'( 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑%&'' 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose ∑%&') 𝑖 = 𝑘(𝑘 + 1)/2

Prove  ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2

“some” or “an”
not any!



1. Let P(n) be “∑%&'( 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑%&'' 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose ∑%&') 𝑖 = 𝑘(𝑘 + 1)/2
4. Induction Step:

Prove  ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2

Goal: Show P(k+1), i.e., ∑#$%&'( 𝑖 = (𝑘 + 1)(𝑘 + 2)/2



1. Let P(n) be “∑%&'( 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑%&'' 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some   

arbitrary integer k ≥ 0. I.e., suppose ∑%&') 𝑖 = 𝑘(𝑘 + 1)/2
4. Induction Step:  We can see that
     ∑%&')*+ 𝑖 = (∑%&') 𝑖) + (𝑘 + 1)
       = k(k + 1)/2 + (𝑘 + 1)  by IH
       = (k + 1)(k/2 + 1)
       = (k + 1)(k + 2)/2
  which is exactly P(k+1).

Prove  ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “∑%&'( 𝑖 = 𝑛(𝑛 + 1)/2”.  We will show P(n) is 
true for all non-negative numbers by induction.

2. Base Case (n=0): ∑%&'' 𝑖 = 0 = 0(0 + 1)/2, so P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0. I.e., suppose ∑%&') 𝑖 = 𝑘(𝑘 + 1)/2
4. Induction Step:  We can see that
     ∑%&')*+ 𝑖 = (∑%&') 𝑖) + (𝑘 + 1)
       = k(k + 1)/2 + (𝑘 + 1)  by IH
       = (k + 1)(k/2 + 1)
       = (k + 1)(k + 2)/2
  which is exactly P(k+1).
  5. Thus P(n) is true for all n ≥ 0, by induction.

Prove  ∑DEF< 𝑖 = 	𝑛(𝑛 + 1)/2



Induction: Changing the starting point 

• What if we want to prove that 𝑃(𝑛) is true 
for all integers 𝑛 ≥ 𝑏 for some integer 𝑏?

• Define predicate 𝑄 𝑘 = 𝑃(𝑘 + 𝑏) for all 𝑘.
– Then ∀𝑛	𝑄 𝑛 ≡ ∀𝑛 ≥ 𝑏	 𝑃(𝑛)

 

• Ordinary induction for 𝑄:  
– Prove	𝑄 0 ≡ 𝑃 𝑏
– Prove                                                        

∀𝑘 𝑄 𝑘 ⟶ 𝑄 𝑘 + 1 ≡ ∀𝑘 ≥ 𝑏 𝑃 𝑘 ⟶ 𝑃 𝑘 + 1



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
      integers 𝑛 ≥ 𝒃 by induction.”
2. “Base Case:” Prove 𝑃(𝒃)
3. “Inductive Hypothesis:
 Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝒃”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝒃”

Template for induction from a different base case



Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):  32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Hypothesis:  Suppose that P(k) is true for some                                          

arbitrary integer k ≥ 2.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 2.
4. Inductive Step:  
          Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

 arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
          =k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  

          
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.

Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  We can see that 
         3k+1 = 3(3k)
                             ≥ 3(k2+3)   by the IH
     = k2+2k2+9
         ≥ k2+2k+9   since k2 ≥ k
         ≥ k2+2k+4   since 9 ≥ 4
     = (k+1)2+3 
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all integers n ≥ 2, by induction.

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
4. Inductive Step:  We can see that
     3k+1  = 3(3k) ≥ 3(k2+3)   by the IH
     = k2+2k2+9
         ≥ k2+2k+9   since k2 ≥ k
         ≥ k2+2k+4   since 9 ≥ 4
     = (k+1)2+3
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all integers n ≥ 2, by induction.

Prove 3𝑛 ≥ 𝑛G + 3 for all 𝑛 ≥ 2



Induction: Adding Base Cases

• What if we want to prove that 𝑃(𝑛) is true 
for all integers 𝑛 ≥ 𝑏 for some integer 𝑏
but the inductive step only works for 𝑛 ≥ 𝑐?

• Add proofs of 𝑃(𝑏), 𝑃(𝑏 + 1), …, 𝑃(𝑐 − 1)
– will call these extra "base cases"

• Formally, we are using the fact that
𝑃 𝑏 	∧	 MMM	 ∧ 	𝑃 𝑐 − 1 	∧	∀𝑛	((𝑐 ≤ 𝑛) → 𝑃(𝑛))
 ≡ ∀𝑛	((𝑏 ≤ 𝑛) → 𝑃(𝑛))



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
      integers 𝑛 ≥ 𝒃 by induction.”
2. “Base Case:” Prove 𝑃(𝒃), …, 𝑃(𝒄)
3. “Inductive Hypothesis:
 Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝒄”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝒃”

Template for induction with multiple base cases



Recursive Definitions
of Functions



Familiar Recursive Definitions

Suppose that ℎ:ℕ	 → ℝ.  

Then we have familiar summation notation: 
∑,-.. ℎ 𝑖 ≔ ℎ(0)
∑,-./01ℎ 𝑖 ≔ ∑,-./ ℎ 𝑖 + ℎ(𝑛 + 1) for 𝑛 ≥ 0

There is also product notation:  
∏,-.
. ℎ 𝑖 ≔ ℎ(0)

∏,-.
/01ℎ 𝑖 ≔ ∏,-.

/ ℎ 𝑖 G ℎ(𝑛 + 1)	 for 𝑛 ≥ 0



Recursive definitions of functions 

• 0! ≔ 1;	 (𝑛 + 1)! ≔ (𝑛 + 1) > 𝑛!  for all 𝑛 ≥ 	0.

• 𝐹(0) ≔ 0; 	 𝐹(𝑛 + 1) ≔ 𝐹(𝑛) + 1 for all 𝑛 ≥ 	0. 

• 𝐺(0) ≔ 1; 	 𝐺(𝑛 + 1) ≔ 2 > 𝐺(𝑛) for all 𝑛 ≥ 	0. 

• 𝐻(0) ≔ 1; 	 𝐻(𝑛 + 1) ≔ 2Q I  for all 𝑛 ≥ 	0.



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:  
          

Goal:  Show P(k+1), i.e. show (k+1)! ≤ (k+1)k+1

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:  
         We can calculate:
         (k+1)! = (k+1)·k!            by definition of !
                                 ≤ (k+1)· kk           by the IH
                             ≤ (k+1)· (k+1)k    since k ≥ 0
                      = (k+1)k+1

   Therefore P(k+1) is true.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:  
         We can calculate:
         (k+1)! = (k+1)·k!            by definition of !
                                 ≤ (k+1)· kk           by the IH
                             ≤ (k+1)· (k+1)k    since k ≥ 0
                      = (k+1)k+1

   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ≥ 1, by induction.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



Induction Is A Rule of Inference

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

Domain: Non-Negative Numbers 𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)
Induction



Induction Is A Rule of Inference

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0) → P(1).  
 Since P(0) is true and P(0) → P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1) → P(2).
 Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

Domain: Non-Negative Numbers 𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)
Induction



Strong Induction

𝑃 0 	 ∀𝑘 ∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗 → 𝑃 𝑘 + 1

∴ ∀𝑛	𝑃(𝑛)Strong
Induction



Strong Induction

Strong induction for 𝑃 follows from ordinary induction for 𝑄 
where

𝑄 𝑘 	∷=	∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗

Note that 𝑄 0 = 𝑃(0) and 𝑄(𝑘 + 1) ≡ 𝑄(𝑘) 	∧ 𝑃 𝑘 + 1  
and  ∀𝑛	𝑄 𝑛 ≡ ∀𝑛	𝑃(𝑛) 

𝑃 0 	 ∀𝑘 ∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗 → 𝑃 𝑘 + 1

∴ ∀𝑛	𝑃(𝑛)



Strong Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
       integers 𝑛 ≥ 𝑏 by strong induction.”
2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:
 Assume that for some arbitrary integer 𝑘 ≥ 𝑏,	
  	 𝑃(𝑗) is true for every integer 𝑗	from 𝑏	to 𝑘”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true) 

and point out where you are using it.                           
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Fibonacci Numbers

𝑓. ≔ 0 
𝑓1 ≔ 1 
𝑓/0" ≔ 𝑓/01 + 𝑓/  

Will need facts about
fn-2 to reason about fn



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0 = 0 < 1= 20  so P(0) is true.



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0 = 0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0 = 0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:

    fk+1 = fk + fk-1            def of f

Oops! This is only true if 𝑘 + 1 ≥ 2 !

Goal: Show P(k+1); that is, fk+1 < 2k+1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:

Goal: Show P(k+1); that is, fk+1 < 2k+1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step: We can calculate that
            fk+1 = fk   +  fk-1  def of f (since k+1 ≥ 2)
    < 2k + 2k-1  by IH (since k-1 ≥ 0)
    < 2k + 2k 
    = 2·2k  

    = 2k+1 
  so P(k+1) is true. 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 

𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci:  𝑓/ < 2/ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1= 20  so P(0) is true and

        f1 = 1 < 2 = 21 so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step: We can calculate that
   fk+1 = fk   +  fk-1  def of f (since k+1 ≥ 2)
    < 2k + 2k-1  by IH (since k-1 ≥ 0)
    < 2k + 2k 
    = 2k+1 
  so P(k+1) is true.
5. Therefore, by strong induction, fn < 2n for all integers n ≥ 0.



Bounding Fibonacci II:  𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case:  f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case:  f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case:  f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:

Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case:  f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:

   fk+1 = fk   +  fk-1    def of f (since k+1 ≥ 2)
    ≥ 2k/2-1 + fk-1

    by the IH
     ≥ 2k/2-1 + 2(k-1)/2-1  by the IH

Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Oops! This is only true if 𝑘 − 1 ≥ 2 !

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
    f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1  so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:

Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏'𝟐 = 𝒇𝒏'𝟏 + 𝒇𝒏 



Bounding Fibonacci II:  𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
    f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1  so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step: We can calculate
   fk+1 = fk   +  fk-1    def of f (since k+1 ≥ 4)
    ≥ 2k/2-1 + fk-1

    by the IH
    ≥ 2k/2-1 + 2(k-1)/2-1  by the IH (since k-1 ≥ 2)
    ≥ 2･2(k-1)/2-1 

    = 2(k+1)/2-1 
    so P(k+1) is true.



Bounding Fibonacci II:  𝑓1 ≥ 2 ⁄1 3	4	5 for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1 ≥ 1 = 20 = 22/2 – 1 so P(2) holds
    f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1  so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step: We can calculate
   fk+1 = fk   +  fk-1    def of f (since k+1 ≥ 4)
    ≥ 2k/2-1 + fk-1

    by the IH
    ≥ 2k/2-1 + 2(k-1)/2-1  by the IH (since k-1 ≥ 2)
    ≥ 2･2(k-1)/2-1 = 2(k+1)/2 -1 
    so P(k+1) is true.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 2.



Checkerboard Tiling

• Prove that a 2𝑛	´	2𝑛	checkerboard with one square 
removed can be tiled with:



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some    

              arbitrary integer k≥1



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some    

              arbitrary integer k≥1
4. Inductive Step: Prove P(k+1)

Apply IH to 
each quadrant 
then fill with 
extra tile.



Applications



Running time of Euclid’s algorithm
Theorem:  Suppose that Euclid’s Algorithm takes 𝑛 steps
   for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓(*+.



Running time of Euclid’s algorithm
Theorem:  Suppose that Euclid’s Algorithm takes 𝑛 steps
   for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓(*+.

Why does this help us bound the running time of Euclid’s 
Algorithm?

We already proved that 𝑓( ≥ 2 ⁄( "	/	+ so 𝑓(*+ ≥ 2 ⁄((*+) "

Therefore: if Euclid’s Algorithm takes 𝑛 steps
   for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0 
                  then 𝑎 ≥ 2 ⁄((/+) "

   so (𝑛 − 1)/2 ≤ log"	𝑎  or 𝑛 ≤ 1 + 2	log"	𝑎
   i.e., # of steps ≤ 1 + twice the # of bits in 𝑎.



Running time of Euclid’s algorithm
Theorem:  Suppose that Euclid’s Algorithm takes 𝑛 steps
   for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓(*+.

An informal way to get the idea:   Consider an n step gcd 
calculation starting with rn+1=a and rn=b:
 rn+1 =   qnrn   +  rn-1

 rn    = qn-1rn-1 + rn-2
   …
 r3    =   q2r2    + r1
 r2    =   q1r1 

Now r1 ≥ 1 and each qk must be ≥ 1.    If we replace all the 
qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.  
After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk



Algorithmic Problems

• Multiplication
– Given primes 𝑝K, 𝑝A, …, 𝑝V, calculate their 

product 𝑝K𝑝A…𝑝V
• Factoring

– Given an integer 𝑛, determine the prime 
factorization of 𝑛



Factoring

Factor the following 232 digit number [RSA768]:

 123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917



Famous Algorithmic Problems

• Factoring
– Given an integer 𝑛, determine the prime 

factorization of 𝑛
• Primality Testing

– Given an integer 𝑛, determine if 𝑛 is prime

• Factoring is hard
– (on a classical computer)

• Primality Testing is easy



GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is hard

Yet, we can compute GCD(a,b) without factoring!



Basic Applications of mod

• Two’s Complement
• Hashing 
• Pseudo random number generation



• Represent integer 𝑥 as sum of powers of 2:

    99  = 64 + 32 + 2 + 1  = 26 + 25 + 21 + 20

     18  = 16 + 2    = 24 + 21

• Binary representation shows which powers are used:

       99:    0110 0011
       18:    0001  0010

n-bit Unsigned Integer Representation



• Suppose we write numbers with 4 bits:

    14  = 8 + 4 + 2   = 23 + 22 + 21   = 1110
     11  = 8 + 2 + 1   = 23 + 21 + 20   = 1011

• Largest number we can write in 4 bits is:

 15  = 8 + 4 + 2 + 1 = 23 + 22 + 21 + 20 = 1111

• Note that 15 = 16 – 1 = 24 - 1
– we proved this before!

n-bit Unsigned Integer Representation



• Suppose we write numbers with 4 bits (0 .. 15):

    14  = 8 + 4 + 2  = 23 + 22 + 21  = 1110
     11  = 8 + 2 + 1  = 23 + 21 + 20  = 1011

• Adding these numbers gives us 25 with 5 bits:

 25  = 16 + 8 + 1 = 24 + 23 + 20  = 11001

• If we drop the highest bit, we have

 9  = 8 + 1   = 23 + 20   = 1001

n-bit Unsigned Integer Representation



 25  = 16 + 8 + 1 = 24 + 23 + 20  = 11001
 9  = 8 + 1   = 23 + 20   = 1001

• Note that 9 ≡16 25 since 25 – 9 = 16
– dropping 24 bit subtracts 16
– dropping 25 bit subtracts 32 = 2·16
– dropping 26 bit subtracts 64 = 4·16

• Throwing away all but 4 bits is arithmetic mod 16
– easier to implement normal arithmetic!

n-bit Unsigned Integer Representation



Sign-Magnitude Integer Representation

𝑛-bit signed integers
Suppose that −2IWK < 𝑥 < 2IWK
First bit as the sign, 𝑛 − 1 bits for the value

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
   99:    0110 0011
   -18:   1001  0010

Problem: this has both +0 and -0 (annoying)



Arithmetic on a Clock

0
1

2

3
4

5

63 bits, unsigned
7

0
1

2

3
-4

-3

-2

-1

3 bits, signed

Since −1 ≡- 7, arithmetic is unchanged

Only differences are printing and comparison



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2(&'                    
 𝑥 is represented by the binary representation of 𝑥
Suppose that −2(&'≤ 𝑥 < 0
 𝑥 is represented by the binary representation of 𝑥 + 2(
 result is in the range 2./( ≤ 𝑥 < 2.
 

   99 = 64 + 32 + 2 + 1
   18 = 16 + 2

For n = 8:
    99:    0110 0011
   -18:    1110 1110   (-18 + 256 = 238)



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2(&'                    
 𝑥 is represented by the binary representation of 𝑥
Suppose that −2(&'≤ 𝑥 < 0
 𝑥 is represented by the binary representation of 𝑥 + 2(
 result is in the range 2./( ≤ 𝑥 < 2.
 

Key property: Twos complement representation of any number 𝒚 
                         is equivalent to 𝒚	𝐦𝐨𝐝	𝟐𝒏 so arithmetic works 𝐦𝐨𝐝	𝟐𝒏

Key property: First bit is still the sign bit!

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

𝑦 + 2( ≡"! 𝑦

With 4 bits:



I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
  System.out.println(
   “I will be alive for at least ” +
   SEC_IN_YEAR * 101 + “ seconds.”
  );
 }
}

Prints : “I will be alive for at least -186619904 seconds.”



Two’s Complement Representation

• For                         ,  −𝑥 is represented by the 
binary representation of −𝑥 + 2/
– How do we calculate –x from x?
– E.g., what happens for “return –x;” in Java?

• To compute this, flip the bits of 𝑥 then add 1!
Flip the bits of 𝑥 means replace 𝑥 by 2I − 1 − 𝑥
Then add 1 to get −𝑥 + 2I

−𝑥 + 2( = 2( − 1 − x + 1


